Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- regression fix: dirty extents tracked in xarray for qgroups must be
adjusted for 32bit platforms
- fix potentially freeing uninitialized name in fscrypt structure
- fix warning about unneeded variable in a send callback
* tag 'for-6.12-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix uninitialized pointer free on read_alloc_one_name() error
btrfs: send: cleanup unneeded return variable in changed_verity()
btrfs: fix uninitialized pointer free in add_inode_ref()
btrfs: use sector numbers as keys for the dirty extents xarray
|
|
The function read_alloc_one_name() does not initialize the name field of
the passed fscrypt_str struct if kmalloc fails to allocate the
corresponding buffer. Thus, it is not guaranteed that
fscrypt_str.name is initialized when freeing it.
This is a follow-up to the linked patch that fixes the remaining
instances of the bug introduced by commit e43eec81c516 ("btrfs: use
struct qstr instead of name and namelen pairs").
Link: https://lore.kernel.org/linux-btrfs/20241009080833.1355894-1-jroi.martin@gmail.com/
Fixes: e43eec81c516 ("btrfs: use struct qstr instead of name and namelen pairs")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Roi Martin <jroi.martin@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
As all changed_* functions need to return something, just return 0
directly here, as the verity status is passed via the context.
Reported by LKP: fs/btrfs/send.c:6877:5-8: Unneeded variable: "ret". Return "0" on line 6883
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202410092305.WbyqspH8-lkp@intel.com/
Signed-off-by: Christian Heusel <christian@heusel.eu>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The add_inode_ref() function does not initialize the "name" struct when
it is declared. If any of the following calls to "read_one_inode()
returns NULL,
dir = read_one_inode(root, parent_objectid);
if (!dir) {
ret = -ENOENT;
goto out;
}
inode = read_one_inode(root, inode_objectid);
if (!inode) {
ret = -EIO;
goto out;
}
then "name.name" would be freed on "out" before being initialized.
out:
...
kfree(name.name);
This issue was reported by Coverity with CID 1526744.
Fixes: e43eec81c516 ("btrfs: use struct qstr instead of name and namelen pairs")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Roi Martin <jroi.martin@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We are using the logical address ("bytenr") of an extent as the key for
qgroup records in the dirty extents xarray. This is a problem because the
xarrays use "unsigned long" for keys/indices, meaning that on a 32 bits
platform any extent starting at or beyond 4G is truncated, which is a too
low limitation as virtually everyone is using storage with more than 4G of
space. This means a "bytenr" of 4G gets truncated to 0, and so does 8G and
16G for example, resulting in incorrect qgroup accounting.
Fix this by using sector numbers as keys instead, that is, using keys that
match the logical address right shifted by fs_info->sectorsize_bits, which
is what we do for the fs_info->buffer_radix that tracks extent buffers
(radix trees also use an "unsigned long" type for keys). This also makes
the index space more dense which helps optimize the xarray (as mentioned
at Documentation/core-api/xarray.rst).
Fixes: 3cce39a8ca4e ("btrfs: qgroup: use xarray to track dirty extents in transaction")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- update fstrim loop and add more cancellation points, fix reported
delayed or blocked suspend if there's a huge chunk queued
- fix error handling in recent qgroup xarray conversion
- in zoned mode, fix warning printing device path without RCU
protection
- again fix invalid extent xarray state (6252690f7e1b), lost due to
refactoring
* tag 'for-6.12-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix clear_dirty and writeback ordering in submit_one_sector()
btrfs: zoned: fix missing RCU locking in error message when loading zone info
btrfs: fix missing error handling when adding delayed ref with qgroups enabled
btrfs: add cancellation points to trim loops
btrfs: split remaining space to discard in chunks
|
|
This commit is a replay of commit 6252690f7e1b ("btrfs: fix invalid
mapping of extent xarray state"). We need to call
btrfs_folio_clear_dirty() before btrfs_set_range_writeback(), so that
xarray DIRTY tag is cleared.
With a refactoring commit 8189197425e7 ("btrfs: refactor
__extent_writepage_io() to do sector-by-sector submission"), it screwed
up and the order is reversed and causing the same hang. Fix the ordering
now in submit_one_sector().
Fixes: 8189197425e7 ("btrfs: refactor __extent_writepage_io() to do sector-by-sector submission")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
At btrfs_load_zone_info() we have an error path that is dereferencing
the name of a device which is a RCU string but we are not holding a RCU
read lock, which is incorrect.
Fix this by using btrfs_err_in_rcu() instead of btrfs_err().
The problem is there since commit 08e11a3db098 ("btrfs: zoned: load zone's
allocation offset"), back then at btrfs_load_block_group_zone_info() but
then later on that code was factored out into the helper
btrfs_load_zone_info() by commit 09a46725cc84 ("btrfs: zoned: factor out
per-zone logic from btrfs_load_block_group_zone_info").
Fixes: 08e11a3db098 ("btrfs: zoned: load zone's allocation offset")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When adding a delayed ref head, at delayed-ref.c:add_delayed_ref_head(),
if we fail to insert the qgroup record we don't error out, we ignore it.
In fact we treat it as if there was no error and there was already an
existing record - we don't distinguish between the cases where
btrfs_qgroup_trace_extent_nolock() returns 1, meaning a record already
existed and we can free the given record, and the case where it returns
a negative error value, meaning the insertion into the xarray that is
used to track records failed.
Effectively we end up ignoring that we are lacking qgroup record in the
dirty extents xarray, resulting in incorrect qgroup accounting.
Fix this by checking for errors and return them to the callers.
Fixes: 3cce39a8ca4e ("btrfs: qgroup: use xarray to track dirty extents in transaction")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There are reports that system cannot suspend due to running trim because
the task responsible for trimming the device isn't able to finish in
time, especially since we have a free extent discarding phase, which can
trim a lot of unallocated space. There are no limits on the trim size
(unlike the block group part).
Since trime isn't a critical call it can be interrupted at any time,
in such cases we stop the trim, report the amount of discarded bytes and
return an error.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219180
Link: https://bugzilla.suse.com/show_bug.cgi?id=1229737
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Luca Stefani <luca.stefani.ge1@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Per Qu Wenruo in case we have a very large disk, e.g. 8TiB device,
mostly empty although we will do the split according to our super block
locations, the last super block ends at 256G, we can submit a huge
discard for the range [256G, 8T), causing a large delay.
Split the space left to discard based on BTRFS_MAX_DISCARD_CHUNK_SIZE in
preparation of introduction of cancellation points to trim. The value
of the chunk size is arbitrary, it can be higher or derived from actual
device capabilities but we can't easily read that using
bio_discard_limit().
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219180
Link: https://bugzilla.suse.com/show_bug.cgi?id=1229737
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Luca Stefani <luca.stefani.ge1@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- in incremental send, fix invalid clone operation for file that got
its size decreased
- fix __counted_by() annotation of send path cache entries, we do not
store the terminating NUL
- fix a longstanding bug in relocation (and quite hard to hit by
chance), drop back reference cache that can get out of sync after
transaction commit
- wait for fixup worker kthread before finishing umount
- add missing raid-stripe-tree extent for NOCOW files, zoned mode
cannot have NOCOW files but RST is meant to be a standalone feature
- handle transaction start error during relocation, avoid potential
NULL pointer dereference of relocation control structure (reported by
syzbot)
- disable module-wide rate limiting of debug level messages
- minor fix to tracepoint definition (reported by checkpatch.pl)
* tag 'for-6.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: disable rate limiting when debug enabled
btrfs: wait for fixup workers before stopping cleaner kthread during umount
btrfs: fix a NULL pointer dereference when failed to start a new trasacntion
btrfs: send: fix invalid clone operation for file that got its size decreased
btrfs: tracepoints: end assignment with semicolon at btrfs_qgroup_extent event class
btrfs: drop the backref cache during relocation if we commit
btrfs: also add stripe entries for NOCOW writes
btrfs: send: fix buffer overflow detection when copying path to cache entry
|
|
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.
auto-generated by the following:
for i in `git grep -l -w asm/unaligned.h`; do
sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
|
|
Disable ratelimiting for btrfs_printk when CONFIG_BTRFS_DEBUG is
enabled. This allows for more verbose output which is often needed by
functions like btrfs_dump_space_info().
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Leo Martins <loemra.dev@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During unmount, at close_ctree(), we have the following steps in this order:
1) Park the cleaner kthread - this doesn't destroy the kthread, it basically
halts its execution (wake ups against it work but do nothing);
2) We stop the cleaner kthread - this results in freeing the respective
struct task_struct;
3) We call btrfs_stop_all_workers() which waits for any jobs running in all
the work queues and then free the work queues.
Syzbot reported a case where a fixup worker resulted in a crash when doing
a delayed iput on its inode while attempting to wake up the cleaner at
btrfs_add_delayed_iput(), because the task_struct of the cleaner kthread
was already freed. This can happen during unmount because we don't wait
for any fixup workers still running before we call kthread_stop() against
the cleaner kthread, which stops and free all its resources.
Fix this by waiting for any fixup workers at close_ctree() before we call
kthread_stop() against the cleaner and run pending delayed iputs.
The stack traces reported by syzbot were the following:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x77/0x2050 kernel/locking/lockdep.c:5065
Read of size 8 at addr ffff8880272a8a18 by task kworker/u8:3/52
CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.12.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: btrfs-fixup btrfs_work_helper
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
__lock_acquire+0x77/0x2050 kernel/locking/lockdep.c:5065
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162
class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline]
try_to_wake_up+0xb0/0x1480 kernel/sched/core.c:4154
btrfs_writepage_fixup_worker+0xc16/0xdf0 fs/btrfs/inode.c:2842
btrfs_work_helper+0x390/0xc50 fs/btrfs/async-thread.c:314
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa63/0x1850 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 2:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
unpoison_slab_object mm/kasan/common.c:319 [inline]
__kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345
kasan_slab_alloc include/linux/kasan.h:247 [inline]
slab_post_alloc_hook mm/slub.c:4086 [inline]
slab_alloc_node mm/slub.c:4135 [inline]
kmem_cache_alloc_node_noprof+0x16b/0x320 mm/slub.c:4187
alloc_task_struct_node kernel/fork.c:180 [inline]
dup_task_struct+0x57/0x8c0 kernel/fork.c:1107
copy_process+0x5d1/0x3d50 kernel/fork.c:2206
kernel_clone+0x223/0x880 kernel/fork.c:2787
kernel_thread+0x1bc/0x240 kernel/fork.c:2849
create_kthread kernel/kthread.c:412 [inline]
kthreadd+0x60d/0x810 kernel/kthread.c:765
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Freed by task 61:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:579
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:230 [inline]
slab_free_hook mm/slub.c:2343 [inline]
slab_free mm/slub.c:4580 [inline]
kmem_cache_free+0x1a2/0x420 mm/slub.c:4682
put_task_struct include/linux/sched/task.h:144 [inline]
delayed_put_task_struct+0x125/0x300 kernel/exit.c:228
rcu_do_batch kernel/rcu/tree.c:2567 [inline]
rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823
handle_softirqs+0x2c5/0x980 kernel/softirq.c:554
__do_softirq kernel/softirq.c:588 [inline]
invoke_softirq kernel/softirq.c:428 [inline]
__irq_exit_rcu+0xf4/0x1c0 kernel/softirq.c:637
irq_exit_rcu+0x9/0x30 kernel/softirq.c:649
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1037 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1037
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702
Last potentially related work creation:
kasan_save_stack+0x3f/0x60 mm/kasan/common.c:47
__kasan_record_aux_stack+0xac/0xc0 mm/kasan/generic.c:541
__call_rcu_common kernel/rcu/tree.c:3086 [inline]
call_rcu+0x167/0xa70 kernel/rcu/tree.c:3190
context_switch kernel/sched/core.c:5318 [inline]
__schedule+0x184b/0x4ae0 kernel/sched/core.c:6675
schedule_idle+0x56/0x90 kernel/sched/core.c:6793
do_idle+0x56a/0x5d0 kernel/sched/idle.c:354
cpu_startup_entry+0x42/0x60 kernel/sched/idle.c:424
start_secondary+0x102/0x110 arch/x86/kernel/smpboot.c:314
common_startup_64+0x13e/0x147
The buggy address belongs to the object at ffff8880272a8000
which belongs to the cache task_struct of size 7424
The buggy address is located 2584 bytes inside of
freed 7424-byte region [ffff8880272a8000, ffff8880272a9d00)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x272a8
head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
flags: 0xfff00000000040(head|node=0|zone=1|lastcpupid=0x7ff)
page_type: f5(slab)
raw: 00fff00000000040 ffff88801bafa500 dead000000000122 0000000000000000
raw: 0000000000000000 0000000080040004 00000001f5000000 0000000000000000
head: 00fff00000000040 ffff88801bafa500 dead000000000122 0000000000000000
head: 0000000000000000 0000000080040004 00000001f5000000 0000000000000000
head: 00fff00000000003 ffffea00009caa01 ffffffffffffffff 0000000000000000
head: 0000000000000008 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 2, tgid 2 (kthreadd), ts 71247381401, free_ts 71214998153
set_page_owner include/linux/page_owner.h:32 [inline]
post_alloc_hook+0x1f3/0x230 mm/page_alloc.c:1537
prep_new_page mm/page_alloc.c:1545 [inline]
get_page_from_freelist+0x3039/0x3180 mm/page_alloc.c:3457
__alloc_pages_noprof+0x256/0x6c0 mm/page_alloc.c:4733
alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265
alloc_slab_page+0x6a/0x120 mm/slub.c:2413
allocate_slab+0x5a/0x2f0 mm/slub.c:2579
new_slab mm/slub.c:2632 [inline]
___slab_alloc+0xcd1/0x14b0 mm/slub.c:3819
__slab_alloc+0x58/0xa0 mm/slub.c:3909
__slab_alloc_node mm/slub.c:3962 [inline]
slab_alloc_node mm/slub.c:4123 [inline]
kmem_cache_alloc_node_noprof+0x1fe/0x320 mm/slub.c:4187
alloc_task_struct_node kernel/fork.c:180 [inline]
dup_task_struct+0x57/0x8c0 kernel/fork.c:1107
copy_process+0x5d1/0x3d50 kernel/fork.c:2206
kernel_clone+0x223/0x880 kernel/fork.c:2787
kernel_thread+0x1bc/0x240 kernel/fork.c:2849
create_kthread kernel/kthread.c:412 [inline]
kthreadd+0x60d/0x810 kernel/kthread.c:765
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
page last free pid 5230 tgid 5230 stack trace:
reset_page_owner include/linux/page_owner.h:25 [inline]
free_pages_prepare mm/page_alloc.c:1108 [inline]
free_unref_page+0xcd0/0xf00 mm/page_alloc.c:2638
discard_slab mm/slub.c:2678 [inline]
__put_partials+0xeb/0x130 mm/slub.c:3146
put_cpu_partial+0x17c/0x250 mm/slub.c:3221
__slab_free+0x2ea/0x3d0 mm/slub.c:4450
qlink_free mm/kasan/quarantine.c:163 [inline]
qlist_free_all+0x9a/0x140 mm/kasan/quarantine.c:179
kasan_quarantine_reduce+0x14f/0x170 mm/kasan/quarantine.c:286
__kasan_slab_alloc+0x23/0x80 mm/kasan/common.c:329
kasan_slab_alloc include/linux/kasan.h:247 [inline]
slab_post_alloc_hook mm/slub.c:4086 [inline]
slab_alloc_node mm/slub.c:4135 [inline]
kmem_cache_alloc_noprof+0x135/0x2a0 mm/slub.c:4142
getname_flags+0xb7/0x540 fs/namei.c:139
do_sys_openat2+0xd2/0x1d0 fs/open.c:1409
do_sys_open fs/open.c:1430 [inline]
__do_sys_openat fs/open.c:1446 [inline]
__se_sys_openat fs/open.c:1441 [inline]
__x64_sys_openat+0x247/0x2a0 fs/open.c:1441
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Memory state around the buggy address:
ffff8880272a8900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880272a8980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8880272a8a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8880272a8a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880272a8b00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Reported-by: syzbot+8aaf2df2ef0164ffe1fb@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/66fb36b1.050a0220.aab67.003b.GAE@google.com/
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
Syzbot reported a NULL pointer dereference with the following crash:
FAULT_INJECTION: forcing a failure.
start_transaction+0x830/0x1670 fs/btrfs/transaction.c:676
prepare_to_relocate+0x31f/0x4c0 fs/btrfs/relocation.c:3642
relocate_block_group+0x169/0xd20 fs/btrfs/relocation.c:3678
...
BTRFS info (device loop0): balance: ended with status: -12
Oops: general protection fault, probably for non-canonical address 0xdffffc00000000cc: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000660-0x0000000000000667]
RIP: 0010:btrfs_update_reloc_root+0x362/0xa80 fs/btrfs/relocation.c:926
Call Trace:
<TASK>
commit_fs_roots+0x2ee/0x720 fs/btrfs/transaction.c:1496
btrfs_commit_transaction+0xfaf/0x3740 fs/btrfs/transaction.c:2430
del_balance_item fs/btrfs/volumes.c:3678 [inline]
reset_balance_state+0x25e/0x3c0 fs/btrfs/volumes.c:3742
btrfs_balance+0xead/0x10c0 fs/btrfs/volumes.c:4574
btrfs_ioctl_balance+0x493/0x7c0 fs/btrfs/ioctl.c:3673
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[CAUSE]
The allocation failure happens at the start_transaction() inside
prepare_to_relocate(), and during the error handling we call
unset_reloc_control(), which makes fs_info->balance_ctl to be NULL.
Then we continue the error path cleanup in btrfs_balance() by calling
reset_balance_state() which will call del_balance_item() to fully delete
the balance item in the root tree.
However during the small window between set_reloc_contrl() and
unset_reloc_control(), we can have a subvolume tree update and created a
reloc_root for that subvolume.
Then we go into the final btrfs_commit_transaction() of
del_balance_item(), and into btrfs_update_reloc_root() inside
commit_fs_roots().
That function checks if fs_info->reloc_ctl is in the merge_reloc_tree
stage, but since fs_info->reloc_ctl is NULL, it results a NULL pointer
dereference.
[FIX]
Just add extra check on fs_info->reloc_ctl inside
btrfs_update_reloc_root(), before checking
fs_info->reloc_ctl->merge_reloc_tree.
That DEAD_RELOC_TREE handling is to prevent further modification to the
reloc tree during merge stage, but since there is no reloc_ctl at all,
we do not need to bother that.
Reported-by: syzbot+283673dbc38527ef9f3d@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/66f6bfa7.050a0220.38ace9.0019.GAE@google.com/
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
During an incremental send we may end up sending an invalid clone
operation, for the last extent of a file which ends at an unaligned offset
that matches the final i_size of the file in the send snapshot, in case
the file had its initial size (the size in the parent snapshot) decreased
in the send snapshot. In this case the destination will fail to apply the
clone operation because its end offset is not sector size aligned and it
ends before the current size of the file.
Sending the truncate operation always happens when we finish processing an
inode, after we process all its extents (and xattrs, names, etc). So fix
this by ensuring the file has a valid size before we send a clone
operation for an unaligned extent that ends at the final i_size of the
file. The size we truncate to matches the start offset of the clone range
but it could be any value between that start offset and the final size of
the file since the clone operation will expand the i_size if the current
size is smaller than the end offset. The start offset of the range was
chosen because it's always sector size aligned and avoids a truncation
into the middle of a page, which results in dirtying the page due to
filling part of it with zeroes and then making the clone operation at the
receiver trigger IO.
The following test reproduces the issue:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV
mount $DEV $MNT
# Create a file with a size of 256K + 5 bytes, having two extents, one
# with a size of 128K and another one with a size of 128K + 5 bytes.
last_ext_size=$((128 * 1024 + 5))
xfs_io -f -d -c "pwrite -S 0xab -b 128K 0 128K" \
-c "pwrite -S 0xcd -b $last_ext_size 128K $last_ext_size" \
$MNT/foo
# Another file which we will later clone foo into, but initially with
# a larger size than foo.
xfs_io -f -c "pwrite -S 0xef 0 1M" $MNT/bar
btrfs subvolume snapshot -r $MNT/ $MNT/snap1
# Now resize bar and clone foo into it.
xfs_io -c "truncate 0" \
-c "reflink $MNT/foo" $MNT/bar
btrfs subvolume snapshot -r $MNT/ $MNT/snap2
rm -f /tmp/send-full /tmp/send-inc
btrfs send -f /tmp/send-full $MNT/snap1
btrfs send -p $MNT/snap1 -f /tmp/send-inc $MNT/snap2
umount $MNT
mkfs.btrfs -f $DEV
mount $DEV $MNT
btrfs receive -f /tmp/send-full $MNT
btrfs receive -f /tmp/send-inc $MNT
umount $MNT
Running it before this patch:
$ ./test.sh
(...)
At subvol snap1
At snapshot snap2
ERROR: failed to clone extents to bar: Invalid argument
A test case for fstests will be sent soon.
Reported-by: Ben Millwood <thebenmachine@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAJhrHS2z+WViO2h=ojYvBPDLsATwLbg+7JaNCyYomv0fUxEpQQ@mail.gmail.com/
Fixes: 46a6e10a1ab1 ("btrfs: send: allow cloning non-aligned extent if it ends at i_size")
CC: stable@vger.kernel.org # 6.11
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Since the inception of relocation we have maintained the backref cache
across transaction commits, updating the backref cache with the new
bytenr whenever we COWed blocks that were in the cache, and then
updating their bytenr once we detected a transaction id change.
This works as long as we're only ever modifying blocks, not changing the
structure of the tree.
However relocation does in fact change the structure of the tree. For
example, if we are relocating a data extent, we will look up all the
leaves that point to this data extent. We will then call
do_relocation() on each of these leaves, which will COW down to the leaf
and then update the file extent location.
But, a key feature of do_relocation() is the pending list. This is all
the pending nodes that we modified when we updated the file extent item.
We will then process all of these blocks via finish_pending_nodes, which
calls do_relocation() on all of the nodes that led up to that leaf.
The purpose of this is to make sure we don't break sharing unless we
absolutely have to. Consider the case that we have 3 snapshots that all
point to this leaf through the same nodes, the initial COW would have
created a whole new path. If we did this for all 3 snapshots we would
end up with 3x the number of nodes we had originally. To avoid this we
will cycle through each of the snapshots that point to each of these
nodes and update their pointers to point at the new nodes.
Once we update the pointer to the new node we will drop the node we
removed the link for and all of its children via btrfs_drop_subtree().
This is essentially just btrfs_drop_snapshot(), but for an arbitrary
point in the snapshot.
The problem with this is that we will never reflect this in the backref
cache. If we do this btrfs_drop_snapshot() for a node that is in the
backref tree, we will leave the node in the backref tree. This becomes
a problem when we change the transid, as now the backref cache has
entire subtrees that no longer exist, but exist as if they still are
pointed to by the same roots.
In the best case scenario you end up with "adding refs to an existing
tree ref" errors from insert_inline_extent_backref(), where we attempt
to link in nodes on roots that are no longer valid.
Worst case you will double free some random block and re-use it when
there's still references to the block.
This is extremely subtle, and the consequences are quite bad. There
isn't a way to make sure our backref cache is consistent between
transid's.
In order to fix this we need to simply evict the entire backref cache
anytime we cross transid's. This reduces performance in that we have to
rebuild this backref cache every time we change transid's, but fixes the
bug.
This has existed since relocation was added, and is a pretty critical
bug. There's a lot more cleanup that can be done now that this
functionality is going away, but this patch is as small as possible in
order to fix the problem and make it easy for us to backport it to all
the kernels it needs to be backported to.
Followup series will dismantle more of this code and simplify relocation
drastically to remove this functionality.
We have a reproducer that reproduced the corruption within a few minutes
of running. With this patch it survives several iterations/hours of
running the reproducer.
Fixes: 3fd0a5585eb9 ("Btrfs: Metadata ENOSPC handling for balance")
CC: stable@vger.kernel.org
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
NOCOW writes do not generate stripe_extent entries in the RAID stripe
tree, as the RAID stripe-tree feature initially was designed with a
zoned filesystem in mind and on a zoned filesystem, we do not allow NOCOW
writes. But the RAID stripe-tree feature is independent from the zoned
feature, so we must also do NOCOW writes for RAID stripe-tree filesystems.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Starting with commit c0247d289e73 ("btrfs: send: annotate struct
name_cache_entry with __counted_by()") we annotated the variable length
array "name" from the name_cache_entry structure with __counted_by() to
improve overflow detection. However that alone was not correct, because
the length of that array does not match the "name_len" field - it matches
that plus 1 to include the NUL string terminator, so that makes a
fortified kernel think there's an overflow and report a splat like this:
strcpy: detected buffer overflow: 20 byte write of buffer size 19
WARNING: CPU: 3 PID: 3310 at __fortify_report+0x45/0x50
CPU: 3 UID: 0 PID: 3310 Comm: btrfs Not tainted 6.11.0-prnet #1
Hardware name: CompuLab Ltd. sbc-ihsw/Intense-PC2 (IPC2), BIOS IPC2_3.330.7 X64 03/15/2018
RIP: 0010:__fortify_report+0x45/0x50
Code: 48 8b 34 (...)
RSP: 0018:ffff97ebc0d6f650 EFLAGS: 00010246
RAX: 7749924ef60fa600 RBX: ffff8bf5446a521a RCX: 0000000000000027
RDX: 00000000ffffdfff RSI: ffff97ebc0d6f548 RDI: ffff8bf84e7a1cc8
RBP: ffff8bf548574080 R08: ffffffffa8c40e10 R09: 0000000000005ffd
R10: 0000000000000004 R11: ffffffffa8c70e10 R12: ffff8bf551eef400
R13: 0000000000000000 R14: 0000000000000013 R15: 00000000000003a8
FS: 00007fae144de8c0(0000) GS:ffff8bf84e780000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fae14691690 CR3: 00000001027a2003 CR4: 00000000001706f0
Call Trace:
<TASK>
? __warn+0x12a/0x1d0
? __fortify_report+0x45/0x50
? report_bug+0x154/0x1c0
? handle_bug+0x42/0x70
? exc_invalid_op+0x1a/0x50
? asm_exc_invalid_op+0x1a/0x20
? __fortify_report+0x45/0x50
__fortify_panic+0x9/0x10
__get_cur_name_and_parent+0x3bc/0x3c0
get_cur_path+0x207/0x3b0
send_extent_data+0x709/0x10d0
? find_parent_nodes+0x22df/0x25d0
? mas_nomem+0x13/0x90
? mtree_insert_range+0xa5/0x110
? btrfs_lru_cache_store+0x5f/0x1e0
? iterate_extent_inodes+0x52d/0x5a0
process_extent+0xa96/0x11a0
? __pfx_lookup_backref_cache+0x10/0x10
? __pfx_store_backref_cache+0x10/0x10
? __pfx_iterate_backrefs+0x10/0x10
? __pfx_check_extent_item+0x10/0x10
changed_cb+0x6fa/0x930
? tree_advance+0x362/0x390
? memcmp_extent_buffer+0xd7/0x160
send_subvol+0xf0a/0x1520
btrfs_ioctl_send+0x106b/0x11d0
? __pfx___clone_root_cmp_sort+0x10/0x10
_btrfs_ioctl_send+0x1ac/0x240
btrfs_ioctl+0x75b/0x850
__se_sys_ioctl+0xca/0x150
do_syscall_64+0x85/0x160
? __count_memcg_events+0x69/0x100
? handle_mm_fault+0x1327/0x15c0
? __se_sys_rt_sigprocmask+0xf1/0x180
? syscall_exit_to_user_mode+0x75/0xa0
? do_syscall_64+0x91/0x160
? do_user_addr_fault+0x21d/0x630
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fae145eeb4f
Code: 00 48 89 (...)
RSP: 002b:00007ffdf1cb09b0 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fae145eeb4f
RDX: 00007ffdf1cb0ad0 RSI: 0000000040489426 RDI: 0000000000000004
RBP: 00000000000078fe R08: 00007fae144006c0 R09: 00007ffdf1cb0927
R10: 0000000000000008 R11: 0000000000000246 R12: 00007ffdf1cb1ce8
R13: 0000000000000003 R14: 000055c499fab2e0 R15: 0000000000000004
</TASK>
Fix this by not storing the NUL string terminator since we don't actually
need it for name cache entries, this way "name_len" corresponds to the
actual size of the "name" array. This requires marking the "name" array
field with __nonstring and using memcpy() instead of strcpy() as
recommended by the guidelines at:
https://github.com/KSPP/linux/issues/90
Reported-by: David Arendt <admin@prnet.org>
Link: https://lore.kernel.org/linux-btrfs/cee4591a-3088-49ba-99b8-d86b4242b8bd@prnet.org/
Fixes: c0247d289e73 ("btrfs: send: annotate struct name_cache_entry with __counted_by()")
CC: stable@vger.kernel.org # 6.11
Tested-by: David Arendt <admin@prnet.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix dangling pointer to rb-tree of defragmented inodes after cleanup
- a followup fix to handle concurrent lseek on the same fd that could
leak memory under some conditions
- fix wrong root id reported in tree checker when verifying dref
* tag 'for-6.12-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix use-after-free on rbtree that tracks inodes for auto defrag
btrfs: tree-checker: fix the wrong output of data backref objectid
btrfs: fix race setting file private on concurrent lseek using same fd
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull 'struct fd' updates from Al Viro:
"Just the 'struct fd' layout change, with conversion to accessor
helpers"
* tag 'pull-stable-struct_fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
add struct fd constructors, get rid of __to_fd()
struct fd: representation change
introduce fd_file(), convert all accessors to it.
|
|
When cleaning up defrag inodes at btrfs_cleanup_defrag_inodes(), called
during remount and unmount, we are freeing every node from the rbtree
that tracks inodes for auto defrag using
rbtree_postorder_for_each_entry_safe(), which doesn't modify the tree
itself. So once we unlock the lock that protects the rbtree, we have a
tree pointing to a root that was freed (and a root pointing to freed
nodes, and their children pointing to other freed nodes, and so on).
This makes further access to the tree result in a use-after-free with
unpredictable results.
Fix this by initializing the rbtree to an empty root after the call to
rbtree_postorder_for_each_entry_safe() and before unlocking.
Fixes: 276940915f23 ("btrfs: clear defragmented inodes using postorder in btrfs_cleanup_defrag_inodes()")
Reported-by: syzbot+ad7966ca1f5dd8b001b3@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/000000000000f9aad406223eabff@google.com/
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
There are some reports about invalid data backref objectids, the report
looks like this:
BTRFS critical (device sda): corrupt leaf: block=333654787489792 slot=110 extent bytenr=333413935558656 len=65536 invalid data ref objectid value 2543
The data ref objectid is the inode number inside the subvolume.
But in above case, the value is completely sane, not really showing the
problem.
[CAUSE]
The root cause of the problem is the deprecated feature, inode cache.
This feature results a special inode number, -12ULL, and it's no longer
recognized by tree-checker, triggering the error.
The direct problem here is the output of data ref objectid. The value
shown is in fact the dref_root (subvolume id), not the dref_objectid
(inode number).
[FIX]
Fix the output to use dref_objectid instead.
Reported-by: Neil Parton <njparton@gmail.com>
Reported-by: Archange <archange@archlinux.org>
Link: https://lore.kernel.org/linux-btrfs/CAAYHqBbrrgmh6UmW3ANbysJX9qG9Pbg3ZwnKsV=5mOpv_qix_Q@mail.gmail.com/
Link: https://lore.kernel.org/linux-btrfs/9541deea-9056-406e-be16-a996b549614d@archlinux.org/
Fixes: f333a3c7e832 ("btrfs: tree-checker: validate dref root and objectid")
CC: stable@vger.kernel.org # 6.11
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When doing concurrent lseek(2) system calls against the same file
descriptor, using multiple threads belonging to the same process, we have
a short time window where a race happens and can result in a memory leak.
The race happens like this:
1) A program opens a file descriptor for a file and then spawns two
threads (with the pthreads library for example), lets call them
task A and task B;
2) Task A calls lseek with SEEK_DATA or SEEK_HOLE and ends up at
file.c:find_desired_extent() while holding a read lock on the inode;
3) At the start of find_desired_extent(), it extracts the file's
private_data pointer into a local variable named 'private', which has
a value of NULL;
4) Task B also calls lseek with SEEK_DATA or SEEK_HOLE, locks the inode
in shared mode and enters file.c:find_desired_extent(), where it also
extracts file->private_data into its local variable 'private', which
has a NULL value;
5) Because it saw a NULL file private, task A allocates a private
structure and assigns to the file structure;
6) Task B also saw a NULL file private so it also allocates its own file
private and then assigns it to the same file structure, since both
tasks are using the same file descriptor.
At this point we leak the private structure allocated by task A.
Besides the memory leak, there's also the detail that both tasks end up
using the same cached state record in the private structure (struct
btrfs_file_private::llseek_cached_state), which can result in a
use-after-free problem since one task can free it while the other is
still using it (only one task took a reference count on it). Also, sharing
the cached state is not a good idea since it could result in incorrect
results in the future - right now it should not be a problem because it
end ups being used only in extent-io-tree.c:count_range_bits() where we do
range validation before using the cached state.
Fix this by protecting the private assignment and check of a file while
holding the inode's spinlock and keep track of the task that allocated
the private, so that it's used only by that task in order to prevent
user-after-free issues with the cached state record as well as potentially
using it incorrectly in the future.
Fixes: 3c32c7212f16 ("btrfs: use cached state when looking for delalloc ranges with lseek")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Pull block updates from Jens Axboe:
- MD changes via Song:
- md-bitmap refactoring (Yu Kuai)
- raid5 performance optimization (Artur Paszkiewicz)
- Other small fixes (Yu Kuai, Chen Ni)
- Add a sysfs entry 'new_level' (Xiao Ni)
- Improve information reported in /proc/mdstat (Mateusz Kusiak)
- NVMe changes via Keith:
- Asynchronous namespace scanning (Stuart)
- TCP TLS updates (Hannes)
- RDMA queue controller validation (Niklas)
- Align field names to the spec (Anuj)
- Metadata support validation (Puranjay)
- A syntax cleanup (Shen)
- Fix a Kconfig linking error (Arnd)
- New queue-depth quirk (Keith)
- Add missing unplug trace event (Keith)
- blk-iocost fixes (Colin, Konstantin)
- t10-pi modular removal and fixes (Alexey)
- Fix for potential BLKSECDISCARD overflow (Alexey)
- bio splitting cleanups and fixes (Christoph)
- Deal with folios rather than rather than pages, speeding up how the
block layer handles bigger IOs (Kundan)
- Use spinlocks rather than bit spinlocks in zram (Sebastian, Mike)
- Reduce zoned device overhead in ublk (Ming)
- Add and use sendpages_ok() for drbd and nvme-tcp (Ofir)
- Fix regression in partition error pointer checking (Riyan)
- Add support for write zeroes and rotational status in nbd (Wouter)
- Add Yu Kuai as new BFQ maintainer. The scheduler has been
unmaintained for quite a while.
- Various sets of fixes for BFQ (Yu Kuai)
- Misc fixes and cleanups (Alvaro, Christophe, Li, Md Haris, Mikhail,
Yang)
* tag 'for-6.12/block-20240913' of git://git.kernel.dk/linux: (120 commits)
nvme-pci: qdepth 1 quirk
block: fix potential invalid pointer dereference in blk_add_partition
blk_iocost: make read-only static array vrate_adj_pct const
block: unpin user pages belonging to a folio at once
mm: release number of pages of a folio
block: introduce folio awareness and add a bigger size from folio
block: Added folio-ized version of bio_add_hw_page()
block, bfq: factor out a helper to split bfqq in bfq_init_rq()
block, bfq: remove local variable 'bfqq_already_existing' in bfq_init_rq()
block, bfq: remove local variable 'split' in bfq_init_rq()
block, bfq: remove bfq_log_bfqg()
block, bfq: merge bfq_release_process_ref() into bfq_put_cooperator()
block, bfq: fix procress reference leakage for bfqq in merge chain
block, bfq: fix uaf for accessing waker_bfqq after splitting
blk-throttle: support prioritized processing of metadata
blk-throttle: remove last_low_overflow_time
drbd: Add NULL check for net_conf to prevent dereference in state validation
nvme-tcp: fix link failure for TCP auth
blk-mq: add missing unplug trace event
mtip32xx: Remove redundant null pointer checks in mtip_hw_debugfs_init()
...
|
|
[SUBPAGE COMPRESSION LIMITS]
Currently inside writepage_delalloc(), if a delalloc range is going to
be submitted asynchronously (inline or compression, the page
dirty/writeback/unlock are all handled in at different time, not at the
submission time), then we return 1 and extent_writepage() will skip the
submission.
This is fine if every sector matches page size, but if a sector is
smaller than page size (aka, subpage case), then it can be very
problematic, for example for the following 64K page:
0 16K 32K 48K 64K
|/| |///////| |/|
| |
4K 52K
Where |/| is the dirty range we need to submit.
In the above case, we need the following different handling for the 3
ranges:
- [0, 4K) needs to be submitted for regular write
A single sector cannot be compressed.
- [16K, 32K) needs to be submitted for compressed write
- [48K, 52K) needs to be submitted for regular write.
Above, if we try to submit [16K, 32K) for compressed write, we will
return 1 and immediately, and without submitting the remaining
[48K, 52K) range.
Furthermore, since extent_writepage() will exit without unlocking any
sectors, the submitted range [0, 4K) will not have sector unlocked.
That's the reason why for now subpage is only allowed for full page
range.
[ENHANCEMENT]
- Introduce a submission bitmap at btrfs_bio_ctrl::submit_bitmap
This records which sectors will be submitted by extent_writepage_io().
This allows us to track which sectors needs to be submitted thus later
to be properly unlocked.
For asynchronously submitted range (inline/compression), the
corresponding bits will be cleared from that bitmap.
- Only return 1 if no sector needs to be submitted in
writepage_delalloc()
- Only submit sectors marked by submission bitmap inside
extent_writepage_io()
So we won't touch the asynchronously submitted part.
- Introduce btrfs_folio_end_writer_lock_bitmap() helper
This will only unlock the involved sectors specified by @bitmap
parameter, to avoid touching the range asynchronously submitted.
Please note that, since subpage compression is still limited to page
aligned range, this change is only a preparation for future sector
perfect compression support for subpage.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function btrfs_folio_unlock_writer() is already calling
btrfs_folio_end_writer_lock() to do the heavy lifting work, the only
missing 0 writer check.
Thus there is no need to keep two different functions, move the 0 writer
check into btrfs_folio_end_writer_lock(), and remove
btrfs_folio_unlock_writer().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
All cleanup paths lead to btrfs_path_free so path can be defined with
the automatic freeing callback in the following functions:
- btrfs_insert_orphan_item()
- btrfs_del_orphan_item()
Signed-off-by: Leo Martins <loemra.dev@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
All cleanup paths lead to btrfs_path_free so path can be defined with
the automatic freeing callback in the following functions:
- calculate_emulated_zone_size()
- calculate_alloc_pointer()
Signed-off-by: Leo Martins <loemra.dev@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Add a DEFINE_FREE for struct btrfs_path. This defines a function that
can be called using the __free attribute. Define a macro
BTRFS_PATH_AUTO_FREE to make the declaration of an auto freeing path
very clear.
The intended use is to define the auto free of path in cases where the
path is allocated somewhere at the beginning and freed either on all
error paths or at the end of the function.
int func() {
BTRFS_PATH_AUTO_FREE(path);
if (...)
return -ERROR;
path = alloc_path();
...
if (...)
return -ERROR;
...
return 0;
}
Signed-off-by: Leo Martins <loemra.dev@gmail.com>
[ update changelog ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The function btrfs_folio_end_all_writers() is only utilized in
extent_writepage() as a way to unlock all subpage range (for both
successful submission and error handling).
Meanwhile we have a similar function, btrfs_folio_end_writer_lock().
The difference is, btrfs_folio_end_writer_lock() expects a range that is
a subset of the already locked range.
This limit on btrfs_folio_end_writer_lock() is a little overkilled,
preventing it from being utilized for error paths.
So here we enhance btrfs_folio_end_writer_lock() to accept a superset of
the locked range, and only end the locked subset.
This means we can replace btrfs_folio_end_all_writers() with
btrfs_folio_end_writer_lock() instead.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Continue adding const to parameters. This is for clarity and minor
addition to safety. There are some minor effects, in the assembly code
and .ko measured on release config.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently BTRFS_I is a static inline function that takes a const inode
and returns btrfs inode, dropping the 'const' qualifier. This can break
assumptions of compiler though it seems there's no real case.
To make the parameter and return type consistent regardint const we can
use the container_of_const() that preserves it. However this would not
check the parameter type. To fix that use the same _Generic construct
but implement only the two expected types.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We have a few places that check if we have the inode locked by doing:
ASSERT(inode_is_locked(vfs_inode));
This actually proved to be useful several times as if assertions are
enabled (and by default they are in many distros) it immediately triggers
a crash which is impossible for users to miss.
However that doesn't check if the lock is held by the calling task, so
the check passes if some other task locked the inode.
Using one of the lockdep functions to check the lock is held, like
lockdep_assert_held() for example, does check that the calling task
holds the lock, and if that's not the case it produces a warning and
stack trace in dmesg. However, despite the misleading "assert" in the
name of the lockdep helpers, it does not trigger a crash/BUG_ON(), just
a warning and splat in dmesg, which is easy to get unnoticed by users
who may have lockdep enabled.
So add a helper that does the ASSERT() and calls lockdep_assert_held()
immediately after and use it every where we check the inode is locked.
Like this if the lock is held by some other task we get the warning
in dmesg which is caught by fstests, very helpful during development,
and may also be occassionaly noticed by users with lockdep enabled.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Even in case of failure we could've discarded some data and userspace
should be made aware of it, so copy fstrim_range to userspace
regardless.
Also make sure to update the trimmed bytes amount even if
btrfs_trim_free_extents fails.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Luca Stefani <luca.stefani.ge1@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Moreover find_or_create_page() is compatible API, and it can
replaced with __filemap_get_folio(). Some interfaces have been converted
to use folio before, so the conversion operation from page can be
eliminated here.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Based on the previous patch, the compression path can be
directly used in folio without converting to page.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And page_to_inode() can be replaced with folio_to_inode() now.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Moreover, use folio_pos() instead of page_offset(),
which is more consistent with folio usage.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Moreover, use folio_pos() instead of page_offset(),
which is more consistent with folio usage.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Moreover, use kmap_local_folio() instead of kmap_local_page(),
which is more consistent with folio usage.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And use folio_pos instead of page_offset, which is more
consistent with folio usage. At the same time, folio_test_private() can
handle folio directly without converting from page to folio first.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Use folio_pos instead of page_offset, which is more
consistent with folio usage.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. Now clear_page_extent_mapped() can deal with a folio
directly, so change its name to clear_folio_extent_mapped().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|