Age | Commit message (Collapse) | Author |
|
|
|
Android reported a performance regression in the userfaultfd unmap path.
A closer inspection on the userfaultfd_unmap_prep() change showed that a
second tree walk would be necessary in the reworked code.
Fix the regression by passing each VMA that will be unmapped through to
the userfaultfd_unmap_prep() function as they are added to the unmap list,
instead of re-walking the tree for the VMA.
Link: https://lkml.kernel.org/r/20230601015402.2819343-1-Liam.Howlett@oracle.com
Fixes: 69dbe6daf104 ("userfaultfd: use maple tree iterator to iterate VMAs")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper. This means that by default, the accesses change from a
C dereference to a READ_ONCE(). This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.
But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte. Arch code
is deliberately not converted, as the arch code knows best. It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.
Conversion was done using Coccinelle:
----
// $ make coccicheck \
// COCCI=ptepget.cocci \
// SPFLAGS="--include-headers" \
// MODE=patch
virtual patch
@ depends on patch @
pte_t *v;
@@
- *v
+ ptep_get(v)
----
Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so. This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.
Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot. The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get(). HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined. Fix by continuing to do a direct dereference
when MMU=n. This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.
Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Instead of worrying whether the pmd is stable, userfaultfd_must_wait()
call pte_offset_map() as before, but go back to try again if that fails.
Risk of endless loop? It already broke out if pmd_none(), !pmd_present()
or pmd_trans_huge(), and pte_offset_map() would have cleared pmd_bad():
which leaves pmd_devmap(). Presumably pmd_devmap() is inappropriate in a
vma subject to userfaultfd (it would have been mistreated before), but add
a check just to avoid all possibility of endless loop there.
Link: https://lkml.kernel.org/r/54423f-3dff-fd8d-614a-632727cc4cfb@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zack Rusin <zackr@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: allow pte_offset_map[_lock]() to fail", v2.
What is it all about? Some mmap_lock avoidance i.e. latency reduction.
Initially just for the case of collapsing shmem or file pages to THPs; but
likely to be relied upon later in other contexts e.g. freeing of empty
page tables (but that's not work I'm doing). mmap_write_lock avoidance
when collapsing to anon THPs? Perhaps, but again that's not work I've
done: a quick attempt was not as easy as the shmem/file case.
I would much prefer not to have to make these small but wide-ranging
changes for such a niche case; but failed to find another way, and have
heard that shmem MADV_COLLAPSE's usefulness is being limited by that
mmap_write_lock it currently requires.
These changes (though of course not these exact patches) have been in
Google's data centre kernel for three years now: we do rely upon them.
What is this preparatory series about?
The current mmap locking will not be enough to guard against that tricky
transition between pmd entry pointing to page table, and empty pmd entry,
and pmd entry pointing to huge page: pte_offset_map() will have to
validate the pmd entry for itself, returning NULL if no page table is
there. What to do about that varies: sometimes nearby error handling
indicates just to skip it; but in many cases an ACTION_AGAIN or "goto
again" is appropriate (and if that risks an infinite loop, then there must
have been an oops, or pfn 0 mistaken for page table, before).
Given the likely extension to freeing empty page tables, I have not
limited this set of changes to a THP config; and it has been easier, and
sets a better example, if each site is given appropriate handling: even
where deeper study might prove that failure could only happen if the pmd
table were corrupted.
Several of the patches are, or include, cleanup on the way; and by the
end, pmd_trans_unstable() and suchlike are deleted: pte_offset_map() and
pte_offset_map_lock() then handle those original races and more. Most
uses of pte_lockptr() are deprecated, with pte_offset_map_nolock() taking
its place.
This patch (of 32):
Use pmdp_get_lockless() in preference to READ_ONCE(*pmdp), to get a more
reliable result with PAE (or READ_ONCE as before without PAE); and remove
the unnecessary extra barrier()s which got left behind in its callers.
HOWEVER: Note the small print in linux/pgtable.h, where it was designed
specifically for fast GUP, and depends on interrupts being disabled for
its full guarantee: most callers which have been added (here and before)
do NOT have interrupts disabled, so there is still some need for caution.
Link: https://lkml.kernel.org/r/f35279a9-9ac0-de22-d245-591afbfb4dc@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zack Rusin <zackr@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We used to not pass in the pgoff correctly when register/unregister uffd
regions, it caused incorrect behavior on vma merging and can cause
mergeable vmas being separate after ioctls return.
For example, when we have:
vma1(range 0-9, with uffd), vma2(range 10-19, no uffd)
Then someone unregisters uffd on range (5-9), it should logically become:
vma1(range 0-4, with uffd), vma2(range 5-19, no uffd)
But with current code we'll have:
vma1(range 0-4, with uffd), vma3(range 5-9, no uffd), vma2(range 10-19, no uffd)
This patch allows such merge to happen correctly before ioctl returns.
This behavior seems to have existed since the 1st day of uffd. Since
pgoff for vma_merge() is only used to identify the possibility of vma
merging, meanwhile here what we did was always passing in a pgoff smaller
than what we should, so there should have no other side effect besides not
merging it. Let's still tentatively copy stable for this, even though I
don't see anything will go wrong besides vma being split (which is mostly
not user visible).
Link: https://lkml.kernel.org/r/20230517190916.3429499-3-peterx@redhat.com
Fixes: 86039bd3b4e6 ("userfaultfd: add new syscall to provide memory externalization")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/uffd: Fix vma merge/split", v2.
This series contains two patches that fix vma merge/split for userfaultfd
on two separate issues.
Patch 1 fixes a regression since 6.1+ due to something we overlooked when
converting to maple tree apis. The plan is we use patch 1 to replace the
commit "2f628010799e (mm: userfaultfd: avoid passing an invalid range to
vma_merge())" in mm-hostfixes-unstable tree if possible, so as to bring
uffd vma operations back aligned with the rest code again.
Patch 2 fixes a long standing issue that vma can be left unmerged even if
we can for either uffd register or unregister.
Many thanks to Lorenzo on either noticing this issue from the assert
movement patch, looking at this problem, and also provided a reproducer on
the unmerged vma issue [1].
[1] https://gist.github.com/lorenzo-stoakes/a11a10f5f479e7a977fc456331266e0e
This patch (of 2):
It seems vma merging with uffd paths is broken with either
register/unregister, where right now we can feed wrong parameters to
vma_merge() and it's found by recent patch which moved asserts upwards in
vma_merge() by Lorenzo Stoakes:
https://lore.kernel.org/all/ZFunF7DmMdK05MoF@FVFF77S0Q05N.cambridge.arm.com/
It's possible that "start" is contained within vma but not clamped to its
start. We need to convert this into either "cannot merge" case or "can
merge" case 4 which permits subdivision of prev by assigning vma to prev.
As we loop, each subsequent VMA will be clamped to the start.
This patch will eliminate the report and make sure vma_merge() calls will
become legal again.
One thing to mention is that the "Fixes: 29417d292bd0" below is there only
to help explain where the warning can start to trigger, the real commit to
fix should be 69dbe6daf104. Commit 29417d292bd0 helps us to identify the
issue, but unfortunately we may want to keep it in Fixes too just to ease
kernel backporters for easier tracking.
Link: https://lkml.kernel.org/r/20230517190916.3429499-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20230517190916.3429499-2-peterx@redhat.com
Fixes: 69dbe6daf104 ("userfaultfd: use maple tree iterator to iterate VMAs")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Closes: https://lore.kernel.org/all/ZFunF7DmMdK05MoF@FVFF77S0Q05N.cambridge.arm.com/
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page()
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
rather than exclusive, and has fixed a bunch of errors which were
caused by its unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics
flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim
accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
shmem: restrict noswap option to initial user namespace
mm/khugepaged: fix conflicting mods to collapse_file()
sparse: remove unnecessary 0 values from rc
mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
maple_tree: fix allocation in mas_sparse_area()
mm: do not increment pgfault stats when page fault handler retries
zsmalloc: allow only one active pool compaction context
selftests/mm: add new selftests for KSM
mm: add new KSM process and sysfs knobs
mm: add new api to enable ksm per process
mm: shrinkers: fix debugfs file permissions
mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
migrate_pages_batch: fix statistics for longterm pin retry
userfaultfd: use helper function range_in_vma()
lib/show_mem.c: use for_each_populated_zone() simplify code
mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
fs/buffer: convert create_page_buffers to folio_create_buffers
fs/buffer: add folio_create_empty_buffers helper
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull sysctl updates from Luis Chamberlain:
"This only does a few sysctl moves from the kernel/sysctl.c file, the
rest of the work has been put towards deprecating two API calls which
incur recursion and prevent us from simplifying the registration
process / saving memory per move. Most of the changes have been
soaking on linux-next since v6.3-rc3.
I've slowed down the kernel/sysctl.c moves due to Matthew Wilcox's
feedback that we should see if we could *save* memory with these moves
instead of incurring more memory. We currently incur more memory since
when we move a syctl from kernel/sysclt.c out to its own file we end
up having to add a new empty sysctl used to register it. To achieve
saving memory we want to allow syctls to be passed without requiring
the end element being empty, and just have our registration process
rely on ARRAY_SIZE(). Without this, supporting both styles of sysctls
would make the sysctl registration pretty brittle, hard to read and
maintain as can be seen from Meng Tang's efforts to do just this [0].
Fortunately, in order to use ARRAY_SIZE() for all sysctl registrations
also implies doing the work to deprecate two API calls which use
recursion in order to support sysctl declarations with subdirectories.
And so during this development cycle quite a bit of effort went into
this deprecation effort. I've annotated the following two APIs are
deprecated and in few kernel releases we should be good to remove
them:
- register_sysctl_table()
- register_sysctl_paths()
During this merge window we should be able to deprecate and unexport
register_sysctl_paths(), we can probably do that towards the end of
this merge window.
Deprecating register_sysctl_table() will take a bit more time but this
pull request goes with a few example of how to do this.
As it turns out each of the conversions to move away from either of
these two API calls *also* saves memory. And so long term, all these
changes *will* prove to have saved a bit of memory on boot.
The way I see it then is if remove a user of one deprecated call, it
gives us enough savings to move one kernel/sysctl.c out from the
generic arrays as we end up with about the same amount of bytes.
Since deprecating register_sysctl_table() and register_sysctl_paths()
does not require maintainer coordination except the final unexport
you'll see quite a bit of these changes from other pull requests, I've
just kept the stragglers after rc3"
Link: https://lkml.kernel.org/r/ZAD+cpbrqlc5vmry@bombadil.infradead.org [0]
* tag 'sysctl-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (29 commits)
fs: fix sysctls.c built
mm: compaction: remove incorrect #ifdef checks
mm: compaction: move compaction sysctl to its own file
mm: memory-failure: Move memory failure sysctls to its own file
arm: simplify two-level sysctl registration for ctl_isa_vars
ia64: simplify one-level sysctl registration for kdump_ctl_table
utsname: simplify one-level sysctl registration for uts_kern_table
ntfs: simplfy one-level sysctl registration for ntfs_sysctls
coda: simplify one-level sysctl registration for coda_table
fs/cachefiles: simplify one-level sysctl registration for cachefiles_sysctls
xfs: simplify two-level sysctl registration for xfs_table
nfs: simplify two-level sysctl registration for nfs_cb_sysctls
nfs: simplify two-level sysctl registration for nfs4_cb_sysctls
lockd: simplify two-level sysctl registration for nlm_sysctls
proc_sysctl: enhance documentation
xen: simplify sysctl registration for balloon
md: simplify sysctl registration
hv: simplify sysctl registration
scsi: simplify sysctl registration with register_sysctl()
csky: simplify alignment sysctl registration
...
|
|
|
|
This is a proposal to revert commit 914eedcb9ba0ff53c33808.
I found this when writing a simple UFFDIO_API test to be the first unit
test in this set. Two things breaks with the commit:
- UFFDIO_API check was lost and missing. According to man page, the
kernel should reject ioctl(UFFDIO_API) if uffdio_api.api != 0xaa. This
check is needed if the api version will be extended in the future, or
user app won't be able to identify which is a new kernel.
- Feature flags checks were removed, which means UFFDIO_API with a
feature that does not exist will also succeed. According to the man
page, we should (and it makes sense) to reject ioctl(UFFDIO_API) if
unknown features passed in.
Link: https://lore.kernel.org/r/20220722201513.1624158-1-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20230412163922.327282-2-peterx@redhat.com
Fixes: 914eedcb9ba0 ("userfaultfd: don't fail on unrecognized features")
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Zach O'Keefe <zokeefe@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
UFFDIO_COPY already has UFFDIO_COPY_MODE_WP, so when installing a new PTE
to resolve a missing fault, one can install a write-protected one. This
is useful when using UFFDIO_REGISTER_MODE_{MISSING,WP} in combination.
This was motivated by testing HugeTLB HGM [1], and in particular its
interaction with userfaultfd features. Existing userfaultfd code supports
using WP and MINOR modes together (i.e. you can register an area with
both enabled), but without this CONTINUE flag the combination is in
practice unusable.
So, add an analogous UFFDIO_CONTINUE_MODE_WP, which does the same thing as
UFFDIO_COPY_MODE_WP, but for *minor* faults.
Update the selftest to do some very basic exercising of the new flag.
Update Documentation/ to describe how these flags are used (neither the
COPY nor the new CONTINUE versions of this mode flag were described there
before).
[1]: https://patchwork.kernel.org/project/linux-mm/cover/20230218002819.1486479-1-jthoughton@google.com/
Link: https://lkml.kernel.org/r/20230314221250.682452-5-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Many userfaultfd ioctl functions take both a 'mode' and a 'wp_copy'
argument. In future commits we plan to plumb the flags through to more
places, so we'd be proliferating the very long argument list even further.
Let's take the time to simplify the argument list. Combine the two
arguments into one - and generalize, so when we add more flags in the
future, it doesn't imply more function arguments.
Since the modes (copy, zeropage, continue) are mutually exclusive, store
them as an integer value (0, 1, 2) in the low bits. Place combine-able
flag bits in the high bits.
This is quite similar to an earlier patch proposed by Nadav Amit
("userfaultfd: introduce uffd_flags" [1]). The main difference is that
patch only handled flags, whereas this patch *also* combines the "mode"
argument into the same type to shorten the argument list.
[1]: https://lore.kernel.org/all/20220619233449.181323-2-namit@vmware.com/
Link: https://lkml.kernel.org/r/20230314221250.682452-4-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: James Houghton <jthoughton@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Quite a few userfaultfd functions took both mm and vma pointers as
arguments. Since the mm is trivially accessible via vma->vm_mm, there's
no reason to pass both; it just needlessly extends the already long
argument list.
Get rid of the mm pointer, where possible, to shorten the argument list.
Link: https://lkml.kernel.org/r/20230314221250.682452-3-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: userfaultfd: refactor and add UFFDIO_CONTINUE_MODE_WP",
v5.
- Commits 1-3 refactor userfaultfd ioctl code without behavior changes, with the
main goal of improving consistency and reducing the number of function args.
- Commit 4 adds UFFDIO_CONTINUE_MODE_WP.
This patch (of 4):
The basic problem is, over time we've added new userfaultfd ioctls, and
we've refactored the code so functions which used to handle only one case
are now re-used to deal with several cases. While this happened, we
didn't bother to rename the functions.
Similarly, as we added new functions, we cargo-culted pieces of the
now-inconsistent naming scheme, so those functions too ended up with names
that don't make a lot of sense.
A key point here is, "copy" in most userfaultfd code refers specifically
to UFFDIO_COPY, where we allocate a new page and copy its contents from
userspace. There are many functions with "copy" in the name that don't
actually do this (at least in some cases).
So, rename things into a consistent scheme. The high level idea is that
the call stack for userfaultfd ioctls becomes:
userfaultfd_ioctl
-> userfaultfd_(particular ioctl)
-> mfill_atomic_(particular kind of fill operation)
-> mfill_atomic /* loops over pages in range */
-> mfill_atomic_pte /* deals with single pages */
-> mfill_atomic_pte_(particular kind of fill operation)
-> mfill_atomic_install_pte
There are of course some special cases (shmem, hugetlb), but this is the
general structure which all function names now adhere to.
Link: https://lkml.kernel.org/r/20230314221250.682452-1-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20230314221250.682452-2-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/uffd: Add feature bit UFFD_FEATURE_WP_UNPOPULATED", v4.
The new feature bit makes anonymous memory acts the same as file memory on
userfaultfd-wp in that it'll also wr-protect none ptes.
It can be useful in two cases:
(1) Uffd-wp app that needs to wr-protect none ptes like QEMU snapshot,
so pre-fault can be replaced by enabling this flag and speed up
protections
(2) It helps to implement async uffd-wp mode that Muhammad is working on [1]
It's debatable whether this is the most ideal solution because with the
new feature bit set, wr-protect none pte needs to pre-populate the
pgtables to the last level (PAGE_SIZE). But it seems fine so far to
service either purpose above, so we can leave optimizations for later.
The series brings pte markers to anonymous memory too. There's some
change in the common mm code path in the 1st patch, great to have some eye
looking at it, but hopefully they're still relatively straightforward.
This patch (of 2):
This is a new feature that controls how uffd-wp handles none ptes. When
it's set, the kernel will handle anonymous memory the same way as file
memory, by allowing the user to wr-protect unpopulated ptes.
File memories handles none ptes consistently by allowing wr-protecting of
none ptes because of the unawareness of page cache being exist or not.
For anonymous it was not as persistent because we used to assume that we
don't need protections on none ptes or known zero pages.
One use case of such a feature bit was VM live snapshot, where if without
wr-protecting empty ptes the snapshot can contain random rubbish in the
holes of the anonymous memory, which can cause misbehave of the guest when
the guest OS assumes the pages should be all zeros.
QEMU worked it around by pre-populate the section with reads to fill in
zero page entries before starting the whole snapshot process [1].
Recently there's another need raised on using userfaultfd wr-protect for
detecting dirty pages (to replace soft-dirty in some cases) [2]. In that
case if without being able to wr-protect none ptes by default, the dirty
info can get lost, since we cannot treat every none pte to be dirty (the
current design is identify a page dirty based on uffd-wp bit being
cleared).
In general, we want to be able to wr-protect empty ptes too even for
anonymous.
This patch implements UFFD_FEATURE_WP_UNPOPULATED so that it'll make
uffd-wp handling on none ptes being consistent no matter what the memory
type is underneath. It doesn't have any impact on file memories so far
because we already have pte markers taking care of that. So it only
affects anonymous.
The feature bit is by default off, so the old behavior will be maintained.
Sometimes it may be wanted because the wr-protect of none ptes will
contain overheads not only during UFFDIO_WRITEPROTECT (by applying pte
markers to anonymous), but also on creating the pgtables to store the pte
markers. So there's potentially less chance of using thp on the first
fault for a none pmd or larger than a pmd.
The major implementation part is teaching the whole kernel to understand
pte markers even for anonymously mapped ranges, meanwhile allowing the
UFFDIO_WRITEPROTECT ioctl to apply pte markers for anonymous too when the
new feature bit is set.
Note that even if the patch subject starts with mm/uffd, there're a few
small refactors to major mm path of handling anonymous page faults. But
they should be straightforward.
With WP_UNPOPUATED, application like QEMU can avoid pre-read faults all
the memory before wr-protect during taking a live snapshot. Quotting from
Muhammad's test result here [3] based on a simple program [4]:
(1) With huge page disabled
echo madvise > /sys/kernel/mm/transparent_hugepage/enabled
./uffd_wp_perf
Test DEFAULT: 4
Test PRE-READ: 1111453 (pre-fault 1101011)
Test MADVISE: 278276 (pre-fault 266378)
Test WP-UNPOPULATE: 11712
(2) With Huge page enabled
echo always > /sys/kernel/mm/transparent_hugepage/enabled
./uffd_wp_perf
Test DEFAULT: 4
Test PRE-READ: 22521 (pre-fault 22348)
Test MADVISE: 4909 (pre-fault 4743)
Test WP-UNPOPULATE: 14448
There'll be a great perf boost for no-thp case, while for thp enabled with
extreme case of all-thp-zero WP_UNPOPULATED can be slower than MADVISE,
but that's low possibility in reality, also the overhead was not reduced
but postponed until a follow up write on any huge zero thp, so potentially
it is faster by making the follow up writes slower.
[1] https://lore.kernel.org/all/20210401092226.102804-4-andrey.gruzdev@virtuozzo.com/
[2] https://lore.kernel.org/all/Y+v2HJ8+3i%2FKzDBu@x1n/
[3] https://lore.kernel.org/all/d0eb0a13-16dc-1ac1-653a-78b7273781e3@collabora.com/
[4] https://github.com/xzpeter/clibs/blob/master/uffd-test/uffd-wp-perf.c
[peterx@redhat.com: comment changes, oneliner fix to khugepaged]
Link: https://lkml.kernel.org/r/ZB2/8jPhD3fpx5U8@x1n
Link: https://lkml.kernel.org/r/20230309223711.823547-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20230309223711.823547-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Paul Gofman <pgofman@codeweavers.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The sysctl_unprivileged_userfaultfd is part of userfaultfd, move it to
its own file.
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Replace direct modifications to vma->vm_flags with calls to modifier
functions to be able to track flag changes and to keep vma locking
correctness.
[akpm@linux-foundation.org: fix drivers/misc/open-dice.c, per Hyeonggon Yoo]
Link: https://lkml.kernel.org/r/20230126193752.297968-5-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Oskolkov <posk@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Drop the vmi_* functions and transition all users to use the vma iterator
directly.
Link: https://lkml.kernel.org/r/20230120162650.984577-30-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use the vma iterator so that the iterator can be invalidated or updated to
avoid each caller doing so.
Link: https://lkml.kernel.org/r/20230120162650.984577-17-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
huge_pte_offset() is the main walker function for hugetlb pgtables. The
name is not really representing what it does, though.
Instead of renaming it, introduce a wrapper function called hugetlb_walk()
which will use huge_pte_offset() inside. Assert on the locks when walking
the pgtable.
Note, the vma lock assertion will be a no-op for private mappings.
Document the last special case in the page_vma_mapped_walk() path where we
don't need any more lock to call hugetlb_walk().
Taking vma lock there is not needed because either: (1) potential callers
of hugetlb pvmw holds i_mmap_rwsem already (from one rmap_walk()), or (2)
the caller will not walk a hugetlb vma at all so the hugetlb code path not
reachable (e.g. in ksm or uprobe paths).
It's slightly implicit for future page_vma_mapped_walk() callers on that
lock requirement. But anyway, when one day this rule breaks, one will get
a straightforward warning in hugetlb_walk() with lockdep, then there'll be
a way out.
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20221216155229.2043750-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We can take the hugetlb walker lock, here taking vma lock directly.
Link: https://lkml.kernel.org/r/20221216155217.2043700-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, we don't enable writenotify when enabling userfaultfd-wp on a
shared writable mapping (for now only shmem and hugetlb). The consequence
is that vma->vm_page_prot will still include write permissions, to be set
as default for all PTEs that get remapped (e.g., mprotect(), NUMA hinting,
page migration, ...).
So far, vma->vm_page_prot is assumed to be a safe default, meaning that we
only add permissions (e.g., mkwrite) but not remove permissions (e.g.,
wrprotect). For example, when enabling softdirty tracking, we enable
writenotify. With uffd-wp on shared mappings, that changed. More details
on vma->vm_page_prot semantics were summarized in [1].
This is problematic for uffd-wp: we'd have to manually check for a uffd-wp
PTEs/PMDs and manually write-protect PTEs/PMDs, which is error prone.
Prone to such issues is any code that uses vma->vm_page_prot to set PTE
permissions: primarily pte_modify() and mk_pte().
Instead, let's enable writenotify such that PTEs/PMDs/... will be mapped
write-protected as default and we will only allow selected PTEs that are
definitely safe to be mapped without write-protection (see
can_change_pte_writable()) to be writable. In the future, we might want
to enable write-bit recovery -- e.g., can_change_pte_writable() -- at more
locations, for example, also when removing uffd-wp protection.
This fixes two known cases:
(a) remove_migration_pte() mapping uffd-wp'ed PTEs writable, resulting
in uffd-wp not triggering on write access.
(b) do_numa_page() / do_huge_pmd_numa_page() mapping uffd-wp'ed PTEs/PMDs
writable, resulting in uffd-wp not triggering on write access.
Note that do_numa_page() / do_huge_pmd_numa_page() can be reached even
without NUMA hinting (which currently doesn't seem to be applicable to
shmem), for example, by using uffd-wp with a PROT_WRITE shmem VMA. On
such a VMA, userfaultfd-wp is currently non-functional.
Note that when enabling userfaultfd-wp, there is no need to walk page
tables to enforce the new default protection for the PTEs: we know that
they cannot be uffd-wp'ed yet, because that can only happen after enabling
uffd-wp for the VMA in general.
Also note that this makes mprotect() on ranges with uffd-wp'ed PTEs not
accidentally set the write bit -- which would result in uffd-wp not
triggering on later write access. This commit makes uffd-wp on shmem
behave just like uffd-wp on anonymous memory in that regard, even though,
mixing mprotect with uffd-wp is controversial.
[1] https://lkml.kernel.org/r/92173bad-caa3-6b43-9d1e-9a471fdbc184@redhat.com
Link: https://lkml.kernel.org/r/20221209080912.7968-1-david@redhat.com
Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Ives van Hoorne <ives@codesandbox.io>
Debugged-by: Peter Xu <peterx@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When iterating the VMAs, the maple state needs to be invalidated if the
tree is modified by a split or merge to ensure the maple tree node
contained in the maple state is still valid. These invalidations were
missed, so add them to the paths which alter the tree.
Reported-by: syzbot+0d2014e4da2ccced5b41@syzkaller.appspotmail.com
Fixes: 69dbe6daf104 (userfaultfd: use maple tree iterator to iterate VMAs)
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm
Pull LSM updates from Paul Moore:
"Seven patches for the LSM layer and we've got a mix of trivial and
significant patches. Highlights below, starting with the smaller bits
first so they don't get lost in the discussion of the larger items:
- Remove some redundant NULL pointer checks in the common LSM audit
code.
- Ratelimit the lockdown LSM's access denial messages.
With this change there is a chance that the last visible lockdown
message on the console is outdated/old, but it does help preserve
the initial series of lockdown denials that started the denial
message flood and my gut feeling is that these might be the more
valuable messages.
- Open userfaultfds as readonly instead of read/write.
While this code obviously lives outside the LSM, it does have a
noticeable impact on the LSMs with Ondrej explaining the situation
in the commit description. It is worth noting that this patch
languished on the VFS list for over a year without any comments
(objections or otherwise) so I took the liberty of pulling it into
the LSM tree after giving fair notice. It has been in linux-next
since the end of August without any noticeable problems.
- Add a LSM hook for user namespace creation, with implementations
for both the BPF LSM and SELinux.
Even though the changes are fairly small, this is the bulk of the
diffstat as we are also including BPF LSM selftests for the new
hook.
It's also the most contentious of the changes in this pull request
with Eric Biederman NACK'ing the LSM hook multiple times during its
development and discussion upstream. While I've never taken NACK's
lightly, I'm sending these patches to you because it is my belief
that they are of good quality, satisfy a long-standing need of
users and distros, and are in keeping with the existing nature of
the LSM layer and the Linux Kernel as a whole.
The patches in implement a LSM hook for user namespace creation
that allows for a granular approach, configurable at runtime, which
enables both monitoring and control of user namespaces. The general
consensus has been that this is far preferable to the other
solutions that have been adopted downstream including outright
removal from the kernel, disabling via system wide sysctls, or
various other out-of-tree mechanisms that users have been forced to
adopt since we haven't been able to provide them an upstream
solution for their requests. Eric has been steadfast in his
objections to this LSM hook, explaining that any restrictions on
the user namespace could have significant impact on userspace.
While there is the possibility of impacting userspace, it is
important to note that this solution only impacts userspace when it
is requested based on the runtime configuration supplied by the
distro/admin/user. Frederick (the pathset author), the LSM/security
community, and myself have tried to work with Eric during
development of this patchset to find a mutually acceptable
solution, but Eric's approach and unwillingness to engage in a
meaningful way have made this impossible. I have CC'd Eric directly
on this pull request so he has a chance to provide his side of the
story; there have been no objections outside of Eric's"
* tag 'lsm-pr-20221003' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm:
lockdown: ratelimit denial messages
userfaultfd: open userfaultfds with O_RDONLY
selinux: Implement userns_create hook
selftests/bpf: Add tests verifying bpf lsm userns_create hook
bpf-lsm: Make bpf_lsm_userns_create() sleepable
security, lsm: Introduce security_create_user_ns()
lsm: clean up redundant NULL pointer check
|
|
Don't use the mm_struct linked list or the vma->vm_next in prep for
removal.
Link: https://lkml.kernel.org/r/20220906194824.2110408-45-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Historically, it has been shown that intercepting kernel faults with
userfaultfd (thereby forcing the kernel to wait for an arbitrary amount of
time) can be exploited, or at least can make some kinds of exploits
easier. So, in 37cd0575b8 "userfaultfd: add UFFD_USER_MODE_ONLY" we
changed things so, in order for kernel faults to be handled by
userfaultfd, either the process needs CAP_SYS_PTRACE, or this sysctl must
be configured so that any unprivileged user can do it.
In a typical implementation of a hypervisor with live migration (take
QEMU/KVM as one such example), we do indeed need to be able to handle
kernel faults. But, both options above are less than ideal:
- Toggling the sysctl increases attack surface by allowing any
unprivileged user to do it.
- Granting the live migration process CAP_SYS_PTRACE gives it this
ability, but *also* the ability to "observe and control the
execution of another process [...], and examine and change [its]
memory and registers" (from ptrace(2)). This isn't something we need
or want to be able to do, so granting this permission violates the
"principle of least privilege".
This is all a long winded way to say: we want a more fine-grained way to
grant access to userfaultfd, without granting other additional permissions
at the same time.
To achieve this, add a /dev/userfaultfd misc device. This device provides
an alternative to the userfaultfd(2) syscall for the creation of new
userfaultfds. The idea is, any userfaultfds created this way will be able
to handle kernel faults, without the caller having any special
capabilities. Access to this mechanism is instead restricted using e.g.
standard filesystem permissions.
[axelrasmussen@google.com: Handle misc_register() failure properly]
Link: https://lkml.kernel.org/r/20220819205201.658693-3-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20220808175614.3885028-3-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry V. Levin <ldv@altlinux.org>
Cc: Gleb Fotengauer-Malinovskiy <glebfm@altlinux.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhang Yi <yi.zhang@huawei.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since userfaultfd doesn't implement a write operation, it is more
appropriate to open it read-only.
When userfaultfds are opened read-write like it is now, and such fd is
passed from one process to another, SELinux will check both read and
write permissions for the target process, even though it can't actually
do any write operation on the fd later.
Inspired by the following bug report, which has hit the SELinux scenario
described above:
https://bugzilla.redhat.com/show_bug.cgi?id=1974559
Reported-by: Robert O'Callahan <roc@ocallahan.org>
Fixes: 86039bd3b4e6 ("userfaultfd: add new syscall to provide memory externalization")
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
The motivation of this patch comes from a recent report and patchfix from
David Hildenbrand on hugetlb shared handling of wr-protected page [1].
With the reproducer provided in commit message of [1], one can leverage
the uffd-wp lazy-reset of ptes to trigger a hugetlb issue which can affect
not only the attacker process, but also the whole system.
The lazy-reset mechanism of uffd-wp was used to make unregister faster,
meanwhile it has an assumption that any leftover pgtable entries should
only affect the process on its own, so not only the user should be aware
of anything it does, but also it should not affect outside of the process.
But it seems that this is not true, and it can also be utilized to make
some exploit easier.
So far there's no clue showing that the lazy-reset is important to any
userfaultfd users because normally the unregister will only happen once
for a specific range of memory of the lifecycle of the process.
Considering all above, what this patch proposes is to do explicit pte
resets when unregister an uffd region with wr-protect mode enabled.
It should be the same as calling ioctl(UFFDIO_WRITEPROTECT, wp=false)
right before ioctl(UFFDIO_UNREGISTER) for the user. So potentially it'll
make the unregister slower. From that pov it's a very slight abi change,
but hopefully nothing should break with this change either.
Regarding to the change itself - core of uffd write [un]protect operation
is moved into a separate function (uffd_wp_range()) and it is reused in
the unregister code path.
Note that the new function will not check for anything, e.g. ranges or
memory types, because they should have been checked during the previous
UFFDIO_REGISTER or it should have failed already. It also doesn't check
mmap_changing because we're with mmap write lock held anyway.
I added a Fixes upon introducing of uffd-wp shmem+hugetlbfs because that's
the only issue reported so far and that's the commit David's reproducer
will start working (v5.19+). But the whole idea actually applies to not
only file memories but also anonymous. It's just that we don't need to
fix anonymous prior to v5.19- because there's no known way to exploit.
IOW, this patch can also fix the issue reported in [1] as the patch 2 does.
[1] https://lore.kernel.org/all/20220811103435.188481-3-david@redhat.com/
Link: https://lkml.kernel.org/r/20220811201340.39342-1-peterx@redhat.com
Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs")
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
|
|
The basic interaction for setting up a userfaultfd is, userspace issues
a UFFDIO_API ioctl, and passes in a set of zero or more feature flags,
indicating the features they would prefer to use.
Of course, different kernels may support different sets of features
(depending on kernel version, kconfig options, architecture, etc).
Userspace's expectations may also not match: perhaps it was built
against newer kernel headers, which defined some features the kernel
it's running on doesn't support.
Currently, if userspace passes in a flag we don't recognize, the
initialization fails and we return -EINVAL. This isn't great, though.
Userspace doesn't have an obvious way to react to this; sure, one of the
features I asked for was unavailable, but which one? The only option it
has is to turn off things "at random" and hope something works.
Instead, modify UFFDIO_API to just ignore any unrecognized feature
flags. The interaction is now that the initialization will succeed, and
as always we return the *subset* of feature flags that can actually be
used back to userspace.
Now userspace has an obvious way to react: it checks if any flags it
asked for are missing. If so, it can conclude this kernel doesn't
support those, and it can either resign itself to not using them, or
fail with an error on its own, or whatever else.
Link: https://lkml.kernel.org/r/20220722201513.1624158-1-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit 824ddc601adc ("userfaultfd: provide unmasked address on
page-fault") was introduced to fix an old bug, in which the offset in the
address of a page-fault was masked. Concerns were raised - although were
never backed by actual code - that some userspace code might break because
the bug has been around for quite a while. To address these concerns a
new flag was introduced, and only when this flag is set by the user,
userfaultfd provides the exact address of the page-fault.
The commit however had a bug, and if the flag is unset, the offset was
always masked based on a base-page granularity. Yet, for huge-pages, the
behavior prior to the commit was that the address is masked to the
huge-page granulrity.
While there are no reports on real breakage, fix this issue. If the flag
is unset, use the address with the masking that was done before.
Link: https://lkml.kernel.org/r/20220711165906.2682-1-namit@vmware.com
Fixes: 824ddc601adc ("userfaultfd: provide unmasked address on page-fault")
Signed-off-by: Nadav Amit <namit@vmware.com>
Reported-by: James Houghton <jthoughton@google.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: James Houghton <jthoughton@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We've had all the necessary changes ready for both shmem and hugetlbfs.
Turn on all the shmem/hugetlbfs switches for userfaultfd-wp.
We can expand UFFD_API_RANGE_IOCTLS_BASIC with _UFFDIO_WRITEPROTECT too
because all existing types now support write protection mode.
Since vma_can_userfault() will be used elsewhere, move into userfaultfd_k.h.
Link: https://lkml.kernel.org/r/20220405014926.15101-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This patch still does not use pte marker in any way, however it teaches
the core mm about the pte marker idea.
For example, handle_pte_marker() is introduced that will parse and handle
all the pte marker faults.
Many of the places are more about commenting it up - so that we know
there's the possibility of pte marker showing up, and why we don't need
special code for the cases.
[peterx@redhat.com: userfaultfd.c needs swapops.h]
Link: https://lkml.kernel.org/r/YmRlVj3cdizYJsr0@xz-m1.local
Link: https://lkml.kernel.org/r/20220405014833.14015-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Userfaultfd is supposed to provide the full address (i.e., unmasked) of
the faulting access back to userspace. However, that is not the case for
quite some time.
Even running "userfaultfd_demo" from the userfaultfd man page provides the
wrong output (and contradicts the man page). Notice that
"UFFD_EVENT_PAGEFAULT event" shows the masked address (7fc5e30b3000) and
not the first read address (0x7fc5e30b300f).
Address returned by mmap() = 0x7fc5e30b3000
fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fc5e30b3000
(uffdio_copy.copy returned 4096)
Read address 0x7fc5e30b300f in main(): A
Read address 0x7fc5e30b340f in main(): A
Read address 0x7fc5e30b380f in main(): A
Read address 0x7fc5e30b3c0f in main(): A
The exact address is useful for various reasons and specifically for
prefetching decisions. If it is known that the memory is populated by
certain objects whose size is not page-aligned, then based on the faulting
address, the uffd-monitor can decide whether to prefetch and prefault the
adjacent page.
This bug has been for quite some time in the kernel: since commit
1a29d85eb0f1 ("mm: use vmf->address instead of of vmf->virtual_address")
vmf->virtual_address"), which dates back to 2016. A concern has been
raised that existing userspace application might rely on the old/wrong
behavior in which the address is masked. Therefore, it was suggested to
provide the masked address unless the user explicitly asks for the exact
address.
Add a new userfaultfd feature UFFD_FEATURE_EXACT_ADDRESS to direct
userfaultfd to provide the exact address. Add a new "real_address" field
to vmf to hold the unmasked address. Provide the address to userspace
accordingly.
Initialize real_address in various code-paths to be consistent with
address, even when it is not used, to be on the safe side.
[namit@vmware.com: initialize real_address on all code paths, per Jan]
Link: https://lkml.kernel.org/r/20220226022655.350562-1-namit@vmware.com
[akpm@linux-foundation.org: fix typo in comment, per Jan]
Link: https://lkml.kernel.org/r/20220218041003.3508-1-namit@vmware.com
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Avoid mixing strings and their anon_vma_name referenced pointers by
using struct anon_vma_name whenever possible. This simplifies the code
and allows easier sharing of anon_vma_name structures when they
represent the same name.
[surenb@google.com: fix comment]
Link: https://lkml.kernel.org/r/20220223153613.835563-1-surenb@google.com
Link: https://lkml.kernel.org/r/20220224231834.1481408-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Colin Cross <ccross@google.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Alexey Gladkov <legion@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Chris Hyser <chris.hyser@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Xiaofeng Cao <caoxiaofeng@yulong.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The patch to add anonymous vma names causes a build failure in some
configurations:
include/linux/mm_types.h: In function 'is_same_vma_anon_name':
include/linux/mm_types.h:924:37: error: implicit declaration of function 'strcmp' [-Werror=implicit-function-declaration]
924 | return name && vma_name && !strcmp(name, vma_name);
| ^~~~~~
include/linux/mm_types.h:22:1: note: 'strcmp' is defined in header '<string.h>'; did you forget to '#include <string.h>'?
This should not really be part of linux/mm_types.h in the first place,
as that header is meant to only contain structure defintions and need a
minimum set of indirect includes itself.
While the header clearly includes more than it should at this point,
let's not make it worse by including string.h as well, which would pull
in the expensive (compile-speed wise) fortify-string logic.
Move the new functions into a separate header that only needs to be
included in a couple of locations.
Link: https://lkml.kernel.org/r/20211207125710.2503446-1-arnd@kernel.org
Fixes: "mm: add a field to store names for private anonymous memory"
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Colin Cross <ccross@google.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In many userspace applications, and especially in VM based applications
like Android uses heavily, there are multiple different allocators in
use. At a minimum there is libc malloc and the stack, and in many cases
there are libc malloc, the stack, direct syscalls to mmap anonymous
memory, and multiple VM heaps (one for small objects, one for big
objects, etc.). Each of these layers usually has its own tools to
inspect its usage; malloc by compiling a debug version, the VM through
heap inspection tools, and for direct syscalls there is usually no way
to track them.
On Android we heavily use a set of tools that use an extended version of
the logic covered in Documentation/vm/pagemap.txt to walk all pages
mapped in userspace and slice their usage by process, shared (COW) vs.
unique mappings, backing, etc. This can account for real physical
memory usage even in cases like fork without exec (which Android uses
heavily to share as many private COW pages as possible between
processes), Kernel SamePage Merging, and clean zero pages. It produces
a measurement of the pages that only exist in that process (USS, for
unique), and a measurement of the physical memory usage of that process
with the cost of shared pages being evenly split between processes that
share them (PSS).
If all anonymous memory is indistinguishable then figuring out the real
physical memory usage (PSS) of each heap requires either a pagemap
walking tool that can understand the heap debugging of every layer, or
for every layer's heap debugging tools to implement the pagemap walking
logic, in which case it is hard to get a consistent view of memory
across the whole system.
Tracking the information in userspace leads to all sorts of problems.
It either needs to be stored inside the process, which means every
process has to have an API to export its current heap information upon
request, or it has to be stored externally in a filesystem that somebody
needs to clean up on crashes. It needs to be readable while the process
is still running, so it has to have some sort of synchronization with
every layer of userspace. Efficiently tracking the ranges requires
reimplementing something like the kernel vma trees, and linking to it
from every layer of userspace. It requires more memory, more syscalls,
more runtime cost, and more complexity to separately track regions that
the kernel is already tracking.
This patch adds a field to /proc/pid/maps and /proc/pid/smaps to show a
userspace-provided name for anonymous vmas. The names of named
anonymous vmas are shown in /proc/pid/maps and /proc/pid/smaps as
[anon:<name>].
Userspace can set the name for a region of memory by calling
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, start, len, (unsigned long)name)
Setting the name to NULL clears it. The name length limit is 80 bytes
including NUL-terminator and is checked to contain only printable ascii
characters (including space), except '[',']','\','$' and '`'.
Ascii strings are being used to have a descriptive identifiers for vmas,
which can be understood by the users reading /proc/pid/maps or
/proc/pid/smaps. Names can be standardized for a given system and they
can include some variable parts such as the name of the allocator or a
library, tid of the thread using it, etc.
The name is stored in a pointer in the shared union in vm_area_struct
that points to a null terminated string. Anonymous vmas with the same
name (equivalent strings) and are otherwise mergeable will be merged.
The name pointers are not shared between vmas even if they contain the
same name. The name pointer is stored in a union with fields that are
only used on file-backed mappings, so it does not increase memory usage.
CONFIG_ANON_VMA_NAME kernel configuration is introduced to enable this
feature. It keeps the feature disabled by default to prevent any
additional memory overhead and to avoid confusing procfs parsers on
systems which are not ready to support named anonymous vmas.
The patch is based on the original patch developed by Colin Cross, more
specifically on its latest version [1] posted upstream by Sumit Semwal.
It used a userspace pointer to store vma names. In that design, name
pointers could be shared between vmas. However during the last
upstreaming attempt, Kees Cook raised concerns [2] about this approach
and suggested to copy the name into kernel memory space, perform
validity checks [3] and store as a string referenced from
vm_area_struct.
One big concern is about fork() performance which would need to strdup
anonymous vma names. Dave Hansen suggested experimenting with
worst-case scenario of forking a process with 64k vmas having longest
possible names [4]. I ran this experiment on an ARM64 Android device
and recorded a worst-case regression of almost 40% when forking such a
process.
This regression is addressed in the followup patch which replaces the
pointer to a name with a refcounted structure that allows sharing the
name pointer between vmas of the same name. Instead of duplicating the
string during fork() or when splitting a vma it increments the refcount.
[1] https://lore.kernel.org/linux-mm/20200901161459.11772-4-sumit.semwal@linaro.org/
[2] https://lore.kernel.org/linux-mm/202009031031.D32EF57ED@keescook/
[3] https://lore.kernel.org/linux-mm/202009031022.3834F692@keescook/
[4] https://lore.kernel.org/linux-mm/5d0358ab-8c47-2f5f-8e43-23b89d6a8e95@intel.com/
Changes for prctl(2) manual page (in the options section):
PR_SET_VMA
Sets an attribute specified in arg2 for virtual memory areas
starting from the address specified in arg3 and spanning the
size specified in arg4. arg5 specifies the value of the attribute
to be set. Note that assigning an attribute to a virtual memory
area might prevent it from being merged with adjacent virtual
memory areas due to the difference in that attribute's value.
Currently, arg2 must be one of:
PR_SET_VMA_ANON_NAME
Set a name for anonymous virtual memory areas. arg5 should
be a pointer to a null-terminated string containing the
name. The name length including null byte cannot exceed
80 bytes. If arg5 is NULL, the name of the appropriate
anonymous virtual memory areas will be reset. The name
can contain only printable ascii characters (including
space), except '[',']','\','$' and '`'.
This feature is available only if the kernel is built with
the CONFIG_ANON_VMA_NAME option enabled.
[surenb@google.com: docs: proc.rst: /proc/PID/maps: fix malformed table]
Link: https://lkml.kernel.org/r/20211123185928.2513763-1-surenb@google.com
[surenb: rebased over v5.15-rc6, replaced userpointer with a kernel copy,
added input sanitization and CONFIG_ANON_VMA_NAME config. The bulk of the
work here was done by Colin Cross, therefore, with his permission, keeping
him as the author]
Link: https://lkml.kernel.org/r/20211019215511.3771969-2-surenb@google.com
Signed-off-by: Colin Cross <ccross@google.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Glauber <jan.glauber@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rob Landley <rob@landley.net>
Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com>
Cc: Shaohua Li <shli@fusionio.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A race is possible when a process exits, its VMAs are removed by
exit_mmap() and at the same time userfaultfd_writeprotect() is called.
The race was detected by KASAN on a development kernel, but it appears
to be possible on vanilla kernels as well.
Use mmget_not_zero() to prevent the race as done in other userfaultfd
operations.
Link: https://lkml.kernel.org/r/20210921200247.25749-1-namit@vmware.com
Fixes: 63b2d4174c4ad ("userfaultfd: wp: add the writeprotect API to userfaultfd ioctl")
Signed-off-by: Nadav Amit <namit@vmware.com>
Tested-by: Li Wang <liwang@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
userfaultfd assumes that the enabled features are set once and never
changed after UFFDIO_API ioctl succeeded.
However, currently, UFFDIO_API can be called concurrently from two
different threads, succeed on both threads and leave userfaultfd's
features in non-deterministic state. Theoretically, other uffd operations
(ioctl's and page-faults) can be dispatched while adversely affected by
such changes of features.
Moreover, the writes to ctx->state and ctx->features are not ordered,
which can - theoretically, again - let userfaultfd_ioctl() think that
userfaultfd API completed, while the features are still not initialized.
To avoid races, it is arguably best to get rid of ctx->state. Since there
are only 2 states, record the API initialization in ctx->features as the
uppermost bit and remove ctx->state.
Link: https://lkml.kernel.org/r/20210808020724.1022515-3-namit@vmware.com
Fixes: 9cd75c3cd4c3d ("userfaultfd: non-cooperative: add ability to report non-PF events from uffd descriptor")
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "userfaultfd: minor bug fixes".
Three unrelated bug fixes. The first two addresses possible issues (not
too theoretical ones), but I did not encounter them in practice.
The third patch addresses a test bug that causes the test to fail on my
system. It has been sent before as part of a bigger RFC.
This patch (of 3):
mmap_changing is currently a boolean variable, which is set and cleared
without any lock that protects against concurrent modifications.
mmap_changing is supposed to mark whether userfaultfd page-faults handling
should be retried since mappings are undergoing a change. However,
concurrent calls, for instance to madvise(MADV_DONTNEED), might cause
mmap_changing to be false, although the remove event was still not read
(hence acknowledged) by the user.
Change mmap_changing to atomic_t and increase/decrease appropriately. Add
a debug assertion to see whether mmap_changing is negative.
Link: https://lkml.kernel.org/r/20210808020724.1022515-1-namit@vmware.com
Link: https://lkml.kernel.org/r/20210808020724.1022515-2-namit@vmware.com
Fixes: df2cc96e77011 ("userfaultfd: prevent non-cooperative events vs mcopy_atomic races")
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "userfaultfd: do not untag user pointers", v5.
If a user program uses userfaultfd on ranges of heap memory, it may end
up passing a tagged pointer to the kernel in the range.start field of
the UFFDIO_REGISTER ioctl. This can happen when using an MTE-capable
allocator, or on Android if using the Tagged Pointers feature for MTE
readiness [1].
When a fault subsequently occurs, the tag is stripped from the fault
address returned to the application in the fault.address field of struct
uffd_msg. However, from the application's perspective, the tagged
address *is* the memory address, so if the application is unaware of
memory tags, it may get confused by receiving an address that is, from
its point of view, outside of the bounds of the allocation. We observed
this behavior in the kselftest for userfaultfd [2] but other
applications could have the same problem.
Address this by not untagging pointers passed to the userfaultfd ioctls.
Instead, let the system call fail. Also change the kselftest to use
mmap so that it doesn't encounter this problem.
[1] https://source.android.com/devices/tech/debug/tagged-pointers
[2] tools/testing/selftests/vm/userfaultfd.c
This patch (of 2):
Do not untag pointers passed to the userfaultfd ioctls. Instead, let
the system call fail. This will provide an early indication of problems
with tag-unaware userspace code instead of letting the code get confused
later, and is consistent with how we decided to handle brk/mmap/mremap
in commit dcde237319e6 ("mm: Avoid creating virtual address aliases in
brk()/mmap()/mremap()"), as well as being consistent with the existing
tagged address ABI documentation relating to how ioctl arguments are
handled.
The code change is a revert of commit 7d0325749a6c ("userfaultfd: untag
user pointers") plus some fixups to some additional calls to
validate_range that have appeared since then.
[1] https://source.android.com/devices/tech/debug/tagged-pointers
[2] tools/testing/selftests/vm/userfaultfd.c
Link: https://lkml.kernel.org/r/20210714195437.118982-1-pcc@google.com
Link: https://lkml.kernel.org/r/20210714195437.118982-2-pcc@google.com
Link: https://linux-review.googlesource.com/id/I761aa9f0344454c482b83fcfcce547db0a25501b
Fixes: 63f0c6037965 ("arm64: Introduce prctl() options to control the tagged user addresses ABI")
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alistair Delva <adelva@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Martin <Dave.Martin@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mitch Phillips <mitchp@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: William McVicker <willmcvicker@google.com>
Cc: <stable@vger.kernel.org> [5.4]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Merge more updates from Andrew Morton:
"190 patches.
Subsystems affected by this patch series: mm (hugetlb, userfaultfd,
vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock,
migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap,
zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc,
core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs,
signals, exec, kcov, selftests, compress/decompress, and ipc"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
ipc/util.c: use binary search for max_idx
ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock
ipc: use kmalloc for msg_queue and shmid_kernel
ipc sem: use kvmalloc for sem_undo allocation
lib/decompressors: remove set but not used variabled 'level'
selftests/vm/pkeys: exercise x86 XSAVE init state
selftests/vm/pkeys: refill shadow register after implicit kernel write
selftests/vm/pkeys: handle negative sys_pkey_alloc() return code
selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random
kcov: add __no_sanitize_coverage to fix noinstr for all architectures
exec: remove checks in __register_bimfmt()
x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
hfsplus: report create_date to kstat.btime
hfsplus: remove unnecessary oom message
nilfs2: remove redundant continue statement in a while-loop
kprobes: remove duplicated strong free_insn_page in x86 and s390
init: print out unknown kernel parameters
checkpatch: do not complain about positive return values starting with EPOLL
checkpatch: improve the indented label test
checkpatch: scripts/spdxcheck.py now requires python3
...
|
|
Now that the feature is fully implemented (the faulting path hooks exist
so userspace is notified, and the ioctl to resolve such faults is
available), advertise this as a supported feature.
Link: https://lkml.kernel.org/r/20210503180737.2487560-6-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Wang Qing <wangqing@vivo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch allows shmem-backed VMAs to be registered for minor faults.
Minor faults are appropriately relayed to userspace in the fault path, for
VMAs with the relevant flag.
This commit doesn't hook up the UFFDIO_CONTINUE ioctl for shmem-backed
minor faults, though, so userspace doesn't yet have a way to resolve such
faults.
Because of this, we also don't yet advertise this as a supported feature.
That will be done in a separate commit when the feature is fully
implemented.
Link: https://lkml.kernel.org/r/20210503180737.2487560-4-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Wang Qing <wangqing@vivo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We should fail uffd-wp registration immediately if the arch does not even
have CONFIG_HAVE_ARCH_USERFAULTFD_WP defined. That'll block also relevant
ioctls on e.g. UFFDIO_WRITEPROTECT because that'll check against
VM_UFFD_WP, which can only be applied with a success registration.
Remove the WP feature bit too for those archs when handling UFFDIO_API
ioctl.
Link: https://lkml.kernel.org/r/20210428225030.9708-5-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Wang Qing <wangqing@vivo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Change the type and name of task_struct::state. Drop the volatile and
shrink it to an 'unsigned int'. Rename it in order to find all uses
such that we can use READ_ONCE/WRITE_ONCE as appropriate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
|
|
This ioctl is how userspace ought to resolve "minor" userfaults. The
idea is, userspace is notified that a minor fault has occurred. It
might change the contents of the page using its second non-UFFD mapping,
or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have
ensured the page contents are correct, carry on setting up the mapping".
Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for
MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in
the minor fault case, we already have some pre-existing underlying page.
Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping.
We'd just use memcpy() or similar instead.
It turns out hugetlb_mcopy_atomic_pte() already does very close to what
we want, if an existing page is provided via `struct page **pagep`. We
already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so
just extend that design: add an enum for the three modes of operation,
and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE
case. (Basically, look up the existing page, and avoid adding the
existing page to the page cache or calling set_page_huge_active() on
it.)
Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Adam Ruprecht <ruprecht@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shawn Anastasio <shawn@anastas.io>
Cc: Steven Price <steven.price@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "userfaultfd: add minor fault handling", v9.
Overview
========
This series adds a new userfaultfd feature, UFFD_FEATURE_MINOR_HUGETLBFS.
When enabled (via the UFFDIO_API ioctl), this feature means that any
hugetlbfs VMAs registered with UFFDIO_REGISTER_MODE_MISSING will *also*
get events for "minor" faults. By "minor" fault, I mean the following
situation:
Let there exist two mappings (i.e., VMAs) to the same page(s) (shared
memory). One of the mappings is registered with userfaultfd (in minor
mode), and the other is not. Via the non-UFFD mapping, the underlying
pages have already been allocated & filled with some contents. The UFFD
mapping has not yet been faulted in; when it is touched for the first
time, this results in what I'm calling a "minor" fault. As a concrete
example, when working with hugetlbfs, we have huge_pte_none(), but
find_lock_page() finds an existing page.
We also add a new ioctl to resolve such faults: UFFDIO_CONTINUE. The idea
is, userspace resolves the fault by either a) doing nothing if the
contents are already correct, or b) updating the underlying contents using
the second, non-UFFD mapping (via memcpy/memset or similar, or something
fancier like RDMA, or etc...). In either case, userspace issues
UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are
correct, carry on setting up the mapping".
Use Case
========
Consider the use case of VM live migration (e.g. under QEMU/KVM):
1. While a VM is still running, we copy the contents of its memory to a
target machine. The pages are populated on the target by writing to the
non-UFFD mapping, using the setup described above. The VM is still running
(and therefore its memory is likely changing), so this may be repeated
several times, until we decide the target is "up to date enough".
2. We pause the VM on the source, and start executing on the target machine.
During this gap, the VM's user(s) will *see* a pause, so it is desirable to
minimize this window.
3. Between the last time any page was copied from the source to the target, and
when the VM was paused, the contents of that page may have changed - and
therefore the copy we have on the target machine is out of date. Although we
can keep track of which pages are out of date, for VMs with large amounts of
memory, it is "slow" to transfer this information to the target machine. We
want to resume execution before such a transfer would complete.
4. So, the guest begins executing on the target machine. The first time it
touches its memory (via the UFFD-registered mapping), userspace wants to
intercept this fault. Userspace checks whether or not the page is up to date,
and if not, copies the updated page from the source machine, via the non-UFFD
mapping. Finally, whether a copy was performed or not, userspace issues a
UFFDIO_CONTINUE ioctl to tell the kernel "I have ensured the page contents
are correct, carry on setting up the mapping".
We don't have to do all of the final updates on-demand. The userfaultfd manager
can, in the background, also copy over updated pages once it receives the map of
which pages are up-to-date or not.
Interaction with Existing APIs
==============================
Because this is a feature, a registered VMA could potentially receive both
missing and minor faults. I spent some time thinking through how the
existing API interacts with the new feature:
UFFDIO_CONTINUE cannot be used to resolve non-minor faults, as it does not
allocate a new page. If UFFDIO_CONTINUE is used on a non-minor fault:
- For non-shared memory or shmem, -EINVAL is returned.
- For hugetlb, -EFAULT is returned.
UFFDIO_COPY and UFFDIO_ZEROPAGE cannot be used to resolve minor faults.
Without modifications, the existing codepath assumes a new page needs to
be allocated. This is okay, since userspace must have a second
non-UFFD-registered mapping anyway, thus there isn't much reason to want
to use these in any case (just memcpy or memset or similar).
- If UFFDIO_COPY is used on a minor fault, -EEXIST is returned.
- If UFFDIO_ZEROPAGE is used on a minor fault, -EEXIST is returned (or -EINVAL
in the case of hugetlb, as UFFDIO_ZEROPAGE is unsupported in any case).
- UFFDIO_WRITEPROTECT simply doesn't work with shared memory, and returns
-ENOENT in that case (regardless of the kind of fault).
Future Work
===========
This series only supports hugetlbfs. I have a second series in flight to
support shmem as well, extending the functionality. This series is more
mature than the shmem support at this point, and the functionality works
fully on hugetlbfs, so this series can be merged first and then shmem
support will follow.
This patch (of 6):
This feature allows userspace to intercept "minor" faults. By "minor"
faults, I mean the following situation:
Let there exist two mappings (i.e., VMAs) to the same page(s). One of the
mappings is registered with userfaultfd (in minor mode), and the other is
not. Via the non-UFFD mapping, the underlying pages have already been
allocated & filled with some contents. The UFFD mapping has not yet been
faulted in; when it is touched for the first time, this results in what
I'm calling a "minor" fault. As a concrete example, when working with
hugetlbfs, we have huge_pte_none(), but find_lock_page() finds an existing
page.
This commit adds the new registration mode, and sets the relevant flag on
the VMAs being registered. In the hugetlb fault path, if we find that we
have huge_pte_none(), but find_lock_page() does indeed find an existing
page, then we have a "minor" fault, and if the VMA has the userfaultfd
registration flag, we call into userfaultfd to handle it.
This is implemented as a new registration mode, instead of an API feature.
This is because the alternative implementation has significant drawbacks
[1].
However, doing it this was requires we allocate a VM_* flag for the new
registration mode. On 32-bit systems, there are no unused bits, so this
feature is only supported on architectures with
CONFIG_ARCH_USES_HIGH_VMA_FLAGS. When attempting to register a VMA in
MINOR mode on 32-bit architectures, we return -EINVAL.
[1] https://lore.kernel.org/patchwork/patch/1380226/
[peterx@redhat.com: fix minor fault page leak]
Link: https://lkml.kernel.org/r/20210322175132.36659-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20210301222728.176417-1-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20210301222728.176417-2-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shawn Anastasio <shawn@anastas.io>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Adam Ruprecht <ruprecht@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|