summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_bmap_util.c
AgeCommit message (Collapse)Author
2014-01-10xfs: Calling destroy_work_on_stack() to pair with INIT_WORK_ONSTACK()Chuansheng Liu
In case CONFIG_DEBUG_OBJECTS_WORK is defined, it is needed to call destroy_work_on_stack() which frees the debug object to pair with INIT_WORK_ONSTACK(). Signed-off-by: Liu, Chuansheng <chuansheng.liu@intel.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com> (cherry picked from commit 6f96b3063cdd473c68664a190524ed966ac0cd92)
2013-12-17xfs: remove xfsbdstrat errorChristoph Hellwig
The xfsbdstrat helper is a small but useless wrapper for xfs_buf_iorequest that handles the case of a shut down filesystem. Most of the users have private, uncached buffers that can just be freed in this case, but the complex error handling in xfs_bioerror_relse messes up the case when it's called without a locked buffer. Remove xfsbdstrat and opencode the error handling in the callers. All but one can simply return an error and don't need to deal with buffer state, and the one caller that cares about the buffer state could do with a major cleanup as well, but we'll defer that to later. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23xfs: decouple inode and bmap btree header filesDave Chinner
Currently the xfs_inode.h header has a dependency on the definition of the BMAP btree records as the inode fork includes an array of xfs_bmbt_rec_host_t objects in it's definition. Move all the btree format definitions from xfs_btree.h, xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to xfs_format.h to continue the process of centralising the on-disk format definitions. With this done, the xfs inode definitions are no longer dependent on btree header files. The enables a massive culling of unnecessary includes, with close to 200 #include directives removed from the XFS kernel code base. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23xfs: decouple log and transaction headersDave Chinner
xfs_trans.h has a dependency on xfs_log.h for a couple of structures. Most code that does transactions doesn't need to know anything about the log, but this dependency means that they have to include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header files and clean up the includes to be in dependency order. In doing this, remove the direct include of xfs_trans_reserve.h from xfs_trans.h so that we remove the dependency between xfs_trans.h and xfs_mount.h. Hence the xfs_trans.h include can be moved to the indicate the actual dependencies other header files have on it. Note that these are kernel only header files, so this does not translate to any userspace changes at all. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23xfs: unify directory/attribute format definitionsDave Chinner
The on-disk format definitions for the directory and attribute structures are spread across 3 header files right now, only one of which is dedicated to defining on-disk structures and their manipulation (xfs_dir2_format.h). Pull all the format definitions into a single header file - xfs_da_format.h - and switch all the code over to point at that. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Ben Myers <bpm@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-23xfs: create a shared header file for format-related informationDave Chinner
All of the buffer operations structures are needed to be exported for xfs_db, so move them all to a common location rather than spreading them all over the place. They are verifying the on-disk format, so while xfs_format.h might be a good place, it is not part of the on disk format. Hence we need to create a new header file that we centralise these related definitions. Start by moving the bffer operations structures, and then also move all the other definitions that have crept into xfs_log_format.h and xfs_format.h as there was no other shared header file to put them in. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-21xfs: fold xfs_change_file_space into xfs_ioc_spaceChristoph Hellwig
Now that only one caller of xfs_change_file_space is left it can be merged into said caller. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-21xfs: simplify the fallocate pathChristoph Hellwig
Call xfs_alloc_file_space or xfs_free_file_space directly from xfs_file_fallocate instead of going through xfs_change_file_space. This simplified the code by removing the unessecary marshalling of the arguments into an xfs_flock64_t structure and allows removing checks that are already done in the VFS code. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-21xfs: always hold the iolock when calling xfs_change_file_spaceChristoph Hellwig
Currently fallocate always holds the iolock when calling into xfs_change_file_space, while the ioctl path lets some of the lower level functions take it, but leave it out in others. This patch makes sure the ioctl path also always holds the iolock and thus introduces consistent locking for the preallocation operations while simplifying the code and allowing to kill the now unused XFS_ATTR_NOLOCK flag. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-10-21xfs: always take the iolock around xfs_setattr_sizeChristoph Hellwig
There is no reason to conditionally take the iolock inside xfs_setattr_size when we can let the caller handle it unconditionally, which just incrases the lock hold time for the case where it was previously taken internally by a few instructions. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-10xfs: factor all the kmalloc-or-vmalloc fallback allocationsDave Chinner
We have quite a few places now where we do: x = kmem_zalloc(large size) if (!x) x = kmem_zalloc_large(large size) and do a similar dance when freeing the memory. kmem_free() already does the correct freeing dance, and kmem_zalloc_large() is only ever called in these constructs, so just factor it all into kmem_zalloc_large() and kmem_free(). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-10xfs: recovery of swap extents operations for CRC filesystemsDave Chinner
This is the recovery side of the btree block owner change operation performed by swapext on CRC enabled filesystems. We detect that an owner change is needed by the flag that has been placed on the inode log format flag field. Because the inode recovery is being replayed after the buffers that make up the BMBT in the given checkpoint, we can walk all the buffers and directly modify them when we see the flag set on an inode. Because the inode can be relogged and hence present in multiple chekpoints with the "change owner" flag set, we could do multiple passes across the inode to do this change. While this isn't optimal, we can't directly ignore the flag as there may be multiple independent swap extent operations being replayed on the same inode in different checkpoints so we can't ignore them. Further, because the owner change operation uses ordered buffers, we might have buffers that are newer on disk than the current checkpoint and so already have the owner changed in them. Hence we cannot just peek at a buffer in the tree and check that it has the correct owner and assume that the change was completed. So, for the moment just brute force the owner change every time we see an inode with the flag set. Note that we have to be careful here because the owner of the buffers may point to either the old owner or the new owner. Currently the verifier can't verify the owner directly, so there is no failure case here right now. If we verify the owner exactly in future, then we'll have to take this into account. This was tested in terms of normal operation via xfstests - all of the fsr tests now pass without failure. however, we really need to modify xfs/227 to stress v3 inodes correctly to ensure we fully cover this case for v5 filesystems. In terms of recovery testing, I used a hacked version of xfs_fsr that held the temp inode open for a few seconds before exiting so that the filesystem could be shut down with an open owner change recovery flags set on at least the temp inode. fsr leaves the temp inode unlinked and in btree format, so this was necessary for the owner change to be reliably replayed. logprint confirmed the tmp inode in the log had the correct flag set: INO: cnt:3 total:3 a:0x69e9e0 len:56 a:0x69ea20 len:176 a:0x69eae0 len:88 INODE: #regs:3 ino:0x44 flags:0x209 dsize:88 ^^^^^ 0x200 is set, indicating a data fork owner change needed to be replayed on inode 0x44. A printk in the revoery code confirmed that the inode change was recovered: XFS (vdc): Mounting Filesystem XFS (vdc): Starting recovery (logdev: internal) recovering owner change ino 0x44 XFS (vdc): Version 5 superblock detected. This kernel L support enabled! Use of these features in this kernel is at your own risk! XFS (vdc): Ending recovery (logdev: internal) The script used to test this was: $ cat ./recovery-fsr.sh #!/bin/bash dev=/dev/vdc mntpt=/mnt/scratch testfile=$mntpt/testfile umount $mntpt mkfs.xfs -f -m crc=1 $dev mount $dev $mntpt chmod 777 $mntpt for i in `seq 10000 -1 0`; do xfs_io -f -d -c "pwrite $(($i * 4096)) 4096" $testfile > /dev/null 2>&1 done xfs_bmap -vp $testfile |head -20 xfs_fsr -d -v $testfile & sleep 10 /home/dave/src/xfstests-dev/src/godown -f $mntpt wait umount $mntpt xfs_logprint -t $dev |tail -20 time mount $dev $mntpt xfs_bmap -vp $testfile umount $mntpt $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-09-10xfs: swap extents operations for CRC filesystemsDave Chinner
For CRC enabled filesystems, we can't just swap inode forks from one inode to another when defragmenting a file - the blocks in the inode fork bmap btree contain pointers back to the owner inode. Hence if we are to swap the inode forks we have to atomically modify every block in the btree during the transaction. We are doing an entire fork swap here, so we could create a new transaction item type that indicates we are changing the owner of a certain structure from one value to another. If we combine this with ordered buffer logging to modify all the buffers in the tree, then we can change the buffers in the tree without needing log space for the operation. However, this then requires log recovery to perform the modification of the owner information of the objects/structures in question. This does introduce some interesting ordering details into recovery: we have to make sure that the owner change replay occurs after the change that moves the objects is made, not before. Hence we can't use a separate log item for this as we have no guarantee of strict ordering between multiple items in the log due to the relogging action of asynchronous transaction commits. Hence there is no "generic" method we can use for changing the ownership of arbitrary metadata structures. For inode forks, however, there is a simple method of communicating that the fork contents need the owner rewritten - we can pass a inode log format flag for the fork for the transaction that does a fork swap. This flag will then follow the inode fork through relogging actions so when the swap actually gets replayed the ownership can be changed immediately by log recovery. So that gives us a simple method of "whole fork" exchange between two inodes. This is relatively simple to implement, so it makes sense to do this as an initial implementation to support xfs_fsr on CRC enabled filesytems in the same manner as we do on existing filesystems. This commit introduces the swapext driven functionality, the recovery functionality will be in a separate patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-20xfs: fix the comment of xfs_bmap_punch_delalloc_range()Zhi Yong Wu
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-20xfs: fix the comment of xfs_bmap_count_tree()Zhi Yong Wu
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-12xfs: refactor xfs_trans_reserve() interfaceJie Liu
With the new xfs_trans_res structure has been introduced, the log reservation size, log count as well as log flags are pre-initialized at mount time. So it's time to refine xfs_trans_reserve() interface to be more neat. Also, introduce a new helper M_RES() to return a pointer to the mp->m_resv structure to simplify the input. Signed-off-by: Jie Liu <jeff.liu@oracle.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-12xfs: consolidate extent swap codeDave Chinner
So we don't need xfs_dfrag.h in userspace anymore, move the extent swap ioctl structure definition to xfs_fs.h where most of the other ioctl structure definitions are. Now that we don't need separate files for extent swapping, separate the basic file descriptor checking code to xfs_ioctl.c, and the code that does the extent swap operation to xfs_bmap_util.c. This cleanly separates the user interface code from the physical mechanism used to do the extent swap. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-12xfs: kill xfs_vnodeops.[ch]Dave Chinner
Now we have xfs_inode.c for holding kernel-only XFS inode operations, move all the inode operations from xfs_vnodeops.c to this new file as it holds another set of kernel-only inode operations. The name of this file traces back to the days of Irix and it's vnodes which we don't have anymore. Essentially this move consolidates the inode locking functions and a bunch of XFS inode operations into the one file. Eventually the high level functions will be merged into the VFS interface functions in xfs_iops.c. This leaves only internal preallocation, EOF block manipulation and hole punching functions in vnodeops.c. Move these to xfs_bmap_util.c where we are already consolidating various in-kernel physical extent manipulation and querying functions. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
2013-08-12xfs: create xfs_bmap_util.[ch]Dave Chinner
There is a bunch of code in xfs_bmap.c that is kernel specific and not shared with userspace. To minimise the difference between the kernel and userspace code, shift this unshared code to xfs_bmap_util.c, and the declarations to xfs_bmap_util.h. The biggest issue here is xfs_bmap_finish() - userspace has it's own definition of this function, and so we need to move it out of xfs_bmap.[ch]. This means several other files need to include xfs_bmap_util.h as well. It also introduces and interesting dance for the stack switching code in xfs_bmapi_allocate(). The stack switching/workqueue code is actually moved to xfs_bmap_util.c, so that userspace can simply use a #define in a header file to connect the dots without needing to know about the stack switch code at all. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>