Age | Commit message (Collapse) | Author |
|
Now that we support raid5 Enable it at mount. Raid6 will come next
raid4 is not demanded for so it will probably not be enabled.
(Until some one wants it)
NOTE: That mkfs.exofs had support for raid5/6 since long time
ago. (Making an empty raidX FS is just as easy as raid0 ;-} )
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
The ore need suplied a r4w_get_page/r4w_put_page API
from Filesystem so it can get cache pages to read-into when
writing parial stripes.
Also I commented out and NULLed the .writepage (singular)
vector. Because it gives terrible write pattern to raid
and is apparently not needed. Even in OOM conditions the
system copes (even better) with out it.
TODO: How to specify to write_cache_pages() to start
or include a certain page?
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
This is finally the RAID5 Write support.
The bigger part of this patch is not the XOR engine itself, But the
read4write logic, which is a complete mini prepare_for_striping
reading engine that can read scattered pages of a stripe into cache
so it can be used for XOR calculation. That is, if the write was not
stripe aligned.
The main algorithm behind the XOR engine is the 2 dimensional array:
struct __stripe_pages_2d.
A drawing might save 1000 words
---
__stripe_pages_2d
|
n = pages_in_stripe_unit;
w = group_width - parity;
| pages array presented to the XOR lib
| |
V |
__1_page_stripe[0].pages --> [c0][c1]..[cw][c_par] <---|
| |
__1_page_stripe[1].pages --> [c0][c1]..[cw][c_par] <---
|
... | ...
|
__1_page_stripe[n].pages --> [c0][c1]..[cw][c_par]
^
|
data added columns first then row
---
The pages are put on this array columns first. .i.e:
p0-of-c0, p1-of-c0, ... pn-of-c0, p0-of-c1, ...
So we are doing a corner turn of the pages.
Note that pages will zigzag down and left. but are put sequentially
in growing order. So when the time comes to XOR the stripe, only the
beginning and end of the array need be checked. We scan the array
and any NULL spot will be field by pages-to-be-read.
The FS that wants to support RAID5 needs to supply an
operations-vector that searches a given page in cache, and specifies
if the page is uptodate or need reading. All these pages to be read
are put on a slave ore_io_state and synchronously read. All the pages
of a stripe are read in one IO, using the scatter gather mechanism.
In write we constrain our IO to only be incomplete on a single
stripe. Meaning either the complete IO is within a single stripe so
we might have pages to read from both beginning or end of the
strip. Or we have some reading to do at beginning but end at strip
boundary. The left over pages are pushed to the next IO by the API
already established by previous work, where an IO offset/length
combination presented to the ORE might get the length truncated and
the user must re-submit the leftover pages. (Both exofs and NFS
support this)
But any ORE user should make it's best effort to align it's IO
before hand and avoid complications. A cached ore_layout->stripe_size
member can be used for that calculation. (NOTE: that ORE demands
that stripe_size may not be bigger then 32bit)
What else? Well read it and tell me.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
This patch introduces the first stage of RAID5 support
mainly the skip-over-raid-units when reading. For
writes it inserts BLANK units, into where XOR blocks
should be calculated and written to.
It introduces the new "general raid maths", and the main
additional parameters and components needed for raid5.
Since at this stage it could corrupt future version that
actually do support raid5. The enablement of raid5
mounting and setting of parity-count > 0 is disabled. So
the raid5 code will never be used. Mounting of raid5 is
only enabled later once the basic XOR write is also in.
But if the patch "enable RAID5" is applied this code has
been tested to be able to properly read raid5 volumes
and is according to standard.
Also it has been tested that the new maths still properly
supports RAID0 and grouping code just as before.
(BTW: I have found more bugs in the pnfs-obj RAID math
fixed here)
The ore.c file is getting too big, so new ore_raid.[hc]
files are added that will include the special raid stuff
that are not used in striping and mirrors. In future write
support these will get bigger.
When adding the ore_raid.c to Kbuild file I was forced to
rename ore.ko to libore.ko. Is it possible to keep source
file, say ore.c and module file ore.ko the same even if there
are multiple files inside ore.ko?
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
fs/exofs directory has multiple targets now, of which the
ore.ko will be needed by the pnfs-objects-layout-driver
(fs/nfs/objlayout).
As suggested by: Michal Marek <mmarek@suse.cz> convert
inclusion of exofs/ from obj-$(CONFIG_EXOFS_FS) => obj-$(y).
So ORE can be selected also from fs/nfs/Kconfig
CC: Michal Marek <mmarek@suse.cz>
CC: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
ore_calc_stripe_info is needed by exofs::export.c
for the layout calculations. Make it exportable
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
Current ore_check_io API receives a residual
pointer, to report partial IO. But it is actually
not used, because in a multiple devices IO there
is never a linearity in the IO failure.
On the other hand if every failing device is reported
through a received callback measures can be taken to
handle only failed devices. One at a time.
This will also be needed by the objects-layout-driver
for it's error reporting facility.
Exofs is not currently using the new information and
keeps the old behaviour of failing the complete IO in
case of an error. (No partial completion)
TODO: Use an ore_check_io callback to set_page_error only
the failing pages. And re-dirty write pages.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
All users of the ore will need to check if current code
supports the given layout. For example RAID5/6 is not
currently supported.
So move all the checks from exofs/super.c to a new
ore_verify_layout() to be used by ore users.
Note that any new layout should be passed through the
ore_verify_layout() because the ore engine will prepare
and verify some internal members of ore_layout, and
assumes it's called.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
Users like the objlayout-driver would like to only pass
a partial device table that covers the IO in question.
For example exofs divides the file into raid-group-sized
chunks and only serves group_width number of devices at
a time.
The partiality is communicated by setting
ore_componets->first_dev and the array covers all logical
devices from oc->first_dev upto (oc->first_dev + oc->numdevs)
The ore_comp_dev() API receives a logical device index
and returns the actual present device in the table.
An out-of-range dev_index will BUG.
Logical device index is the theoretical device index as if
all the devices of a file are present. .i.e:
total_devs = group_width * mirror_p1 * group_count
0 <= dev_index < total_devs
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
Memory conditions and max_bio constraints might cause us to
not comply to the full length of the requested IO. Instead of
failing the complete IO we can issue a shorter read/write and
report how much was actually executed in the ios->length
member.
All users must check ios->length at IO_done or upon return of
ore_read/write and re-issue the reminder of the bytes. Because
other wise there is no error returned like before.
This is part of the effort to support the pnfs-obj layout driver.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
If at read/write_done the actual IO was shorter then requested,
reported in returned ios->length. It is not an error. The reminder
of the pages should just be unlocked but not marked uptodate or
end_page_writeback. They will be re issued later by the VFS.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
Move the check and preparation of the ios->kern_buff case to
later inside _write_mirror().
Since read was never used with ios->kern_buff its support is removed
instead of fixed.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
Now that each ore_io_state covers only a single raid group.
A single striping_info math is needed. Embed one inside
ore_io_state to cache the calculation results and eliminate
an extra call.
Also the outer _prepare_for_striping is removed since it does nothing.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
Usually a single IO is confined to one group of devices
(group_width) and at the boundary of a raid group it can
spill into a second group. Current code would allocate a
full device_table size array at each io_state so it can
comply to requests that span two groups. Needless to say
that is very wasteful, specially when device_table count
can get very large (hundreds even thousands), while a
group_width is usually 8 or 10.
* Change ore API to trim on IO that spans two raid groups.
The user passes offset+length to ore_get_rw_state, the
ore might trim on that length if spanning a group boundary.
The user must check ios->length or ios->nrpages to see
how much IO will be preformed. It is the responsibility
of the user to re-issue the reminder of the IO.
* Modify exofs To copy spilled pages on to the next IO.
This means one last kick is needed after all coalescing
of pages is done.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
In the pNFS obj-LD the device table at the layout level needs
to point to a device_cache node, where it is possible and likely
that many layouts will point to the same device-nodes.
In Exofs we have a more orderly structure where we have a single
array of devices that repeats twice for a round-robin view of the
device table
This patch moves to a model that can be used by the pNFS obj-LD
where struct ore_components holds an array of ore_dev-pointers.
(ore_dev is newly defined and contains a struct osd_dev *od
member)
Each pointer in the array of pointers will point to a bigger
user-defined dev_struct. That can be accessed by use of the
container_of macro.
In Exofs an __alloc_dev_table() function allocates the
ore_dev-pointers array as well as an exofs_dev array, in one
allocation and does the addresses dance to set everything pointing
correctly. It still keeps the double allocation trick for the
inodes round-robin view of the table.
The device table is always allocated dynamically, also for the
single device case. So it is unconditionally freed at umount.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
The struct ore_striping_info will be used later in other
structures. And ore_calc_stripe_info as well. Rename them
make struct ore_striping_info public. ore_calc_stripe_info
is still static, will be made public on first use.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
The struct pnfs_osd_data_map data_map member of exofs_sb_info was
never used after mount. In fact all it's members were duplicated
by the ore_layout structure. So just remove the duplicated information.
Also removed some stupid, but perfectly supported, restrictions on
layout parameters. The case where num_devices is not divisible by
mirror_count+1 is perfectly fine since the rotating device view
will eventually use all the devices it can get.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
Signed-off-by: Benny Halevy <bhalevy@tonian.com>
|
|
ore_components already has a comps member so this leads
to things like comps->comps which is annoying. the name oc
was already used in new code. So rename all old usage of
ore_components comps => ore_components oc.
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
This quiets the following sparse noise:
warning: symbol 'exofs_sync_fs' was not declared. Should it be static?
warning: symbol 'exofs_free_sbi' was not declared. Should it be static?
warning: symbol 'exofs_get_parent' was not declared. Should it be static?
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
This quiets the sparse noise:
warning: symbol '_calc_trunk_info' was not declared. Should it be static?
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
|
|
* 'for-linus' of git://github.com/chrismason/linux:
Btrfs: add dummy extent if dst offset excceeds file end in
Btrfs: calc file extent num_bytes correctly in file clone
btrfs: xattr: fix attribute removal
Btrfs: fix wrong nbytes information of the inode
Btrfs: fix the file extent gap when doing direct IO
Btrfs: fix unclosed transaction handle in btrfs_cont_expand
Btrfs: fix misuse of trans block rsv
Btrfs: reset to appropriate block rsv after orphan operations
Btrfs: skip locking if searching the commit root in csum lookup
btrfs: fix warning in iput for bad-inode
Btrfs: fix an oops when deleting snapshots
|
|
kmemleak is reporting that 32 bytes are being leaked by FUSE:
unreferenced object 0xe373b270 (size 32):
comm "fusermount", pid 1207, jiffies 4294707026 (age 2675.187s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<b05517d7>] kmemleak_alloc+0x27/0x50
[<b0196435>] kmem_cache_alloc+0xc5/0x180
[<b02455be>] fuse_alloc_forget+0x1e/0x20
[<b0245670>] fuse_alloc_inode+0xb0/0xd0
[<b01b1a8c>] alloc_inode+0x1c/0x80
[<b01b290f>] iget5_locked+0x8f/0x1a0
[<b0246022>] fuse_iget+0x72/0x1a0
[<b02461da>] fuse_get_root_inode+0x8a/0x90
[<b02465cf>] fuse_fill_super+0x3ef/0x590
[<b019e56f>] mount_nodev+0x3f/0x90
[<b0244e95>] fuse_mount+0x15/0x20
[<b019d1bc>] mount_fs+0x1c/0xc0
[<b01b5811>] vfs_kern_mount+0x41/0x90
[<b01b5af9>] do_kern_mount+0x39/0xd0
[<b01b7585>] do_mount+0x2e5/0x660
[<b01b7966>] sys_mount+0x66/0xa0
This leak report is consistent and happens once per boot on
3.1.0-rc5-dirty.
This happens if a FORGET request is queued after the fuse device was
released.
Reported-by: Sitsofe Wheeler <sitsofe@yahoo.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Tested-by: Sitsofe Wheeler <sitsofe@yahoo.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 37fb3a30b4 ("fuse: fix flock") added in 3.1-rc4 caused flock() to
fail with ENOSYS with the kernel ABI version 7.16 or earlier.
Fix by falling back to testing FUSE_POSIX_LOCKS for ABI versions 7.16
and earlier.
Reported-by: Martin Ziegler <ziegler@email.mathematik.uni-freiburg.de>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Tested-by: Martin Ziegler <ziegler@email.mathematik.uni-freiburg.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
You can see there's no file extent with range [0, 4096]. Check this by
btrfsck:
# btrfsck /dev/sda7
root 5 inode 258 errors 100
...
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
num_bytes should be 4096 not 12288.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
An attribute is not removed by 'setfattr -x attr file' and remains
visible in attr list. This makes xfstests/062 pass again.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
If we write some data into the data hole of the file(no preallocation for this
hole), Btrfs will allocate some disk space, and update nbytes of the inode, but
the other element--disk_i_size needn't be updated. At this condition, we must
update inode metadata though disk_i_size is not changed(btrfs_ordered_update_i_size()
return 1).
# mkfs.btrfs /dev/sdb1
# mount /dev/sdb1 /mnt
# touch /mnt/a
# truncate -s 856002 /mnt/a
# dd if=/dev/zero of=/mnt/a bs=4K count=1 conv=nocreat,notrunc
# umount /mnt
# btrfsck /dev/sdb1
root 5 inode 257 errors 400
found 32768 bytes used err is 1
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When we write some data to the place that is beyond the end of the file
in direct I/O mode, a data hole will be created. And Btrfs should insert
a file extent item that point to this hole into the fs tree. But unfortunately
Btrfs forgets doing it.
The following is a simple way to reproduce it:
# mkfs.btrfs /dev/sdc2
# mount /dev/sdc2 /test4
# touch /test4/a
# dd if=/dev/zero of=/test4/a seek=8 count=1 bs=4K oflag=direct conv=nocreat,notrunc
# umount /test4
# btrfsck /dev/sdc2
root 5 inode 257 errors 100
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The function - btrfs_cont_expand() forgot to close the transaction handle before
it jump out the while loop. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
At the beginning of create_pending_snapshot, trans->block_rsv is set
to pending->block_rsv and is used for snapshot things, however, when
it is done, we do not recover it as will.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
While truncating free space cache, we forget to change trans->block_rsv
back to the original one, but leave it with the orphan_block_rsv, and
then with option inode_cache enable, it leads to countless warnings of
btrfs_alloc_free_block and btrfs_orphan_commit_root:
WARNING: at fs/btrfs/extent-tree.c:5711 btrfs_alloc_free_block+0x180/0x350 [btrfs]()
...
WARNING: at fs/btrfs/inode.c:2193 btrfs_orphan_commit_root+0xb0/0xc0 [btrfs]()
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
It's not enough to just search the commit root, since we could be cow'ing the
very block we need to search through, which would mean that its locked and we'll
still deadlock. So use path->skip_locking as well. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
iput() shouldn't be called for inodes in I_NEW state.
We need to mark inode as constructed first.
WARNING: at fs/inode.c:1309 iput+0x20b/0x210()
Call Trace:
[<ffffffff8103e7ba>] warn_slowpath_common+0x7a/0xb0
[<ffffffff8103e805>] warn_slowpath_null+0x15/0x20
[<ffffffff810eaf0b>] iput+0x20b/0x210
[<ffffffff811b96fb>] btrfs_iget+0x1eb/0x4a0
[<ffffffff811c3ad6>] btrfs_run_defrag_inodes+0x136/0x210
[<ffffffff811ad55f>] cleaner_kthread+0x17f/0x1a0
[<ffffffff81035b7d>] ? sub_preempt_count+0x9d/0xd0
[<ffffffff811ad3e0>] ? transaction_kthread+0x280/0x280
[<ffffffff8105af86>] kthread+0x96/0xa0
[<ffffffff814336d4>] kernel_thread_helper+0x4/0x10
[<ffffffff8105aef0>] ? kthread_worker_fn+0x190/0x190
[<ffffffff814336d0>] ? gs_change+0xb/0xb
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
CC: Konstantin Khlebnikov <khlebnikov@openvz.org>
Tested-by: David Sterba <dsterba@suse.cz>
CC: Josef Bacik <josef@redhat.com>
CC: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
We can reproduce this oops via the following steps:
$ mkfs.btrfs /dev/sdb7
$ mount /dev/sdb7 /mnt/btrfs
$ for ((i=0; i<3; i++)); do btrfs sub snap /mnt/btrfs /mnt/btrfs/s_$i; done
$ rm -fr /mnt/btrfs/*
$ rm -fr /mnt/btrfs/*
then we'll get
------------[ cut here ]------------
kernel BUG at fs/btrfs/inode.c:2264!
[...]
Call Trace:
[<ffffffffa05578c7>] btrfs_rmdir+0xf7/0x1b0 [btrfs]
[<ffffffff81150b95>] vfs_rmdir+0xa5/0xf0
[<ffffffff81153cc3>] do_rmdir+0x123/0x140
[<ffffffff81145ac7>] ? fput+0x197/0x260
[<ffffffff810aecff>] ? audit_syscall_entry+0x1bf/0x1f0
[<ffffffff81153d0d>] sys_unlinkat+0x2d/0x40
[<ffffffff8147896b>] system_call_fastpath+0x16/0x1b
RIP [<ffffffffa054f7b9>] btrfs_orphan_add+0x179/0x1a0 [btrfs]
When it comes to btrfs_lookup_dentry, we may set a snapshot's inode->i_ino
to BTRFS_EMPTY_SUBVOL_DIR_OBJECTID instead of BTRFS_FIRST_FREE_OBJECTID,
while the snapshot's location.objectid remains unchanged.
However, btrfs_ino() does not take this into account, and returns a wrong ino,
and causes the oops.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
* 'for-linus' of git://neil.brown.name/md:
md: Fix handling for devices from 2TB to 4TB in 0.90 metadata.
md/raid1,10: Remove use-after-free bug in make_request.
md/raid10: unify handling of write completion.
Avoid dereferencing a 'request_queue' after last close.
|
|
On the last close of an 'md' device which as been stopped, the device
is destroyed and in particular the request_queue is freed. The free
is done in a separate thread so it might happen a short time later.
__blkdev_put calls bdev_inode_switch_bdi *after* ->release has been
called.
Since commit f758eeabeb96f878c860e8f110f94ec8820822a9
bdev_inode_switch_bdi will dereference the 'old' bdi, which lives
inside a request_queue, to get a spin lock. This causes the last
close on an md device to sometime take a spin_lock which lives in
freed memory - which results in an oops.
So move the called to bdev_inode_switch_bdi before the call to
->release.
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: stable@kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
* 'for-linus' of git://ceph.newdream.net/git/ceph-client:
libceph: fix leak of osd structs during shutdown
ceph: fix memory leak
ceph: fix encoding of ino only (not relative) paths
libceph: fix msgpool
|
|
Prior to 2.6.38 automount would not trigger on either stat(2) or
lstat(2) on the automount point.
After 2.6.38, with the introduction of the ->d_automount()
infrastructure, stat(2) and others would start triggering automount
while lstat(2), etc. still would not. This is a regression and a
userspace ABI change.
Problem originally reported here:
http://thread.gmane.org/gmane.linux.kernel.autofs/6098
It appears that there was an attempt at fixing various userspace tools
to not trigger the automount. But since the stat system call is
rather common it is impossible to "fix" all userspace.
This patch reverts the original behavior, which is to not trigger on
stat(2) and other symlink following syscalls.
[ It's not really clear what the right behavior is. Apparently Solaris
does the "automount on stat, leave alone on lstat". And some programs
can get unhappy when "stat+open+fstat" ends up giving a different
result from the fstat than from the initial stat.
But the change in 2.6.38 resulted in problems for some people, so
we're going back to old behavior. Maybe we can re-visit this
discussion at some future date - Linus ]
Reported-by: Leonardo Chiquitto <leonardo.lists@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Ian Kent <raven@themaw.net>
Cc: David Howells <dhowells@redhat.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.infradead.org/ubi-2.6
* branch 'linux-next' of git://git.infradead.org/ubifs-2.6:
UBIFS: not build debug messages with CONFIG_UBIFS_FS_DEBUG disabled
* branch 'linux-next' of git://git.infradead.org/ubi-2.6:
UBI: do not link debug messages when debugging is disabled
|
|
Signed-off-by: Jim Garlick <garlick@llnl.gov>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
|
|
This make sure we don't end up reusing the unlinked inode object.
The ideal way is to use inode i_generation. But i_generation is
not available in userspace always.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
|
|
Some of the flags are OS/arch dependent we add a 9p
protocol value which maps to asm-generic/fcntl.h values in Linux
Based on the original patch from Venkateswararao Jujjuri <jvrao@linux.vnet.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
|
|
We should only update attributes that we can change on stat2inode.
Also do file type initialization in v9fs_init_inode.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
|
|
d_instantiate marks the dentry positive. So a parallel lookup and mkdir of
the directory can find dentry that doesn't have fid attached. This can result
in both the code path doing v9fs_fid_add which results in v9fs_dentry leak.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
|
|
* 'for-linus' of git://oss.sgi.com/xfs/xfs:
xfs: fix ->write_inode return values
xfs: fix xfs_mark_inode_dirty during umount
xfs: deprecate the nodelaylog mount option
|
|
Currently we always redirty an inode that was attempted to be written out
synchronously but has been cleaned by an AIL pushed internall, which is
rather bogus. Fix that by doing the i_update_core check early on and
return 0 for it. Also include async calls for it, as doing any work for
those is just as pointless. While we're at it also fix the sign for the
EIO return in case of a filesystem shutdown, and fix the completely
non-sensical locking around xfs_log_inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
(cherry picked from commit 297db93bb74cf687510313eb235a7aec14d67e97)
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
During umount we do not add a dirty inode to the lru and wait for it to
become clean first, but force writeback of data and metadata with
I_WILL_FREE set. Currently there is no way for XFS to detect that the
inode has been redirtied for metadata operations, as we skip the
mark_inode_dirty call during teardown. Fix this by setting i_update_core
nanually in that case, so that the inode gets flushed during inode reclaim.
Alternatively we could enable calling mark_inode_dirty for inodes in
I_WILL_FREE state, and let the VFS dirty tracking handle this. I decided
against this as we will get better I/O patterns from reclaim compared to
the synchronous writeout in write_inode_now, and always marking the inode
dirty in some way from xfs_mark_inode_dirty is a better safetly net in
either case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
(cherry picked from commit da6742a5a4cc844a9982fdd936ddb537c0747856)
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
* tag 'for_linus-20110831' of git://github.com/tytso/ext4:
ext4: remove i_mutex lock in ext4_evict_inode to fix lockdep complaining
|
|
The i_mutex lock and flush_completed_IO() added by commit 2581fdc810
in ext4_evict_inode() causes lockdep complaining about potential
deadlock in several places. In most/all of these LOCKDEP complaints
it looks like it's a false positive, since many of the potential
circular locking cases can't take place by the time the
ext4_evict_inode() is called; but since at the very least it may mask
real problems, we need to address this.
This change removes the flush_completed_IO() and i_mutex lock in
ext4_evict_inode(). Instead, we take a different approach to resolve
the software lockup that commit 2581fdc810 intends to fix. Rather
than having ext4-dio-unwritten thread wait for grabing the i_mutex
lock of an inode, we use mutex_trylock() instead, and simply requeue
the work item if we fail to grab the inode's i_mutex lock.
This should speed up work queue processing in general and also
prevents the following deadlock scenario: During page fault,
shrink_icache_memory is called that in turn evicts another inode B.
Inode B has some pending io_end work so it calls ext4_ioend_wait()
that waits for inode B's i_ioend_count to become zero. However, inode
B's ioend work was queued behind some of inode A's ioend work on the
same cpu's ext4-dio-unwritten workqueue. As the ext4-dio-unwritten
thread on that cpu is processing inode A's ioend work, it tries to
grab inode A's i_mutex lock. Since the i_mutex lock of inode A is
still hold before the page fault happened, we enter a deadlock.
Signed-off-by: Jiaying Zhang <jiayingz@google.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
The nfsservctl system call is now gone, so we should remove all
linkage for it.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|