summaryrefslogtreecommitdiff
path: root/kernel/bpf/disasm.c
AgeCommit message (Collapse)Author
2021-09-02bpf: Relicense disassembler as GPL-2.0-only OR BSD-2-ClauseDaniel Borkmann
Some time ago we dual-licensed both libbpf and bpftool through commits 1bc38b8ff6cc ("libbpf: relicense libbpf as LGPL-2.1 OR BSD-2-Clause") and 907b22365115 ("tools: bpftool: dual license all files"). The latter missed the disasm.{c,h} which we pull in via kernel/bpf/ such that we have a single source for verifier as well as bpftool asm dumping, see also f4ac7e0b5cc8 ("bpf: move instruction printing into a separate file"). It is currently GPL-2.0-only and missed the conversion in 907b22365115, therefore relicense the two as GPL-2.0-only OR BSD-2-Clause as well. Spotted-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@fb.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Brendan Jackman <jackmanb@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Simon Horman <simon.horman@corigine.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Xu Kuohai <xukuohai@huawei.com> Acked-by: Edward Cree <ecree.xilinx@gmail.com>
2021-07-29bpf: Introduce BPF nospec instruction for mitigating Spectre v4Daniel Borkmann
In case of JITs, each of the JIT backends compiles the BPF nospec instruction /either/ to a machine instruction which emits a speculation barrier /or/ to /no/ machine instruction in case the underlying architecture is not affected by Speculative Store Bypass or has different mitigations in place already. This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence' instruction for mitigation. In case of arm64, we rely on the firmware mitigation as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled, it works for all of the kernel code with no need to provide any additional instructions here (hence only comment in arm64 JIT). Other archs can follow as needed. The BPF nospec instruction is specifically targeting Spectre v4 since i) we don't use a serialization barrier for the Spectre v1 case, and ii) mitigation instructions for v1 and v4 might be different on some archs. The BPF nospec is required for a future commit, where the BPF verifier does annotate intermediate BPF programs with speculation barriers. Co-developed-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-04-09Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
Conflicts: MAINTAINERS - keep Chandrasekar drivers/net/ethernet/mellanox/mlx5/core/en_main.c - simple fix + trust the code re-added to param.c in -next is fine include/linux/bpf.h - trivial include/linux/ethtool.h - trivial, fix kdoc while at it include/linux/skmsg.h - move to relevant place in tcp.c, comment re-wrapped net/core/skmsg.c - add the sk = sk // sk = NULL around calls net/tipc/crypto.c - trivial Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-03-26bpf: Support bpf program calling kernel functionMartin KaFai Lau
This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-26bpf: Fix a spelling typo in bpf_atomic_alu_string disasmXu Kuohai
The name string for BPF_XOR is "xor", not "or". Fix it. Fixes: 981f94c3e921 ("bpf: Add bitwise atomic instructions") Signed-off-by: Xu Kuohai <xukuohai@huawei.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Brendan Jackman <jackmanb@google.com> Link: https://lore.kernel.org/bpf/20210325134141.8533-1-xukuohai@huawei.com
2021-01-27bpf: Change 'BPF_ADD' to 'BPF_AND' in print_bpf_insn()Menglong Dong
This 'BPF_ADD' is duplicated, and I belive it should be 'BPF_AND'. Fixes: 981f94c3e921 ("bpf: Add bitwise atomic instructions") Signed-off-by: Menglong Dong <dong.menglong@zte.com.cn> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Brendan Jackman <jackmanb@google.com> Link: https://lore.kernel.org/bpf/20210127022507.23674-1-dong.menglong@zte.com.cn
2021-01-14bpf: Add bitwise atomic instructionsBrendan Jackman
This adds instructions for atomic[64]_[fetch_]and atomic[64]_[fetch_]or atomic[64]_[fetch_]xor All these operations are isomorphic enough to implement with the same verifier, interpreter, and x86 JIT code, hence being a single commit. The main interesting thing here is that x86 doesn't directly support the fetch_ version these operations, so we need to generate a CMPXCHG loop in the JIT. This requires the use of two temporary registers, IIUC it's safe to use BPF_REG_AX and x86's AUX_REG for this purpose. Signed-off-by: Brendan Jackman <jackmanb@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210114181751.768687-10-jackmanb@google.com
2021-01-14bpf: Add instructions for atomic_[cmp]xchgBrendan Jackman
This adds two atomic opcodes, both of which include the BPF_FETCH flag. XCHG without the BPF_FETCH flag would naturally encode atomic_set. This is not supported because it would be of limited value to userspace (it doesn't imply any barriers). CMPXCHG without BPF_FETCH woulud be an atomic compare-and-write. We don't have such an operation in the kernel so it isn't provided to BPF either. There are two significant design decisions made for the CMPXCHG instruction: - To solve the issue that this operation fundamentally has 3 operands, but we only have two register fields. Therefore the operand we compare against (the kernel's API calls it 'old') is hard-coded to be R0. x86 has similar design (and A64 doesn't have this problem). A potential alternative might be to encode the other operand's register number in the immediate field. - The kernel's atomic_cmpxchg returns the old value, while the C11 userspace APIs return a boolean indicating the comparison result. Which should BPF do? A64 returns the old value. x86 returns the old value in the hard-coded register (and also sets a flag). That means return-old-value is easier to JIT, so that's what we use. Signed-off-by: Brendan Jackman <jackmanb@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210114181751.768687-8-jackmanb@google.com
2021-01-14bpf: Add BPF_FETCH field / create atomic_fetch_add instructionBrendan Jackman
The BPF_FETCH field can be set in bpf_insn.imm, for BPF_ATOMIC instructions, in order to have the previous value of the atomically-modified memory location loaded into the src register after an atomic op is carried out. Suggested-by: Yonghong Song <yhs@fb.com> Signed-off-by: Brendan Jackman <jackmanb@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20210114181751.768687-7-jackmanb@google.com
2021-01-14bpf: Rename BPF_XADD and prepare to encode other atomics in .immBrendan Jackman
A subsequent patch will add additional atomic operations. These new operations will use the same opcode field as the existing XADD, with the immediate discriminating different operations. In preparation, rename the instruction mode BPF_ATOMIC and start calling the zero immediate BPF_ADD. This is possible (doesn't break existing valid BPF progs) because the immediate field is currently reserved MBZ and BPF_ADD is zero. All uses are removed from the tree but the BPF_XADD definition is kept around to avoid breaking builds for people including kernel headers. Signed-off-by: Brendan Jackman <jackmanb@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Björn Töpel <bjorn.topel@gmail.com> Link: https://lore.kernel.org/bpf/20210114181751.768687-5-jackmanb@google.com
2019-06-05treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 295Thomas Gleixner
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of version 2 of the gnu general public license as published by the free software foundation this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 64 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexios Zavras <alexios.zavras@intel.com> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190529141901.894819585@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-09bpf: implement lookup-free direct value access for mapsDaniel Borkmann
This generic extension to BPF maps allows for directly loading an address residing inside a BPF map value as a single BPF ldimm64 instruction! The idea is similar to what BPF_PSEUDO_MAP_FD does today, which is a special src_reg flag for ldimm64 instruction that indicates that inside the first part of the double insns's imm field is a file descriptor which the verifier then replaces as a full 64bit address of the map into both imm parts. For the newly added BPF_PSEUDO_MAP_VALUE src_reg flag, the idea is the following: the first part of the double insns's imm field is again a file descriptor corresponding to the map, and the second part of the imm field is an offset into the value. The verifier will then replace both imm parts with an address that points into the BPF map value at the given value offset for maps that support this operation. Currently supported is array map with single entry. It is possible to support more than just single map element by reusing both 16bit off fields of the insns as a map index, so full array map lookup could be expressed that way. It hasn't been implemented here due to lack of concrete use case, but could easily be done so in future in a compatible way, since both off fields right now have to be 0 and would correctly denote a map index 0. The BPF_PSEUDO_MAP_VALUE is a distinct flag as otherwise with BPF_PSEUDO_MAP_FD we could not differ offset 0 between load of map pointer versus load of map's value at offset 0, and changing BPF_PSEUDO_MAP_FD's encoding into off by one to differ between regular map pointer and map value pointer would add unnecessary complexity and increases barrier for debugability thus less suitable. Using the second part of the imm field as an offset into the value does /not/ come with limitations since maximum possible value size is in u32 universe anyway. This optimization allows for efficiently retrieving an address to a map value memory area without having to issue a helper call which needs to prepare registers according to calling convention, etc, without needing the extra NULL test, and without having to add the offset in an additional instruction to the value base pointer. The verifier then treats the destination register as PTR_TO_MAP_VALUE with constant reg->off from the user passed offset from the second imm field, and guarantees that this is within bounds of the map value. Any subsequent operations are normally treated as typical map value handling without anything extra needed from verification side. The two map operations for direct value access have been added to array map for now. In future other types could be supported as well depending on the use case. The main use case for this commit is to allow for BPF loader support for global variables that reside in .data/.rodata/.bss sections such that we can directly load the address of them with minimal additional infrastructure required. Loader support has been added in subsequent commits for libbpf library. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-26bpf: disassembler support JMP32Jiong Wang
This patch teaches disassembler about JMP32. There are two places to update: - Class 0x6 now used by BPF_JMP32, not "unused". - BPF_JMP32 need to show comparison operands properly. The disassemble format is to add an extra "(32)" before the operands if it is a sub-register. A better disassemble format for both JMP32 and ALU32 just show the register prefix as "w" instead of "r", this is the format using by LLVM assembler. Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-03-23bpf: Remove struct bpf_verifier_env argument from print_bpf_insnJiri Olsa
We use print_bpf_insn in user space (bpftool and soon perf), so it'd be nice to keep it generic and strip it off the kernel struct bpf_verifier_env argument. This argument can be safely removed, because its users can use the struct bpf_insn_cbs::private_data to pass it. By changing the argument type we can no longer have clean 'verbose' alias to 'bpf_verifier_log_write' in verifier.c. Instead we're adding the 'verbose' cb_print callback and removing the alias. This way we have new cb_print callback in place, and all the 'verbose(env, ...) calls in verifier.c will cleanly cast to 'verbose(void *, ...)' so no other change is needed. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-20bpf: allow for correlation of maps and helpers in dumpDaniel Borkmann
Currently a dump of an xlated prog (post verifier stage) doesn't correlate used helpers as well as maps. The prog info lists involved map ids, however there's no correlation of where in the program they are used as of today. Likewise, bpftool does not correlate helper calls with the target functions. The latter can be done w/o any kernel changes through kallsyms, and also has the advantage that this works with inlined helpers and BPF calls. Example, via interpreter: # tc filter show dev foo ingress filter protocol all pref 49152 bpf chain 0 filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \ direct-action not_in_hw id 1 tag c74773051b364165 <-- prog id:1 * Output before patch (calls/maps remain unclear): # bpftool prog dump xlated id 1 <-- dump prog id:1 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = 0xffff95c47a8d4800 6: (85) call unknown#73040 7: (15) if r0 == 0x0 goto pc+18 8: (bf) r2 = r10 9: (07) r2 += -4 10: (bf) r1 = r0 11: (85) call unknown#73040 12: (15) if r0 == 0x0 goto pc+23 [...] * Output after patch: # bpftool prog dump xlated id 1 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] <-- map id:2 6: (85) call bpf_map_lookup_elem#73424 <-- helper call 7: (15) if r0 == 0x0 goto pc+18 8: (bf) r2 = r10 9: (07) r2 += -4 10: (bf) r1 = r0 11: (85) call bpf_map_lookup_elem#73424 12: (15) if r0 == 0x0 goto pc+23 [...] # bpftool map show id 2 <-- show/dump/etc map id:2 2: hash_of_maps flags 0x0 key 4B value 4B max_entries 3 memlock 4096B Example, JITed, same prog: # tc filter show dev foo ingress filter protocol all pref 49152 bpf chain 0 filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \ direct-action not_in_hw id 3 tag c74773051b364165 jited # bpftool prog show id 3 3: sched_cls tag c74773051b364165 loaded_at Dec 19/13:48 uid 0 xlated 384B jited 257B memlock 4096B map_ids 2 # bpftool prog dump xlated id 3 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] <-- map id:2 6: (85) call __htab_map_lookup_elem#77408 <-+ inlined rewrite 7: (15) if r0 == 0x0 goto pc+2 | 8: (07) r0 += 56 | 9: (79) r0 = *(u64 *)(r0 +0) <-+ 10: (15) if r0 == 0x0 goto pc+24 11: (bf) r2 = r10 12: (07) r2 += -4 [...] Example, same prog, but kallsyms disabled (in that case we are also not allowed to pass any relative offsets, etc, so prog becomes pointer sanitized on dump): # sysctl kernel.kptr_restrict=2 kernel.kptr_restrict = 2 # bpftool prog dump xlated id 3 0: (b7) r1 = 2 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 3: (07) r2 += -4 4: (18) r1 = map[id:2] 6: (85) call bpf_unspec#0 7: (15) if r0 == 0x0 goto pc+2 [...] Example, BPF calls via interpreter: # bpftool prog dump xlated id 1 0: (85) call pc+2#__bpf_prog_run_args32 1: (b7) r0 = 1 2: (95) exit 3: (b7) r0 = 2 4: (95) exit Example, BPF calls via JIT: # sysctl net.core.bpf_jit_enable=1 net.core.bpf_jit_enable = 1 # sysctl net.core.bpf_jit_kallsyms=1 net.core.bpf_jit_kallsyms = 1 # bpftool prog dump xlated id 1 0: (85) call pc+2#bpf_prog_3b185187f1855c4c_F 1: (b7) r0 = 1 2: (95) exit 3: (b7) r0 = 2 4: (95) exit And finally, an example for tail calls that is now working as well wrt correlation: # bpftool prog dump xlated id 2 [...] 10: (b7) r2 = 8 11: (85) call bpf_trace_printk#-41312 12: (bf) r1 = r6 13: (18) r2 = map[id:1] 15: (b7) r3 = 0 16: (85) call bpf_tail_call#12 17: (b7) r1 = 42 18: (6b) *(u16 *)(r6 +46) = r1 19: (b7) r0 = 0 20: (95) exit # bpftool map show id 1 1: prog_array flags 0x0 key 4B value 4B max_entries 1 memlock 4096B Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2017-12-17bpf: introduce function calls (function boundaries)Alexei Starovoitov
Allow arbitrary function calls from bpf function to another bpf function. Since the beginning of bpf all bpf programs were represented as a single function and program authors were forced to use always_inline for all functions in their C code. That was causing llvm to unnecessary inflate the code size and forcing developers to move code to header files with little code reuse. With a bit of additional complexity teach verifier to recognize arbitrary function calls from one bpf function to another as long as all of functions are presented to the verifier as a single bpf program. New program layout: r6 = r1 // some code .. r1 = .. // arg1 r2 = .. // arg2 call pc+1 // function call pc-relative exit .. = r1 // access arg1 .. = r2 // access arg2 .. call pc+20 // second level of function call ... It allows for better optimized code and finally allows to introduce the core bpf libraries that can be reused in different projects, since programs are no longer limited by single elf file. With function calls bpf can be compiled into multiple .o files. This patch is the first step. It detects programs that contain multiple functions and checks that calls between them are valid. It splits the sequence of bpf instructions (one program) into a set of bpf functions that call each other. Calls to only known functions are allowed. In the future the verifier may allow calls to unresolved functions and will do dynamic linking. This logic supports statically linked bpf functions only. Such function boundary detection could have been done as part of control flow graph building in check_cfg(), but it's cleaner to separate function boundary detection vs control flow checks within a subprogram (function) into logically indepedent steps. Follow up patches may split check_cfg() further, but not check_subprogs(). Only allow bpf-to-bpf calls for root only and for non-hw-offloaded programs. These restrictions can be relaxed in the future. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-10-10bpf: move instruction printing into a separate fileJakub Kicinski
Separate the instruction printing into a standalone source file. This way sneaky code from tools/ can compile it in directly. Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: David S. Miller <davem@davemloft.net>