Age | Commit message (Collapse) | Author |
|
Under PREEMPT_RT, __put_task_struct() indirectly acquires sleeping
locks. Therefore, it can't be called from an non-preemptible context.
One practical example is splat inside inactive_task_timer(), which is
called in a interrupt context:
CPU: 1 PID: 2848 Comm: life Kdump: loaded Tainted: G W ---------
Hardware name: HP ProLiant DL388p Gen8, BIOS P70 07/15/2012
Call Trace:
dump_stack_lvl+0x57/0x7d
mark_lock_irq.cold+0x33/0xba
mark_lock+0x1e7/0x400
mark_usage+0x11d/0x140
__lock_acquire+0x30d/0x930
lock_acquire.part.0+0x9c/0x210
rt_spin_lock+0x27/0xe0
refill_obj_stock+0x3d/0x3a0
kmem_cache_free+0x357/0x560
inactive_task_timer+0x1ad/0x340
__run_hrtimer+0x8a/0x1a0
__hrtimer_run_queues+0x91/0x130
hrtimer_interrupt+0x10f/0x220
__sysvec_apic_timer_interrupt+0x7b/0xd0
sysvec_apic_timer_interrupt+0x4f/0xd0
asm_sysvec_apic_timer_interrupt+0x12/0x20
RIP: 0033:0x7fff196bf6f5
Instead of calling __put_task_struct() directly, we defer it using
call_rcu(). A more natural approach would use a workqueue, but since
in PREEMPT_RT, we can't allocate dynamic memory from atomic context,
the code would become more complex because we would need to put the
work_struct instance in the task_struct and initialize it when we
allocate a new task_struct.
The issue is reproducible with stress-ng:
while true; do
stress-ng --sched deadline --sched-period 1000000000 \
--sched-runtime 800000000 --sched-deadline \
1000000000 --mmapfork 23 -t 20
done
Reported-by: Hu Chunyu <chuhu@redhat.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wander Lairson Costa <wander@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230614122323.37957-2-wander@redhat.com
|
|
When forking a child process, the parent write-protects anonymous pages
and COW-shares them with the child being forked using copy_present_pte().
We must not take any concurrent page faults on the source vma's as they
are being processed, as we expect both the vma and the pte's behind it
to be stable. For example, the anon_vma_fork() expects the parents
vma->anon_vma to not change during the vma copy.
A concurrent page fault on a page newly marked read-only by the page
copy might trigger wp_page_copy() and a anon_vma_prepare(vma) on the
source vma, defeating the anon_vma_clone() that wasn't done because the
parent vma originally didn't have an anon_vma, but we now might end up
copying a pte entry for a page that has one.
Before the per-vma lock based changes, the mmap_lock guaranteed
exclusion with concurrent page faults. But now we need to do a
vma_start_write() to make sure no concurrent faults happen on this vma
while it is being processed.
This fix can potentially regress some fork-heavy workloads. Kernel
build time did not show noticeable regression on a 56-core machine while
a stress test mapping 10000 VMAs and forking 5000 times in a tight loop
shows ~5% regression. If such fork time regression is unacceptable,
disabling CONFIG_PER_VMA_LOCK should restore its performance. Further
optimizations are possible if this regression proves to be problematic.
Suggested-by: David Hildenbrand <david@redhat.com>
Reported-by: Jiri Slaby <jirislaby@kernel.org>
Closes: https://lore.kernel.org/all/dbdef34c-3a07-5951-e1ae-e9c6e3cdf51b@kernel.org/
Reported-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Closes: https://lore.kernel.org/all/b198d649-f4bf-b971-31d0-e8433ec2a34c@applied-asynchrony.com/
Reported-by: Jacob Young <jacobly.alt@gmail.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217624
Fixes: 0bff0aaea03e ("x86/mm: try VMA lock-based page fault handling first")
Cc: stable@vger.kernel.org
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-mm updates from Andrew Morton:
- Arnd Bergmann has fixed a bunch of -Wmissing-prototypes in top-level
directories
- Douglas Anderson has added a new "buddy" mode to the hardlockup
detector. It permits the detector to work on architectures which
cannot provide the required interrupts, by having CPUs periodically
perform checks on other CPUs
- Zhen Lei has enhanced kexec's ability to support two crash regions
- Petr Mladek has done a lot of cleanup on the hard lockup detector's
Kconfig entries
- And the usual bunch of singleton patches in various places
* tag 'mm-nonmm-stable-2023-06-24-19-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (72 commits)
kernel/time/posix-stubs.c: remove duplicated include
ocfs2: remove redundant assignment to variable bit_off
watchdog/hardlockup: fix typo in config HARDLOCKUP_DETECTOR_PREFER_BUDDY
powerpc: move arch_trigger_cpumask_backtrace from nmi.h to irq.h
devres: show which resource was invalid in __devm_ioremap_resource()
watchdog/hardlockup: define HARDLOCKUP_DETECTOR_ARCH
watchdog/sparc64: define HARDLOCKUP_DETECTOR_SPARC64
watchdog/hardlockup: make HAVE_NMI_WATCHDOG sparc64-specific
watchdog/hardlockup: declare arch_touch_nmi_watchdog() only in linux/nmi.h
watchdog/hardlockup: make the config checks more straightforward
watchdog/hardlockup: sort hardlockup detector related config values a logical way
watchdog/hardlockup: move SMP barriers from common code to buddy code
watchdog/buddy: simplify the dependency for HARDLOCKUP_DETECTOR_PREFER_BUDDY
watchdog/buddy: don't copy the cpumask in watchdog_next_cpu()
watchdog/buddy: cleanup how watchdog_buddy_check_hardlockup() is called
watchdog/hardlockup: remove softlockup comment in touch_nmi_watchdog()
watchdog/hardlockup: in watchdog_hardlockup_check() use cpumask_copy()
watchdog/hardlockup: don't use raw_cpu_ptr() in watchdog_hardlockup_kick()
watchdog/hardlockup: HAVE_NMI_WATCHDOG must implement watchdog_hardlockup_probe()
watchdog/hardlockup: keep kernel.nmi_watchdog sysctl as 0444 if probe fails
...
|
|
Since commit f1c1a9ee00e4 ("fork: Move memcg_charge_kernel_stack()
into CONFIG_VMAP_STACK"), memcg_charge_kernel_stack() has been moved
into CONFIG_VMAP_STACK block, so the CONFIG_VMAP_STACK check can be
removed.
Furthermore, memcg_charge_kernel_stack() is only invoked by
alloc_thread_stack_node() instead of dup_task_struct(). If
memcg_kmem_charge_page() fails, the uncharge process is handled in
memcg_charge_kernel_stack() itself instead of free_thread_stack(),
so remove the incorrect comments.
If memcg_charge_kernel_stack() fails to charge pages used by kernel
stack, only charged pages need to be uncharged. It's unnecessary to
uncharge those pages which memory cgroup pointer is NULL.
[akpm@linux-foundation.org: remove assertion that PAGE_SIZE is a multiple of 1k]
Link: https://lkml.kernel.org/r/20230508064458.32855-1-haifeng.xu@shopee.com
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Daniel Borkmann says:
====================
pull-request: bpf 2023-06-07
We've added 7 non-merge commits during the last 7 day(s) which contain
a total of 12 files changed, 112 insertions(+), 7 deletions(-).
The main changes are:
1) Fix a use-after-free in BPF's task local storage, from KP Singh.
2) Make struct path handling more robust in bpf_d_path, from Jiri Olsa.
3) Fix a syzbot NULL-pointer dereference in sockmap, from Eric Dumazet.
4) UAPI fix for BPF_NETFILTER before final kernel ships,
from Florian Westphal.
5) Fix map-in-map array_map_gen_lookup code generation where elem_size was
not being set for inner maps, from Rhys Rustad-Elliott.
6) Fix sockopt_sk selftest's NETLINK_LIST_MEMBERSHIPS assertion,
from Yonghong Song.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf: Add extra path pointer check to d_path helper
selftests/bpf: Fix sockopt_sk selftest
bpf: netfilter: Add BPF_NETFILTER bpf_attach_type
selftests/bpf: Add access_inner_map selftest
bpf: Fix elem_size not being set for inner maps
bpf: Fix UAF in task local storage
bpf, sockmap: Avoid potential NULL dereference in sk_psock_verdict_data_ready()
====================
Link: https://lore.kernel.org/r/20230607220514.29698-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
When task local storage was generalized for tracing programs, the
bpf_task_local_storage callback was moved from a BPF LSM hook
callback for security_task_free LSM hook to it's own callback. But a
failure case in bad_fork_cleanup_security was missed which, when
triggered, led to a dangling task owner pointer and a subsequent
use-after-free. Move the bpf_task_storage_free to the very end of
free_task to handle all failure cases.
This issue was noticed when a BPF LSM program was attached to the
task_alloc hook on a kernel with KASAN enabled. The program used
bpf_task_storage_get to copy the task local storage from the current
task to the new task being created.
Fixes: a10787e6d58c ("bpf: Enable task local storage for tracing programs")
Reported-by: Kuba Piecuch <jpiecuch@google.com>
Signed-off-by: KP Singh <kpsingh@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/r/20230602002612.1117381-1-kpsingh@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
When switching from kthreads to vhost_tasks two bugs were added:
1. The vhost worker tasks's now show up as processes so scripts doing
ps or ps a would not incorrectly detect the vhost task as another
process. 2. kthreads disabled freeze by setting PF_NOFREEZE, but
vhost tasks's didn't disable or add support for them.
To fix both bugs, this switches the vhost task to be thread in the
process that does the VHOST_SET_OWNER ioctl, and has vhost_worker call
get_signal to support SIGKILL/SIGSTOP and freeze signals. Note that
SIGKILL/STOP support is required because CLONE_THREAD requires
CLONE_SIGHAND which requires those 2 signals to be supported.
This is a modified version of the patch written by Mike Christie
<michael.christie@oracle.com> which was a modified version of patch
originally written by Linus.
Much of what depended upon PF_IO_WORKER now depends on PF_USER_WORKER.
Including ignoring signals, setting up the register state, and having
get_signal return instead of calling do_group_exit.
Tidied up the vhost_task abstraction so that the definition of
vhost_task only needs to be visible inside of vhost_task.c. Making
it easier to review the code and tell what needs to be done where.
As part of this the main loop has been moved from vhost_worker into
vhost_task_fn. vhost_worker now returns true if work was done.
The main loop has been updated to call get_signal which handles
SIGSTOP, freezing, and collects the message that tells the thread to
exit as part of process exit. This collection clears
__fatal_signal_pending. This collection is not guaranteed to
clear signal_pending() so clear that explicitly so the schedule()
sleeps.
For now the vhost thread continues to exist and run work until the
last file descriptor is closed and the release function is called as
part of freeing struct file. To avoid hangs in the coredump
rendezvous and when killing threads in a multi-threaded exec. The
coredump code and de_thread have been modified to ignore vhost threads.
Remvoing the special case for exec appears to require teaching
vhost_dev_flush how to directly complete transactions in case
the vhost thread is no longer running.
Removing the special case for coredump rendezvous requires either the
above fix needed for exec or moving the coredump rendezvous into
get_signal.
Fixes: 6e890c5d5021 ("vhost: use vhost_tasks for worker threads")
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Co-developed-by: Mike Christie <michael.christie@oracle.com>
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
- Convert to platform remove callback returning void
- Extend changing default domain to normal group
- Intel VT-d updates:
- Remove VT-d virtual command interface and IOASID
- Allow the VT-d driver to support non-PRI IOPF
- Remove PASID supervisor request support
- Various small and misc cleanups
- ARM SMMU updates:
- Device-tree binding updates:
* Allow Qualcomm GPU SMMUs to accept relevant clock properties
* Document Qualcomm 8550 SoC as implementing an MMU-500
* Favour new "qcom,smmu-500" binding for Adreno SMMUs
- Fix S2CR quirk detection on non-architectural Qualcomm SMMU
implementations
- Acknowledge SMMUv3 PRI queue overflow when consuming events
- Document (in a comment) why ATS is disabled for bypass streams
- AMD IOMMU updates:
- 5-level page-table support
- NUMA awareness for memory allocations
- Unisoc driver: Support for reattaching an existing domain
- Rockchip driver: Add missing set_platform_dma_ops callback
- Mediatek driver: Adjust the dma-ranges
- Various other small fixes and cleanups
* tag 'iommu-updates-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (82 commits)
iommu: Remove iommu_group_get_by_id()
iommu: Make iommu_release_device() static
iommu/vt-d: Remove BUG_ON in dmar_insert_dev_scope()
iommu/vt-d: Remove a useless BUG_ON(dev->is_virtfn)
iommu/vt-d: Remove BUG_ON in map/unmap()
iommu/vt-d: Remove BUG_ON when domain->pgd is NULL
iommu/vt-d: Remove BUG_ON in handling iotlb cache invalidation
iommu/vt-d: Remove BUG_ON on checking valid pfn range
iommu/vt-d: Make size of operands same in bitwise operations
iommu/vt-d: Remove PASID supervisor request support
iommu/vt-d: Use non-privileged mode for all PASIDs
iommu/vt-d: Remove extern from function prototypes
iommu/vt-d: Do not use GFP_ATOMIC when not needed
iommu/vt-d: Remove unnecessary checks in iopf disabling path
iommu/vt-d: Move PRI handling to IOPF feature path
iommu/vt-d: Move pfsid and ats_qdep calculation to device probe path
iommu/vt-d: Move iopf code from SVA to IOPF enabling path
iommu/vt-d: Allow SVA with device-specific IOPF
dmaengine: idxd: Add enable/disable device IOPF feature
arm64: dts: mt8186: Add dma-ranges for the parent "soc" node
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
- User events are finally ready!
After lots of collaboration between various parties, we finally
locked down on a stable interface for user events that can also work
with user space only tracing.
This is implemented by telling the kernel (or user space library, but
that part is user space only and not part of this patch set), where
the variable is that the application uses to know if something is
listening to the trace.
There's also an interface to tell the kernel about these events,
which will show up in the /sys/kernel/tracing/events/user_events/
directory, where it can be enabled.
When it's enabled, the kernel will update the variable, to tell the
application to start writing to the kernel.
See https://lwn.net/Articles/927595/
- Cleaned up the direct trampolines code to simplify arm64 addition of
direct trampolines.
Direct trampolines use the ftrace interface but instead of jumping to
the ftrace trampoline, applications (mostly BPF) can register their
own trampoline for performance reasons.
- Some updates to the fprobe infrastructure. fprobes are more efficient
than kprobes, as it does not need to save all the registers that
kprobes on ftrace do. More work needs to be done before the fprobes
will be exposed as dynamic events.
- More updates to references to the obsolete path of
/sys/kernel/debug/tracing for the new /sys/kernel/tracing path.
- Add a seq_buf_do_printk() helper to seq_bufs, to print a large buffer
line by line instead of all at once.
There are users in production kernels that have a large data dump
that originally used printk() directly, but the data dump was larger
than what printk() allowed as a single print.
Using seq_buf() to do the printing fixes that.
- Add /sys/kernel/tracing/touched_functions that shows all functions
that was every traced by ftrace or a direct trampoline. This is used
for debugging issues where a traced function could have caused a
crash by a bpf program or live patching.
- Add a "fields" option that is similar to "raw" but outputs the fields
of the events. It's easier to read by humans.
- Some minor fixes and clean ups.
* tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (41 commits)
ring-buffer: Sync IRQ works before buffer destruction
tracing: Add missing spaces in trace_print_hex_seq()
ring-buffer: Ensure proper resetting of atomic variables in ring_buffer_reset_online_cpus
recordmcount: Fix memory leaks in the uwrite function
tracing/user_events: Limit max fault-in attempts
tracing/user_events: Prevent same address and bit per process
tracing/user_events: Ensure bit is cleared on unregister
tracing/user_events: Ensure write index cannot be negative
seq_buf: Add seq_buf_do_printk() helper
tracing: Fix print_fields() for __dyn_loc/__rel_loc
tracing/user_events: Set event filter_type from type
ring-buffer: Clearly check null ptr returned by rb_set_head_page()
tracing: Unbreak user events
tracing/user_events: Use print_format_fields() for trace output
tracing/user_events: Align structs with tabs for readability
tracing/user_events: Limit global user_event count
tracing/user_events: Charge event allocs to cgroups
tracing/user_events: Update documentation for ABI
tracing/user_events: Use write ABI in example
tracing/user_events: Add ABI self-test
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Allow unprivileged PSI poll()ing
- Fix performance regression introduced by mm_cid
- Improve livepatch stalls by adding livepatch task switching to
cond_resched(). This resolves livepatching busy-loop stalls with
certain CPU-bound kthreads
- Improve sched_move_task() performance on autogroup configs
- On core-scheduling CPUs, avoid selecting throttled tasks to run
- Misc cleanups, fixes and improvements
* tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/clock: Fix local_clock() before sched_clock_init()
sched/rt: Fix bad task migration for rt tasks
sched: Fix performance regression introduced by mm_cid
sched/core: Make sched_dynamic_mutex static
sched/psi: Allow unprivileged polling of N*2s period
sched/psi: Extract update_triggers side effect
sched/psi: Rename existing poll members in preparation
sched/psi: Rearrange polling code in preparation
sched/fair: Fix inaccurate tally of ttwu_move_affine
vhost: Fix livepatch timeouts in vhost_worker()
livepatch,sched: Add livepatch task switching to cond_resched()
livepatch: Skip task_call_func() for current task
livepatch: Convert stack entries array to percpu
sched: Interleave cfs bandwidth timers for improved single thread performance at low utilization
sched/core: Reduce cost of sched_move_task when config autogroup
sched/core: Avoid selecting the task that is throttled to run when core-sched enable
sched/topology: Make sched_energy_mutex,update static
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page()
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
rather than exclusive, and has fixed a bunch of errors which were
caused by its unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics
flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim
accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
shmem: restrict noswap option to initial user namespace
mm/khugepaged: fix conflicting mods to collapse_file()
sparse: remove unnecessary 0 values from rc
mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
maple_tree: fix allocation in mas_sparse_area()
mm: do not increment pgfault stats when page fault handler retries
zsmalloc: allow only one active pool compaction context
selftests/mm: add new selftests for KSM
mm: add new KSM process and sysfs knobs
mm: add new api to enable ksm per process
mm: shrinkers: fix debugfs file permissions
mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
migrate_pages_batch: fix statistics for longterm pin retry
userfaultfd: use helper function range_in_vma()
lib/show_mem.c: use for_each_populated_zone() simplify code
mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
fs/buffer: convert create_page_buffers to folio_create_buffers
fs/buffer: add folio_create_empty_buffers helper
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull pidfd updates from Christian Brauner:
"This adds a new pidfd_prepare() helper which allows the caller to
reserve a pidfd number and allocates a new pidfd file that stashes the
provided struct pid.
It should be avoided installing a file descriptor into a task's file
descriptor table just to close it again via close_fd() in case an
error occurs. The fd has been visible to userspace and might already
be in use. Instead, a file descriptor should be reserved but not
installed into the caller's file descriptor table.
If another failure path is hit then the reserved file descriptor and
file can just be put without any userspace visible side-effects. And
if all failure paths are cleared the file descriptor and file can be
installed into the task's file descriptor table.
This helper is now used in all places that open coded this
functionality before. For example, this is currently done during
copy_process() and fanotify used pidfd_create(), which returns a pidfd
that has already been made visibile in the caller's file descriptor
table, but then closed it using close_fd().
In one of the next merge windows there is also new functionality
coming to unix domain sockets that will have to rely on
pidfd_prepare()"
* tag 'v6.4/pidfd.file' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
fanotify: use pidfd_prepare()
fork: use pidfd_prepare()
pid: add pidfd_prepare()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull user work thread updates from Christian Brauner:
"This contains the work generalizing the ability to create a kernel
worker from a userspace process.
Such user workers will run with the same credentials as the userspace
process they were created from providing stronger security and
accounting guarantees than the traditional override_creds() approach
ever could've hoped for.
The original work was heavily based and optimzed for the needs of
io_uring which was the first user. However, as it quickly turned out
the ability to create user workers inherting properties from a
userspace process is generally useful.
The vhost subsystem currently creates workers using the kthread api.
The consequences of using the kthread api are that RLIMITs don't work
correctly as they are inherited from khtreadd. This leads to bugs
where more workers are created than would be allowed by the RLIMITs of
the userspace process in lieu of which workers are created.
Problems like this disappear with user workers created from the
userspace processes for which they perform the work. In addition,
providing this api allows vhost to remove additional complexity. For
example, cgroup and mm sharing will just work out of the box with user
workers based on the relevant userspace process instead of manually
ensuring the correct cgroup and mm contexts are used.
So the vhost subsystem should simply be made to use the same mechanism
as io_uring. To this end the original mechanism used for
create_io_thread() is generalized into user workers:
- Introduce PF_USER_WORKER as a generic indicator that a given task
is a user worker, i.e., a kernel task that was created from a
userspace process. Now a PF_IO_WORKER thread is just a specialized
version of PF_USER_WORKER. So io_uring io workers raise both flags.
- Make copy_process() available to core kernel code
- Extend struct kernel_clone_args with the following bitfields
allowing to indicate to copy_process():
- to create a user worker (raise PF_USER_WORKER)
- to not inherit any files from the userspace process
- to ignore signals
After all generic changes are in place the vhost subsystem implements
a new dedicated vhost api based on user workers. Finally, vhost is
switched to rely on the new api moving it off of kthreads.
Thanks to Mike for sticking it out and making it through this rather
arduous journey"
* tag 'v6.4/kernel.user_worker' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
vhost: use vhost_tasks for worker threads
vhost: move worker thread fields to new struct
vhost_task: Allow vhost layer to use copy_process
fork: allow kernel code to call copy_process
fork: Add kernel_clone_args flag to ignore signals
fork: add kernel_clone_args flag to not dup/clone files
fork/vm: Move common PF_IO_WORKER behavior to new flag
kernel: Make io_thread and kthread bit fields
kthread: Pass in the thread's name during creation
kernel: Allow a kernel thread's name to be set in copy_process
csky: Remove kernel_thread declaration
|
|
Introduce per-mm/cpu current concurrency id (mm_cid) to fix a PostgreSQL
sysbench regression reported by Aaron Lu.
Keep track of the currently allocated mm_cid for each mm/cpu rather than
freeing them immediately on context switch. This eliminates most atomic
operations when context switching back and forth between threads
belonging to different memory spaces in multi-threaded scenarios (many
processes, each with many threads). The per-mm/per-cpu mm_cid values are
serialized by their respective runqueue locks.
Thread migration is handled by introducing invocation to
sched_mm_cid_migrate_to() (with destination runqueue lock held) in
activate_task() for migrating tasks. If the destination cpu's mm_cid is
unset, and if the source runqueue is not actively using its mm_cid, then
the source cpu's mm_cid is moved to the destination cpu on migration.
Introduce a task-work executed periodically, similarly to NUMA work,
which delays reclaim of cid values when they are unused for a period of
time.
Keep track of the allocation time for each per-cpu cid, and let the task
work clear them when they are observed to be older than
SCHED_MM_CID_PERIOD_NS and unused. This task work also clears all
mm_cids which are greater or equal to the Hamming weight of the mm
cidmask to keep concurrency ids compact.
Because we want to ensure the mm_cid converges towards the smaller
values as migrations happen, the prior optimization that was done when
context switching between threads belonging to the same mm is removed,
because it could delay the lazy release of the destination runqueue
mm_cid after it has been replaced by a migration. Removing this prior
optimization is not an issue performance-wise because the introduced
per-mm/per-cpu mm_cid tracking also covers this more specific case.
Fixes: af7f588d8f73 ("sched: Introduce per-memory-map concurrency ID")
Reported-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Link: https://lore.kernel.org/lkml/20230327080502.GA570847@ziqianlu-desk2/
|
|
|
|
commit f1a7941243c1 ("mm: convert mm's rss stats into percpu_counter")
introduces a memory leak by missing a call to destroy_context() when a
percpu_counter fails to allocate.
Before introducing the per-cpu counter allocations, init_new_context() was
the last call that could fail in mm_init(), and thus there was no need to
ever invoke destroy_context() in the error paths. Adding the following
percpu counter allocations adds error paths after init_new_context(),
which means its associated destroy_context() needs to be called when
percpu counters fail to allocate.
Link: https://lkml.kernel.org/r/20230330133822.66271-1-mathieu.desnoyers@efficios.com
Fixes: f1a7941243c1 ("mm: convert mm's rss stats into percpu_counter")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
'arm/omap', 'arm/renesas', 'arm/rockchip', 'arm/smmu', 'ppc/pamu', 'unisoc', 'x86/vt-d', 'x86/amd', 'core' and 'platform-remove_new' into next
|
|
Pach series "sched/numa: Enhance vma scanning", v3.
The patchset proposes one of the enhancements to numa vma scanning
suggested by Mel. This is continuation of [3].
Reposting the rebased patchset to akpm mm-unstable tree (March 1)
Existing mechanism of scan period involves, scan period derived from
per-thread stats. Process Adaptive autoNUMA [1] proposed to gather NUMA
fault stats at per-process level to capture aplication behaviour better.
During that course of discussion, Mel proposed several ideas to enhance
current numa balancing. One of the suggestion was below
Track what threads access a VMA. The suggestion was to use an unsigned
long pid_mask and use the lower bits to tag approximately what threads
access a VMA. Skip VMAs that did not trap a fault. This would be
approximate because of PID collisions but would reduce scanning of areas
the thread is not interested in. The above suggestion intends not to
penalize threads that has no interest in the vma, thus reduce scanning
overhead.
V3 changes are mostly based on PeterZ comments (details below in changes)
Summary of patchset:
Current patchset implements:
1. Delay the vma scanning logic for newly created VMA's so that
additional overhead of scanning is not incurred for short lived tasks
(implementation by Mel)
2. Store the information of tasks accessing VMA in 2 windows. It is
regularly cleared in (4*sysctl_numa_balancing_scan_delay) interval.
The above time is derived from experimenting (Suggested by PeterZ) to
balance between frequent clearing vs obsolete access data
3. hash_32 used to encode task index accessing VMA information
4. VMA's acess information is used to skip scanning for the tasks
which had not accessed VMA
Changes since V2:
patch1:
- Renaming of structure, macro to function,
- Add explanation to heuristics
- Adding more details from result (PeterZ)
Patch2:
- Usage of test and set bit (PeterZ)
- Move storing access PID info to numa_migrate_prep()
- Add a note on fainess among tasks allowed to scan
(PeterZ)
Patch3:
- Maintain two windows of access PID information
(PeterZ supported implementation and Gave idea to extend
to N if needed)
Patch4:
- Apply hash_32 function to track VMA accessing PIDs (PeterZ)
Changes since RFC V1:
- Include Mel's vma scan delay patch
- Change the accessing pid store logic (Thanks Mel)
- Fencing structure / code to NUMA_BALANCING (David, Mel)
- Adding clearing access PID logic (Mel)
- Descriptive change log ( Mike Rapoport)
Things to ponder over:
==========================================
- Improvement to clearing accessing PIDs logic (discussed in-detail in
patch3 itself (Done in this patchset by implementing 2 window history)
- Current scan period is not changed in the patchset, so we do see
frequent tries to scan. Relaxing scan period dynamically could improve
results further.
[1] sched/numa: Process Adaptive autoNUMA
Link: https://lore.kernel.org/lkml/20220128052851.17162-1-bharata@amd.com/T/
[2] RFC V1 Link:
https://lore.kernel.org/all/cover.1673610485.git.raghavendra.kt@amd.com/
[3] V2 Link:
https://lore.kernel.org/lkml/cover.1675159422.git.raghavendra.kt@amd.com/
Results:
Summary: Huge autonuma cost reduction seen in mmtest. Kernbench improvement
is more than 5% and huge system time (80%+) improvement from mmtest autonuma.
(dbench had huge std deviation to post)
kernbench
===========
6.2.0-mmunstable-base 6.2.0-mmunstable-patched
Amean user-256 22002.51 ( 0.00%) 22649.95 * -2.94%*
Amean syst-256 10162.78 ( 0.00%) 8214.13 * 19.17%*
Amean elsp-256 160.74 ( 0.00%) 156.92 * 2.38%*
Duration User 66017.43 67959.84
Duration System 30503.15 24657.03
Duration Elapsed 504.61 493.12
6.2.0-mmunstable-base 6.2.0-mmunstable-patched
Ops NUMA alloc hit 1738835089.00 1738780310.00
Ops NUMA alloc local 1738834448.00 1738779711.00
Ops NUMA base-page range updates 477310.00 392566.00
Ops NUMA PTE updates 477310.00 392566.00
Ops NUMA hint faults 96817.00 87555.00
Ops NUMA hint local faults % 10150.00 2192.00
Ops NUMA hint local percent 10.48 2.50
Ops NUMA pages migrated 86660.00 85363.00
Ops AutoNUMA cost 489.07 442.14
autonumabench
===============
6.2.0-mmunstable-base 6.2.0-mmunstable-patched
Amean syst-NUMA01 399.50 ( 0.00%) 52.05 * 86.97%*
Amean syst-NUMA01_THREADLOCAL 0.21 ( 0.00%) 0.22 * -5.41%*
Amean syst-NUMA02 0.80 ( 0.00%) 0.78 * 2.68%*
Amean syst-NUMA02_SMT 0.65 ( 0.00%) 0.68 * -3.95%*
Amean elsp-NUMA01 313.26 ( 0.00%) 313.11 * 0.05%*
Amean elsp-NUMA01_THREADLOCAL 1.06 ( 0.00%) 1.08 * -1.76%*
Amean elsp-NUMA02 3.19 ( 0.00%) 3.24 * -1.52%*
Amean elsp-NUMA02_SMT 3.72 ( 0.00%) 3.61 * 2.92%*
Duration User 396433.47 324835.96
Duration System 2808.70 376.66
Duration Elapsed 2258.61 2258.12
6.2.0-mmunstable-base 6.2.0-mmunstable-patched
Ops NUMA alloc hit 59921806.00 49623489.00
Ops NUMA alloc miss 0.00 0.00
Ops NUMA interleave hit 0.00 0.00
Ops NUMA alloc local 59920880.00 49622594.00
Ops NUMA base-page range updates 152259275.00 50075.00
Ops NUMA PTE updates 152259275.00 50075.00
Ops NUMA PMD updates 0.00 0.00
Ops NUMA hint faults 154660352.00 39014.00
Ops NUMA hint local faults % 138550501.00 23139.00
Ops NUMA hint local percent 89.58 59.31
Ops NUMA pages migrated 8179067.00 14147.00
Ops AutoNUMA cost 774522.98 195.69
This patch (of 4):
Currently whenever a new task is created we wait for
sysctl_numa_balancing_scan_delay to avoid unnessary scanning overhead.
Extend the same logic to new or very short-lived VMAs.
[raghavendra.kt@amd.com: add initialization in vm_area_dup())]
Link: https://lkml.kernel.org/r/cover.1677672277.git.raghavendra.kt@amd.com
Link: https://lkml.kernel.org/r/7a6fbba87c8b51e67efd3e74285bb4cb311a16ca.1677672277.git.raghavendra.kt@amd.com
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Disha Talreja <dishaa.talreja@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
vma->lock being part of the vm_area_struct causes performance regression
during page faults because during contention its count and owner fields
are constantly updated and having other parts of vm_area_struct used
during page fault handling next to them causes constant cache line
bouncing. Fix that by moving the lock outside of the vm_area_struct.
All attempts to keep vma->lock inside vm_area_struct in a separate cache
line still produce performance regression especially on NUMA machines.
Smallest regression was achieved when lock is placed in the fourth cache
line but that bloats vm_area_struct to 256 bytes.
Considering performance and memory impact, separate lock looks like the
best option. It increases memory footprint of each VMA but that can be
optimized later if the new size causes issues. Note that after this
change vma_init() does not allocate or initialize vma->lock anymore. A
number of drivers allocate a pseudo VMA on the stack but they never use
the VMA's lock, therefore it does not need to be allocated. The future
drivers which might need the VMA lock should use
vm_area_alloc()/vm_area_free() to allocate the VMA.
Link: https://lkml.kernel.org/r/20230227173632.3292573-34-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
call_rcu() can take a long time when callback offloading is enabled. Its
use in the vm_area_free can cause regressions in the exit path when
multiple VMAs are being freed.
Because exit_mmap() is called only after the last mm user drops its
refcount, the page fault handlers can't be racing with it. Any other
possible user like oom-reaper or process_mrelease are already synchronized
using mmap_lock. Therefore exit_mmap() can free VMAs directly, without
the use of call_rcu().
Expose __vm_area_free() and use it from exit_mmap() to avoid possible
call_rcu() floods and performance regressions caused by it.
Link: https://lkml.kernel.org/r/20230227173632.3292573-33-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Assert there are no holders of VMA lock for reading when it is about to be
destroyed.
Link: https://lkml.kernel.org/r/20230227173632.3292573-21-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Introduce per-VMA locking. The lock implementation relies on a per-vma
and per-mm sequence counters to note exclusive locking:
- read lock - (implemented by vma_start_read) requires the vma
(vm_lock_seq) and mm (mm_lock_seq) sequence counters to differ.
If they match then there must be a vma exclusive lock held somewhere.
- read unlock - (implemented by vma_end_read) is a trivial vma->lock
unlock.
- write lock - (vma_start_write) requires the mmap_lock to be held
exclusively and the current mm counter is assigned to the vma counter.
This will allow multiple vmas to be locked under a single mmap_lock
write lock (e.g. during vma merging). The vma counter is modified
under exclusive vma lock.
- write unlock - (vma_end_write_all) is a batch release of all vma
locks held. It doesn't pair with a specific vma_start_write! It is
done before exclusive mmap_lock is released by incrementing mm
sequence counter (mm_lock_seq).
- write downgrade - if the mmap_lock is downgraded to the read lock, all
vma write locks are released as well (effectivelly same as write
unlock).
Link: https://lkml.kernel.org/r/20230227173632.3292573-13-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This prepares for page faults handling under VMA lock, looking up VMAs
under protection of an rcu read lock, instead of the usual mmap read lock.
Link: https://lkml.kernel.org/r/20230227173632.3292573-11-surenb@google.com
Signed-off-by: Michel Lespinasse <michel@lespinasse.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use the maple tree in RCU mode for VMA tracking.
The maple tree tracks the stack and is able to update the pivot
(lower/upper boundary) in-place to allow the page fault handler to write
to the tree while holding just the mmap read lock. This is safe as the
writes to the stack have a guard VMA which ensures there will always be a
NULL in the direction of the growth and thus will only update a pivot.
It is possible, but not recommended, to have VMAs that grow up/down
without guard VMAs. syzbot has constructed a testcase which sets up a VMA
to grow and consume the empty space. Overwriting the entire NULL entry
causes the tree to be altered in a way that is not safe for concurrent
readers; the readers may see a node being rewritten or one that does not
match the maple state they are using.
Enabling RCU mode allows the concurrent readers to see a stable node and
will return the expected result.
[Liam.Howlett@Oracle.com: we don't need to free the nodes with RCU[
Link: https://lore.kernel.org/linux-mm/000000000000b0a65805f663ace6@google.com/
Link: https://lkml.kernel.org/r/20230227173632.3292573-9-surenb@google.com
Fixes: d4af56c5c7c6 ("mm: start tracking VMAs with maple tree")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: syzbot+8d95422d3537159ca390@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Stop open-coding get_unused_fd_flags() and anon_inode_getfile(). That's
brittle just for keeping the flags between both calls in sync. Use the
dedicated helper.
Message-Id: <20230327-pidfd-file-api-v1-2-5c0e9a3158e4@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Add a new helper that allows to reserve a pidfd and allocates a new
pidfd file that stashes the provided struct pid. This will allow us to
remove places that either open code this function or that call
pidfd_create() but then have to call close_fd() because there are still
failure points after pidfd_create() has been called.
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230327-pidfd-file-api-v1-1-5c0e9a3158e4@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Preparing to remove IOASID infrastructure, PASID management will be
under SVA code. Decouple mm code from IOASID.
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/r/20230322200803.869130-3-jacob.jun.pan@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
During tracefs discussions it was decided instead of requiring a mapping
within a user-process to track the lifetime of memory descriptors we
should hook the appropriate calls. Do this by adding the minimal stubs
required for task fork, exec, and exit. Currently this is just a NOP.
Future patches will implement these calls fully.
Link: https://lkml.kernel.org/r/20230328235219.203-3-beaub@linux.microsoft.com
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
On big systems, the mm refcount can become highly contented when doing a
lot of context switching with threaded applications. user<->idle switch
is one of the important cases. Abandoning lazy tlb entirely slows this
switching down quite a bit in the common uncontended case, so that is not
viable.
Implement a scheme where lazy tlb mm references do not contribute to the
refcount, instead they get explicitly removed when the refcount reaches
zero.
The final mmdrop() sends IPIs to all CPUs in the mm_cpumask and they
switch away from this mm to init_mm if it was being used as the lazy tlb
mm. Enabling the shoot lazies option therefore requires that the arch
ensures that mm_cpumask contains all CPUs that could possibly be using mm.
A DEBUG_VM option IPIs every CPU in the system after this to ensure there
are no references remaining before the mm is freed.
Shootdown IPIs cost could be an issue, but they have not been observed to
be a serious problem with this scheme, because short-lived processes tend
not to migrate CPUs much, therefore they don't get much chance to leave
lazy tlb mm references on remote CPUs. There are a lot of options to
reduce them if necessary, described in comments.
The near-worst-case can be benchmarked with will-it-scale:
context_switch1_threads -t $(($(nproc) / 2))
This will create nproc threads (nproc / 2 switching pairs) all sharing the
same mm that spread over all CPUs so each CPU does thread->idle->thread
switching.
[ Rik came up with basically the same idea a few years ago, so credit
to him for that. ]
Link: https://lore.kernel.org/linux-mm/20230118080011.2258375-1-npiggin@gmail.com/
Link: https://lore.kernel.org/all/20180728215357.3249-11-riel@surriel.com/
Link: https://lkml.kernel.org/r/20230203071837.1136453-5-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Pull xfs percpu counter fixes from Darrick Wong:
"We discovered a filesystem summary counter corruption problem that was
traced to cpu hot-remove racing with the call to percpu_counter_sum
that sets the free block count in the superblock when writing it to
disk. The root cause is that percpu_counter_sum doesn't cull from
dying cpus and hence misses those counter values if the cpu shutdown
hooks have not yet run to merge the values.
I'm hoping this is a fairly painless fix to the problem, since the
dying cpu mask should generally be empty. It's been in for-next for a
week without any complaints from the bots.
- Fix a race in the percpu counters summation code where the
summation failed to add in the values for any CPUs that were dying
but not yet dead. This fixes some minor discrepancies and incorrect
assertions when running generic/650"
* tag 'xfs-6.3-fixes-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
pcpcntr: remove percpu_counter_sum_all()
fork: remove use of percpu_counter_sum_all
pcpcntrs: fix dying cpu summation race
cpumask: introduce for_each_cpu_or
|
|
This effectively reverts the change made in commit f689054aace2
("percpu_counter: add percpu_counter_sum_all interface") as the
race condition percpu_counter_sum_all() was invented to avoid is
now handled directly in percpu_counter_sum() and nobody needs to
care about summing racing with cpu unplug anymore.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
The next patch adds helpers like create_io_thread, but for use by the
vhost layer. There are several functions, so they are in their own file
instead of cluttering up fork.c. This patch allows that new file to
call copy_process.
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Since:
commit 10ab825bdef8 ("change kernel threads to ignore signals instead of
blocking them")
kthreads have been ignoring signals by default, and the vhost layer has
never had a need to change that. This patch adds an option flag,
USER_WORKER_SIG_IGN, handled in copy_process() after copy_sighand()
and copy_signals() so vhost_tasks added in the next patches can continue
to ignore singals.
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Each vhost device gets a thread that is used to perform IO and management
operations. Instead of a thread that is accessing a device, the thread is
part of the device, so when it creates a thread using a helper based on
copy_process we can't dup or clone the parent's files/FDS because it
would do an extra increment on ourself.
Later, when we do:
Qemu process exits:
do_exit -> exit_files -> put_files_struct -> close_files
we would leak the device's resources because of that extra refcount
on the fd or file_struct.
This patch adds a no_files option so these worker threads can prevent
taking an extra refcount on themselves.
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
This adds a new flag, PF_USER_WORKER, that's used for behavior common to
to both PF_IO_WORKER and users like vhost which will use a new helper
instead of create_io_thread because they require different behavior for
operations like signal handling.
The common behavior PF_USER_WORKER covers is the vm reclaim handling.
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
This patch allows kernel users to pass in the thread name so it can be
set during creation instead of having to use set_task_comm after the
thread is created.
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Currently, calling clone3() with CLONE_NEWTIME in clone_args->flags
fails with -EINVAL. This is because CLONE_NEWTIME intersects with
CSIGNAL. However, CSIGNAL was deprecated when clone3 was introduced in
commit 7f192e3cd316 ("fork: add clone3"), allowing re-use of that part
of clone flags.
Fix this by explicitly allowing CLONE_NEWTIME in clone3_args_valid. This
is also in line with the respective check in check_unshare_flags which
allow CLONE_NEWTIME for unshare().
Fixes: 769071ac9f20 ("ns: Introduce Time Namespace")
Cc: Andrey Vagin <avagin@openvz.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X
bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()")
which does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter".
These filters provide users with finer-grained control over DAMOS's
actions. SeongJae has also done some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series
"mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
swap PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with
his series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings.
The previous BPF-based approach had shortcomings. See "mm: In-kernel
support for memory-deny-write-execute (MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a
per-node basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage
during compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in
ths series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier
functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's
series "mm, arch: add generic implementation of pfn_valid() for
FLATMEM" and "fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest
of the kernel in the series "Simplify the external interface for
GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the
series "mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
include/linux/migrate.h: remove unneeded externs
mm/memory_hotplug: cleanup return value handing in do_migrate_range()
mm/uffd: fix comment in handling pte markers
mm: change to return bool for isolate_movable_page()
mm: hugetlb: change to return bool for isolate_hugetlb()
mm: change to return bool for isolate_lru_page()
mm: change to return bool for folio_isolate_lru()
objtool: add UACCESS exceptions for __tsan_volatile_read/write
kmsan: disable ftrace in kmsan core code
kasan: mark addr_has_metadata __always_inline
mm: memcontrol: rename memcg_kmem_enabled()
sh: initialize max_mapnr
m68k/nommu: add missing definition of ARCH_PFN_OFFSET
mm: percpu: fix incorrect size in pcpu_obj_full_size()
maple_tree: reduce stack usage with gcc-9 and earlier
mm: page_alloc: call panic() when memoryless node allocation fails
mm: multi-gen LRU: avoid futile retries
migrate_pages: move THP/hugetlb migration support check to simplify code
migrate_pages: batch flushing TLB
migrate_pages: share more code between _unmap and _move
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve the scalability of the CFS bandwidth unthrottling logic with
large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with the
generic scheduler code. Add __cpuidle methods as noinstr to objtool's
noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query
previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period, to
improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- Misc other cleanups, fixes
* tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
sched/rt: pick_next_rt_entity(): check list_entry
sched/deadline: Add more reschedule cases to prio_changed_dl()
sched/fair: sanitize vruntime of entity being placed
sched/fair: Remove capacity inversion detection
sched/fair: unlink misfit task from cpu overutilized
objtool: mem*() are not uaccess safe
cpuidle: Fix poll_idle() noinstr annotation
sched/clock: Make local_clock() noinstr
sched/clock/x86: Mark sched_clock() noinstr
x86/pvclock: Improve atomic update of last_value in pvclock_clocksource_read()
x86/atomics: Always inline arch_atomic64*()
cpuidle: tracing, preempt: Squash _rcuidle tracing
cpuidle: tracing: Warn about !rcu_is_watching()
cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG
cpuidle: drivers: firmware: psci: Dont instrument suspend code
KVM: selftests: Fix build of rseq test
exit: Detect and fix irq disabled state in oops
cpuidle, arm64: Fix the ARM64 cpuidle logic
cpuidle: mvebu: Fix duplicate flags assignment
sched/fair: Limit sched slice duration
...
|
|
To simplify the usage of VM_LOCKED_CLEAR_MASK in vm_flags_clear(), replace
it with VM_LOCKED_MASK bitmask and convert all users.
Link: https://lkml.kernel.org/r/20230126193752.297968-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Oskolkov <posk@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Sebastian Reichel <sebastian.reichel@collabora.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "introduce vm_flags modifier functions", v4.
This patchset was originally published as a part of per-VMA locking [1]
and was split after suggestion that it's viable on its own and to
facilitate the review process. It is now a preprequisite for the next
version of per-VMA lock patchset, which reuses vm_flags modifier functions
to lock the VMA when vm_flags are being updated.
VMA vm_flags modifications are usually done under exclusive mmap_lock
protection because this attrubute affects other decisions like VMA merging
or splitting and races should be prevented. Introduce vm_flags modifier
functions to enforce correct locking.
This patch (of 7):
Convert vma assignment in vm_area_dup() to a memcpy() to prevent compiler
errors when we add a const modifier to vma->vm_flags.
Link: https://lkml.kernel.org/r/20230126193752.297968-1-surenb@google.com
Link: https://lkml.kernel.org/r/20230126193752.297968-2-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Oskolkov <posk@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Cc: Sebastian Reichel <sebastian.reichel@collabora.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Avoid using the maple tree interface directly. This gains type safety.
Link: https://lkml.kernel.org/r/20230120162650.984577-10-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Switch from a request_queue pointer and reference to a gendisk once
for the throttle information in struct task_struct.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andreas Herrmann <aherrmann@suse.de>
Link: https://lore.kernel.org/r/20230203150400.3199230-8-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This feature allows the scheduler to expose a per-memory map concurrency
ID to user-space. This concurrency ID is within the possible cpus range,
and is temporarily (and uniquely) assigned while threads are actively
running within a memory map. If a memory map has fewer threads than
cores, or is limited to run on few cores concurrently through sched
affinity or cgroup cpusets, the concurrency IDs will be values close
to 0, thus allowing efficient use of user-space memory for per-cpu
data structures.
This feature is meant to be exposed by a new rseq thread area field.
The primary purpose of this feature is to do the heavy-lifting needed
by memory allocators to allow them to use per-cpu data structures
efficiently in the following situations:
- Single-threaded applications,
- Multi-threaded applications on large systems (many cores) with limited
cpu affinity mask,
- Multi-threaded applications on large systems (many cores) with
restricted cgroup cpuset per container.
One of the key concern from scheduler maintainers is the overhead
associated with additional spin locks or atomic operations in the
scheduler fast-path. This is why the following optimization is
implemented.
On context switch between threads belonging to the same memory map,
transfer the mm_cid from prev to next without any atomic ops. This
takes care of use-cases involving frequent context switch between
threads belonging to the same memory map.
Additional optimizations can be done if the spin locks added when
context switching between threads belonging to different memory maps end
up being a performance bottleneck. Those are left out of this patch
though. A performance impact would have to be clearly demonstrated to
justify the added complexity.
The credit goes to Paul Turner (Google) for the original virtual cpu id
idea. This feature is implemented based on the discussions with Paul
Turner and Peter Oskolkov (Google), but I took the liberty to implement
scheduler fast-path optimizations and my own NUMA-awareness scheme. The
rumor has it that Google have been running a rseq vcpu_id extension
internally in production for a year. The tcmalloc source code indeed has
comments hinting at a vcpu_id prototype extension to the rseq system
call [1].
The following benchmarks do not show any significant overhead added to
the scheduler context switch by this feature:
* perf bench sched messaging (process)
Baseline: 86.5±0.3 ms
With mm_cid: 86.7±2.6 ms
* perf bench sched messaging (threaded)
Baseline: 84.3±3.0 ms
With mm_cid: 84.7±2.6 ms
* hackbench (process)
Baseline: 82.9±2.7 ms
With mm_cid: 82.9±2.9 ms
* hackbench (threaded)
Baseline: 85.2±2.6 ms
With mm_cid: 84.4±2.9 ms
[1] https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221122203932.231377-8-mathieu.desnoyers@efficios.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Dave Hansen:
"New Feature:
- Randomize the per-cpu entry areas
Cleanups:
- Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open coding it
- Move to "native" set_memory_rox() helper
- Clean up pmd_get_atomic() and i386-PAE
- Remove some unused page table size macros"
* tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits)
x86/mm: Ensure forced page table splitting
x86/kasan: Populate shadow for shared chunk of the CPU entry area
x86/kasan: Add helpers to align shadow addresses up and down
x86/kasan: Rename local CPU_ENTRY_AREA variables to shorten names
x86/mm: Populate KASAN shadow for entire per-CPU range of CPU entry area
x86/mm: Recompute physical address for every page of per-CPU CEA mapping
x86/mm: Rename __change_page_attr_set_clr(.checkalias)
x86/mm: Inhibit _PAGE_NX changes from cpa_process_alias()
x86/mm: Untangle __change_page_attr_set_clr(.checkalias)
x86/mm: Add a few comments
x86/mm: Fix CR3_ADDR_MASK
x86/mm: Remove P*D_PAGE_MASK and P*D_PAGE_SIZE macros
mm: Convert __HAVE_ARCH_P..P_GET to the new style
mm: Remove pointless barrier() after pmdp_get_lockless()
x86/mm/pae: Get rid of set_64bit()
x86_64: Remove pointless set_64bit() usage
x86/mm/pae: Be consistent with pXXp_get_and_clear()
x86/mm/pae: Use WRITE_ONCE()
x86/mm/pae: Don't (ab)use atomic64
mm/gup: Fix the lockless PMD access
...
|
|
Instead of duplicating init_mm, allocate a fresh mm. The advantage is
that mm_alloc() has much simpler dependencies. Additionally it makes
more conceptual sense, init_mm has no (and must not have) user state
to duplicate.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221025201057.816175235@infradead.org
|
|
In order to allow using mm_alloc() much earlier, move initializing
mm_cachep into mm_init().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221025201057.751153381@infradead.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
- Replace prandom_u32_max() and various open-coded variants of it,
there is now a new family of functions that uses fast rejection
sampling to choose properly uniformly random numbers within an
interval:
get_random_u32_below(ceil) - [0, ceil)
get_random_u32_above(floor) - (floor, U32_MAX]
get_random_u32_inclusive(floor, ceil) - [floor, ceil]
Coccinelle was used to convert all current users of
prandom_u32_max(), as well as many open-coded patterns, resulting in
improvements throughout the tree.
I'll have a "late" 6.1-rc1 pull for you that removes the now unused
prandom_u32_max() function, just in case any other trees add a new
use case of it that needs to converted. According to linux-next,
there may be two trivial cases of prandom_u32_max() reintroductions
that are fixable with a 's/.../.../'. So I'll have for you a final
conversion patch doing that alongside the removal patch during the
second week.
This is a treewide change that touches many files throughout.
- More consistent use of get_random_canary().
- Updates to comments, documentation, tests, headers, and
simplification in configuration.
- The arch_get_random*_early() abstraction was only used by arm64 and
wasn't entirely useful, so this has been replaced by code that works
in all relevant contexts.
- The kernel will use and manage random seeds in non-volatile EFI
variables, refreshing a variable with a fresh seed when the RNG is
initialized. The RNG GUID namespace is then hidden from efivarfs to
prevent accidental leakage.
These changes are split into random.c infrastructure code used in the
EFI subsystem, in this pull request, and related support inside of
EFISTUB, in Ard's EFI tree. These are co-dependent for full
functionality, but the order of merging doesn't matter.
- Part of the infrastructure added for the EFI support is also used for
an improvement to the way vsprintf initializes its siphash key,
replacing an sleep loop wart.
- The hardware RNG framework now always calls its correct random.c
input function, add_hwgenerator_randomness(), rather than sometimes
going through helpers better suited for other cases.
- The add_latent_entropy() function has long been called from the fork
handler, but is a no-op when the latent entropy gcc plugin isn't
used, which is fine for the purposes of latent entropy.
But it was missing out on the cycle counter that was also being mixed
in beside the latent entropy variable. So now, if the latent entropy
gcc plugin isn't enabled, add_latent_entropy() will expand to a call
to add_device_randomness(NULL, 0), which adds a cycle counter,
without the absent latent entropy variable.
- The RNG is now reseeded from a delayed worker, rather than on demand
when used. Always running from a worker allows it to make use of the
CPU RNG on platforms like S390x, whose instructions are too slow to
do so from interrupts. It also has the effect of adding in new inputs
more frequently with more regularity, amounting to a long term
transcript of random values. Plus, it helps a bit with the upcoming
vDSO implementation (which isn't yet ready for 6.2).
- The jitter entropy algorithm now tries to execute on many different
CPUs, round-robining, in hopes of hitting even more memory latencies
and other unpredictable effects. It also will mix in a cycle counter
when the entropy timer fires, in addition to being mixed in from the
main loop, to account more explicitly for fluctuations in that timer
firing. And the state it touches is now kept within the same cache
line, so that it's assured that the different execution contexts will
cause latencies.
* tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (23 commits)
random: include <linux/once.h> in the right header
random: align entropy_timer_state to cache line
random: mix in cycle counter when jitter timer fires
random: spread out jitter callback to different CPUs
random: remove extraneous period and add a missing one in comments
efi: random: refresh non-volatile random seed when RNG is initialized
vsprintf: initialize siphash key using notifier
random: add back async readiness notifier
random: reseed in delayed work rather than on-demand
random: always mix cycle counter in add_latent_entropy()
hw_random: use add_hwgenerator_randomness() for early entropy
random: modernize documentation comment on get_random_bytes()
random: adjust comment to account for removed function
random: remove early archrandom abstraction
random: use random.trust_{bootloader,cpu} command line option only
stackprotector: actually use get_random_canary()
stackprotector: move get_random_canary() into stackprotector.h
treewide: use get_random_u32_inclusive() when possible
treewide: use get_random_u32_{above,below}() instead of manual loop
treewide: use get_random_u32_below() instead of deprecated function
...
|