Age | Commit message (Collapse) | Author |
|
Add volatile current->state to list of implicitly atomic accesses. This
is in preparation to eventually enable KCSAN on kernel/sched (which
currently still has KCSAN_SANITIZE := n).
Since accesses that match the special check in atomic.h are rare, it
makes more sense to move this check to the slow-path, avoiding the
additional compare in the fast-path. With the microbenchmark, a speedup
of ~6% is measured.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
This introduces ASSERT_EXCLUSIVE_BITS(var, mask).
ASSERT_EXCLUSIVE_BITS(var, mask) will cause KCSAN to assume that the
following access is safe w.r.t. data races (however, please see the
docbook comment for disclaimer here).
For more context on why this was considered necessary, please see:
http://lkml.kernel.org/r/1580995070-25139-1-git-send-email-cai@lca.pw
In particular, before this patch, data races between reads (that use
@mask bits of an access that should not be modified concurrently) and
writes (that change ~@mask bits not used by the readers) would have been
annotated with "data_race()" (or "READ_ONCE()"). However, doing so would
then hide real problems: we would no longer be able to detect harmful
races between reads to @mask bits and writes to @mask bits.
Therefore, by using ASSERT_EXCLUSIVE_BITS(var, mask), we accomplish:
1. Avoid proliferation of specific macros at the call sites: by
including a single mask in the argument list, we can use the same
macro in a wide variety of call sites, regardless of how and which
bits in a field each call site actually accesses.
2. The existing code does not need to be modified (although READ_ONCE()
may still be advisable if we cannot prove that the data race is
always safe).
3. We catch bugs where the exclusive bits are modified concurrently.
4. We document properties of the current code.
Acked-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Qian Cai <cai@lca.pw>
|
|
Add 'test=<iters>' option to KCSAN's debugfs interface to invoke KCSAN
checks on a dummy variable. By writing 'test=<iters>' to the debugfs
file from multiple tasks, we can generate real conflicts, and trigger
data race reports.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The KCSAN_ACCESS_ASSERT access type may be used to introduce dummy reads
and writes to assert certain properties of concurrent code, where bugs
could not be detected as normal data races.
For example, a variable that is only meant to be written by a single
CPU, but may be read (without locking) by other CPUs must still be
marked properly to avoid data races. However, concurrent writes,
regardless if WRITE_ONCE() or not, would be a bug. Using
kcsan_check_access(&x, sizeof(x), KCSAN_ACCESS_ASSERT) would allow
catching such bugs.
To support KCSAN_ACCESS_ASSERT the following notable changes were made:
* If an access is of type KCSAN_ASSERT_ACCESS, disable various filters
that only apply to data races, so that all races that KCSAN observes are
reported.
* Bug reports that involve an ASSERT access type will be reported as
"KCSAN: assert: race in ..." instead of "data-race"; this will help
more easily distinguish them.
* Update a few comments to just mention 'races' where we do not always
mean pure data races.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Tidy up a few bits:
- Fix typos and grammar, improve wording.
- Remove spurious newlines that are col80 warning artifacts where the
resulting line-break is worse than the disease it's curing.
- Use core kernel coding style to improve readability and reduce
spurious code pattern variations.
- Use better vertical alignment for structure definitions and initialization
sequences.
- Misc other small details.
No change in functionality intended.
Cc: linux-kernel@vger.kernel.org
Cc: Marco Elver <elver@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Kernel Concurrency Sanitizer (KCSAN) is a dynamic data-race detector for
kernel space. KCSAN is a sampling watchpoint-based data-race detector.
See the included Documentation/dev-tools/kcsan.rst for more details.
This patch adds basic infrastructure, but does not yet enable KCSAN for
any architecture.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|