summaryrefslogtreecommitdiff
path: root/kernel/kcsan/debugfs.c
AgeCommit message (Collapse)Author
2020-03-25kcsan: Add current->state to implicitly atomic accessesMarco Elver
Add volatile current->state to list of implicitly atomic accesses. This is in preparation to eventually enable KCSAN on kernel/sched (which currently still has KCSAN_SANITIZE := n). Since accesses that match the special check in atomic.h are rare, it makes more sense to move this check to the slow-path, avoiding the additional compare in the fast-path. With the microbenchmark, a speedup of ~6% is measured. Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-21kcsan: Introduce ASSERT_EXCLUSIVE_BITS(var, mask)Marco Elver
This introduces ASSERT_EXCLUSIVE_BITS(var, mask). ASSERT_EXCLUSIVE_BITS(var, mask) will cause KCSAN to assume that the following access is safe w.r.t. data races (however, please see the docbook comment for disclaimer here). For more context on why this was considered necessary, please see: http://lkml.kernel.org/r/1580995070-25139-1-git-send-email-cai@lca.pw In particular, before this patch, data races between reads (that use @mask bits of an access that should not be modified concurrently) and writes (that change ~@mask bits not used by the readers) would have been annotated with "data_race()" (or "READ_ONCE()"). However, doing so would then hide real problems: we would no longer be able to detect harmful races between reads to @mask bits and writes to @mask bits. Therefore, by using ASSERT_EXCLUSIVE_BITS(var, mask), we accomplish: 1. Avoid proliferation of specific macros at the call sites: by including a single mask in the argument list, we can use the same macro in a wide variety of call sites, regardless of how and which bits in a field each call site actually accesses. 2. The existing code does not need to be modified (although READ_ONCE() may still be advisable if we cannot prove that the data race is always safe). 3. We catch bugs where the exclusive bits are modified concurrently. 4. We document properties of the current code. Acked-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Qian Cai <cai@lca.pw>
2020-03-21kcsan: Add test to generate conflicts via debugfsMarco Elver
Add 'test=<iters>' option to KCSAN's debugfs interface to invoke KCSAN checks on a dummy variable. By writing 'test=<iters>' to the debugfs file from multiple tasks, we can generate real conflicts, and trigger data race reports. Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-03-21kcsan: Introduce KCSAN_ACCESS_ASSERT access typeMarco Elver
The KCSAN_ACCESS_ASSERT access type may be used to introduce dummy reads and writes to assert certain properties of concurrent code, where bugs could not be detected as normal data races. For example, a variable that is only meant to be written by a single CPU, but may be read (without locking) by other CPUs must still be marked properly to avoid data races. However, concurrent writes, regardless if WRITE_ONCE() or not, would be a bug. Using kcsan_check_access(&x, sizeof(x), KCSAN_ACCESS_ASSERT) would allow catching such bugs. To support KCSAN_ACCESS_ASSERT the following notable changes were made: * If an access is of type KCSAN_ASSERT_ACCESS, disable various filters that only apply to data races, so that all races that KCSAN observes are reported. * Bug reports that involve an ASSERT access type will be reported as "KCSAN: assert: race in ..." instead of "data-race"; this will help more easily distinguish them. * Update a few comments to just mention 'races' where we do not always mean pure data races. Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-20kcsan: Improve various small stylistic detailsIngo Molnar
Tidy up a few bits: - Fix typos and grammar, improve wording. - Remove spurious newlines that are col80 warning artifacts where the resulting line-break is worse than the disease it's curing. - Use core kernel coding style to improve readability and reduce spurious code pattern variations. - Use better vertical alignment for structure definitions and initialization sequences. - Misc other small details. No change in functionality intended. Cc: linux-kernel@vger.kernel.org Cc: Marco Elver <elver@google.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-16kcsan: Add Kernel Concurrency Sanitizer infrastructureMarco Elver
Kernel Concurrency Sanitizer (KCSAN) is a dynamic data-race detector for kernel space. KCSAN is a sampling watchpoint-based data-race detector. See the included Documentation/dev-tools/kcsan.rst for more details. This patch adds basic infrastructure, but does not yet enable KCSAN for any architecture. Signed-off-by: Marco Elver <elver@google.com> Acked-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>