summaryrefslogtreecommitdiff
path: root/kernel/sched/sched.h
AgeCommit message (Collapse)Author
2023-06-27Merge tag 'cgroup-for-6.5' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: - Whenever cpuset needs to rebuild sched_domain, it walked all tasks looking for DEADLINE tasks as they need to be accounted on the new domain. Walking all tasks can be expensive and there may not be any DEADLINE tasks at all. Task iteration is now omitted if there are no DEADLINE tasks - Fixes DEADLINE bandwidth misaccounting after task migration failures - When no controller is enabled, -Wstringop-overflow warning is triggered. The fix patch added an early exit which is too eager and got reverted for now. Will fix later - Everything else is minor cleanups * tag 'cgroup-for-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: Revert "cgroup: Avoid -Wstringop-overflow warnings" cgroup/misc: Expose misc.current on cgroup v2 root cgroup: Avoid -Wstringop-overflow warnings cgroup: remove obsolete comment on cgroup_on_dfl() cgroup: remove unused task_cgroup_path() cgroup/cpuset: remove unneeded header files cgroup: make cgroup_is_threaded() and cgroup_is_thread_root() static rdmacg: fix kernel-doc warnings in rdmacg cgroup: Replace the css_set call with cgroup_get cgroup: remove unused macro for_each_e_css() cgroup: Update out-of-date comment in cgroup_migrate() cgroup: Replace all non-returning strlcpy with strscpy cgroup/cpuset: remove unneeded header files cgroup/cpuset: Free DL BW in case can_attach() fails sched/deadline: Create DL BW alloc, free & check overflow interface cgroup/cpuset: Iterate only if DEADLINE tasks are present sched/cpuset: Keep track of SCHED_DEADLINE task in cpusets sched/cpuset: Bring back cpuset_mutex cgroup/cpuset: Rename functions dealing with DEADLINE accounting
2023-06-16sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()Hao Jia
After commit 8ad075c2eb1f ("sched: Async unthrottling for cfs bandwidth"), we may update the rq clock multiple times in the loop of __cfsb_csd_unthrottle(). A prior (although less common) instance of this problem exists in unthrottle_offline_cfs_rqs(). Cure both by ensuring update_rq_clock() is called before the loop and setting RQCF_ACT_SKIP during the loop, to supress further updates. The alternative would be pulling update_rq_clock() out of unthrottle_cfs_rq(), but that gives an even bigger mess. Fixes: 8ad075c2eb1f ("sched: Async unthrottling for cfs bandwidth") Reviewed-By: Ben Segall <bsegall@google.com> Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Hao Jia <jiahao.os@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20230613082012.49615-4-jiahao.os@bytedance.com
2023-06-16sched/deadline: Fix bandwidth reclaim equation in GRUBVineeth Pillai
According to the GRUB[1] rule, the runtime is depreciated as: "dq = -max{u, (1 - Uinact - Uextra)} dt" (1) To guarantee that deadline tasks doesn't starve lower class tasks, we do not allocate the full bandwidth of the cpu to deadline tasks. Maximum bandwidth usable by deadline tasks is denoted by "Umax". Considering Umax, equation (1) becomes: "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt" (2) Current implementation has a minor bug in equation (2), which this patch fixes. The reclamation logic is verified by a sample program which creates multiple deadline threads and observing their utilization. The tests were run on an isolated cpu(isolcpus=3) on a 4 cpu system. Tests on 6.3.0 ============== RUN 1: runtime=7ms, deadline=period=10ms, RT capacity = 95% TID[693]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 93.33 TID[693]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 93.35 RUN 2: runtime=1ms, deadline=period=100ms, RT capacity = 95% TID[708]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 16.69 TID[708]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 16.69 RUN 3: 2 tasks Task 1: runtime=1ms, deadline=period=10ms Task 2: runtime=1ms, deadline=period=100ms TID[631]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 62.67 TID[632]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 6.37 TID[631]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 62.38 TID[632]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 6.23 As seen above, the reclamation doesn't reclaim the maximum allowed bandwidth and as the bandwidth of tasks gets smaller, the reclaimed bandwidth also comes down. Tests with this patch applied ============================= RUN 1: runtime=7ms, deadline=period=10ms, RT capacity = 95% TID[608]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 95.19 TID[608]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 95.16 RUN 2: runtime=1ms, deadline=period=100ms, RT capacity = 95% TID[616]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 95.27 TID[616]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 95.21 RUN 3: 2 tasks Task 1: runtime=1ms, deadline=period=10ms Task 2: runtime=1ms, deadline=period=100ms TID[620]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 86.64 TID[621]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 8.66 TID[620]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 86.45 TID[621]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 8.73 Running tasks on all cpus allowing for migration also showed that the utilization is reclaimed to the maximum. Running 10 tasks on 3 cpus SCHED_FLAG_RECLAIM - top shows: %Cpu0 : 94.6 us, 0.0 sy, 0.0 ni, 5.4 id, 0.0 wa %Cpu1 : 95.2 us, 0.0 sy, 0.0 ni, 4.8 id, 0.0 wa %Cpu2 : 95.8 us, 0.0 sy, 0.0 ni, 4.2 id, 0.0 wa [1]: Abeni, Luca & Lipari, Giuseppe & Parri, Andrea & Sun, Youcheng. (2015). Parallel and sequential reclaiming in multicore real-time global scheduling. Signed-off-by: Vineeth Pillai (Google) <vineeth@bitbyteword.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20230530135526.2385378-1-vineeth@bitbyteword.org
2023-06-05sched/fair, cpufreq: Introduce 'runnable boosting'Dietmar Eggemann
The responsiveness of the Per Entity Load Tracking (PELT) util_avg in mobile devices is still considered too low for utilization changes during task ramp-up. In Android this manifests in the fact that the first frames of a UI activity are very prone to be jankframes (a frame which doesn't meet the required frame rendering time, e.g. 16ms@60Hz) since the CPU frequency is normally low at this point and has to ramp up quickly. The beginning of an UI activity is also characterized by the occurrence of CPU contention, especially on little CPUs. Current little CPUs can have an original CPU capacity of only ~ 150 which means that the actual CPU capacity at lower frequency can even be much smaller. Schedutil maps CPU util_avg into CPU frequency request via: util = effective_cpu_util(..., cpu_util_cfs(cpu), ...) -> util = map_util_perf(util) -> freq = map_util_freq(util, ...) CPU contention for CFS tasks can be detected by 'CPU runnable > CPU utililization' in cpu_util_cfs_boost() -> cpu_util(..., boost = 1). Schedutil uses 'runnable boosting' by calling cpu_util_cfs_boost(). To be in sync with schedutil's CPU frequency selection, Energy Aware Scheduling (EAS) also calls cpu_util(..., boost = 1) during max util detection. Moreover, 'runnable boosting' is also used in load-balance for busiest CPU selection when the migration type is 'migrate_util', i.e. only at sched domains which don't have the SD_SHARE_PKG_RESOURCES flag set. Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230515115735.296329-3-dietmar.eggemann@arm.com
2023-06-05sched/fair: Refactor CPU utilization functionsDietmar Eggemann
There is a lot of code duplication in cpu_util_next() & cpu_util_cfs(). Remove this by allowing cpu_util_next() to be called with p = NULL. Rename cpu_util_next() to cpu_util() since the '_next' suffix is no longer necessary to distinct cpu utilization related functions. Implement cpu_util_cfs(cpu) as cpu_util(cpu, p = NULL, -1). This will allow to code future related cpu util changes only in one place, namely in cpu_util(). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230515115735.296329-2-dietmar.eggemann@arm.com
2023-05-30sched/deadline: remove unused dl_bandwidthMiaohe Lin
The default deadline bandwidth control structure has been removed since commit eb77cf1c151c ("sched/deadline: Remove unused def_dl_bandwidth") leading to unused init_dl_bandwidth() and struct dl_bandwidth. Remove them to clean up the code. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20230524102514.407486-1-linmiaohe@huawei.com
2023-05-30sched/fair: Move unused stub functions to headerArnd Bergmann
These four functions have a normal definition for CONFIG_FAIR_GROUP_SCHED, and empty one that is only referenced when FAIR_GROUP_SCHED is disabled but CGROUP_SCHED is still enabled. If both are turned off, the functions are still defined but the misisng prototype causes a W=1 warning: kernel/sched/fair.c:12544:6: error: no previous prototype for 'free_fair_sched_group' kernel/sched/fair.c:12546:5: error: no previous prototype for 'alloc_fair_sched_group' kernel/sched/fair.c:12553:6: error: no previous prototype for 'online_fair_sched_group' kernel/sched/fair.c:12555:6: error: no previous prototype for 'unregister_fair_sched_group' Move the alternatives into the header as static inline functions with the correct combination of #ifdef checks to avoid the warning without adding even more complexity. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230522195021.3456768-6-arnd@kernel.org
2023-05-30sched: Make task_vruntime_update() prototype visibleArnd Bergmann
Having the prototype next to the caller but not visible to the callee causes a W=1 warning: kernel/sched/fair.c:11985:6: error: no previous prototype for 'task_vruntime_update' [-Werror=missing-prototypes] Move this to a header, as we do for all other function declarations. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230522195021.3456768-5-arnd@kernel.org
2023-05-30sched: Add schedule_user() declarationArnd Bergmann
The schedule_user() function is used on powerpc and sparc architectures, but only ever called from assembler, so it has no prototype, causing a harmless W=1 warning: kernel/sched/core.c:6730:35: error: no previous prototype for 'schedule_user' [-Werror=missing-prototypes] Add a prototype in sched/sched.h to shut up the warning. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230522195021.3456768-3-arnd@kernel.org
2023-05-08sched/deadline: Create DL BW alloc, free & check overflow interfaceDietmar Eggemann
While moving a set of tasks between exclusive cpusets, cpuset_can_attach() -> task_can_attach() calls dl_cpu_busy(..., p) for DL BW overflow checking and per-task DL BW allocation on the destination root_domain for the DL tasks in this set. This approach has the issue of not freeing already allocated DL BW in the following error cases: (1) The set of tasks includes multiple DL tasks and DL BW overflow checking fails for one of the subsequent DL tasks. (2) Another controller next to the cpuset controller which is attached to the same cgroup fails in its can_attach(). To address this problem rework dl_cpu_busy(): (1) Split it into dl_bw_check_overflow() & dl_bw_alloc() and add a dedicated dl_bw_free(). (2) dl_bw_alloc() & dl_bw_free() take a `u64 dl_bw` parameter instead of a `struct task_struct *p` used in dl_cpu_busy(). This allows to allocate DL BW for a set of tasks too rather than only for a single task. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2023-05-08sched/topology: Check SDF_SHARED_CHILD in highest_flag_domain()Ricardo Neri
Do not assume that all the children of a scheduling domain have a given flag. Check whether it has the SDF_SHARED_CHILD meta flag. Suggested-by: Ionela Voinescu <ionela.voinescu@arm.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230406203148.19182-9-ricardo.neri-calderon@linux.intel.com
2023-04-21sched: Fix performance regression introduced by mm_cidMathieu Desnoyers
Introduce per-mm/cpu current concurrency id (mm_cid) to fix a PostgreSQL sysbench regression reported by Aaron Lu. Keep track of the currently allocated mm_cid for each mm/cpu rather than freeing them immediately on context switch. This eliminates most atomic operations when context switching back and forth between threads belonging to different memory spaces in multi-threaded scenarios (many processes, each with many threads). The per-mm/per-cpu mm_cid values are serialized by their respective runqueue locks. Thread migration is handled by introducing invocation to sched_mm_cid_migrate_to() (with destination runqueue lock held) in activate_task() for migrating tasks. If the destination cpu's mm_cid is unset, and if the source runqueue is not actively using its mm_cid, then the source cpu's mm_cid is moved to the destination cpu on migration. Introduce a task-work executed periodically, similarly to NUMA work, which delays reclaim of cid values when they are unused for a period of time. Keep track of the allocation time for each per-cpu cid, and let the task work clear them when they are observed to be older than SCHED_MM_CID_PERIOD_NS and unused. This task work also clears all mm_cids which are greater or equal to the Hamming weight of the mm cidmask to keep concurrency ids compact. Because we want to ensure the mm_cid converges towards the smaller values as migrations happen, the prior optimization that was done when context switching between threads belonging to the same mm is removed, because it could delay the lazy release of the destination runqueue mm_cid after it has been replaced by a migration. Removing this prior optimization is not an issue performance-wise because the introduced per-mm/per-cpu mm_cid tracking also covers this more specific case. Fixes: af7f588d8f73 ("sched: Introduce per-memory-map concurrency ID") Reported-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Aaron Lu <aaron.lu@intel.com> Link: https://lore.kernel.org/lkml/20230327080502.GA570847@ziqianlu-desk2/
2023-03-22sched/core: Avoid selecting the task that is throttled to run when ↵Hao Jia
core-sched enable When {rt, cfs}_rq or dl task is throttled, since cookied tasks are not dequeued from the core tree, So sched_core_find() and sched_core_next() may return throttled task, which may cause throttled task to run on the CPU. So we add checks in sched_core_find() and sched_core_next() to make sure that the return is a runnable task that is not throttled. Co-developed-by: Cruz Zhao <CruzZhao@linux.alibaba.com> Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com> Signed-off-by: Hao Jia <jiahao.os@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20230316081806.69544-1-jiahao.os@bytedance.com
2023-02-11sched/fair: Remove capacity inversion detectionVincent Guittot
Remove the capacity inversion detection which is now handled by util_fits_cpu() returning -1 when we need to continue to look for a potential CPU with better performance. This ends up almost reverting patches below except for some comments: commit da07d2f9c153 ("sched/fair: Fixes for capacity inversion detection") commit aa69c36f31aa ("sched/fair: Consider capacity inversion in util_fits_cpu()") commit 44c7b80bffc3 ("sched/fair: Detect capacity inversion") Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230201143628.270912-3-vincent.guittot@linaro.org
2022-12-27sched: Make const-safeMatthew Wilcox (Oracle)
With a modified container_of() that preserves constness, the compiler finds some pointers which should have been marked as const. task_of() also needs to become const-preserving for the !FAIR_GROUP_SCHED case so that cfs_rq_of() can take a const argument. No change to generated code. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221212144946.2657785-1-willy@infradead.org
2022-12-27sched: Introduce per-memory-map concurrency IDMathieu Desnoyers
This feature allows the scheduler to expose a per-memory map concurrency ID to user-space. This concurrency ID is within the possible cpus range, and is temporarily (and uniquely) assigned while threads are actively running within a memory map. If a memory map has fewer threads than cores, or is limited to run on few cores concurrently through sched affinity or cgroup cpusets, the concurrency IDs will be values close to 0, thus allowing efficient use of user-space memory for per-cpu data structures. This feature is meant to be exposed by a new rseq thread area field. The primary purpose of this feature is to do the heavy-lifting needed by memory allocators to allow them to use per-cpu data structures efficiently in the following situations: - Single-threaded applications, - Multi-threaded applications on large systems (many cores) with limited cpu affinity mask, - Multi-threaded applications on large systems (many cores) with restricted cgroup cpuset per container. One of the key concern from scheduler maintainers is the overhead associated with additional spin locks or atomic operations in the scheduler fast-path. This is why the following optimization is implemented. On context switch between threads belonging to the same memory map, transfer the mm_cid from prev to next without any atomic ops. This takes care of use-cases involving frequent context switch between threads belonging to the same memory map. Additional optimizations can be done if the spin locks added when context switching between threads belonging to different memory maps end up being a performance bottleneck. Those are left out of this patch though. A performance impact would have to be clearly demonstrated to justify the added complexity. The credit goes to Paul Turner (Google) for the original virtual cpu id idea. This feature is implemented based on the discussions with Paul Turner and Peter Oskolkov (Google), but I took the liberty to implement scheduler fast-path optimizations and my own NUMA-awareness scheme. The rumor has it that Google have been running a rseq vcpu_id extension internally in production for a year. The tcmalloc source code indeed has comments hinting at a vcpu_id prototype extension to the rseq system call [1]. The following benchmarks do not show any significant overhead added to the scheduler context switch by this feature: * perf bench sched messaging (process) Baseline: 86.5±0.3 ms With mm_cid: 86.7±2.6 ms * perf bench sched messaging (threaded) Baseline: 84.3±3.0 ms With mm_cid: 84.7±2.6 ms * hackbench (process) Baseline: 82.9±2.7 ms With mm_cid: 82.9±2.9 ms * hackbench (threaded) Baseline: 85.2±2.6 ms With mm_cid: 84.4±2.9 ms [1] https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26 Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20221122203932.231377-8-mathieu.desnoyers@efficios.com
2022-12-27sched: Async unthrottling for cfs bandwidthJosh Don
CFS bandwidth currently distributes new runtime and unthrottles cfs_rq's inline in an hrtimer callback. Runtime distribution is a per-cpu operation, and unthrottling is a per-cgroup operation, since a tg walk is required. On machines with a large number of cpus and large cgroup hierarchies, this cpus*cgroups work can be too much to do in a single hrtimer callback: since IRQ are disabled, hard lockups may easily occur. Specifically, we've found this scalability issue on configurations with 256 cpus, O(1000) cgroups in the hierarchy being throttled, and high memory bandwidth usage. To fix this, we can instead unthrottle cfs_rq's asynchronously via a CSD. Each cpu is responsible for unthrottling itself, thus sharding the total work more fairly across the system, and avoiding hard lockups. Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221117005418.3499691-1-joshdon@google.com
2022-10-27sched: Enforce user requested affinityWaiman Long
It was found that the user requested affinity via sched_setaffinity() can be easily overwritten by other kernel subsystems without an easy way to reset it back to what the user requested. For example, any change to the current cpuset hierarchy may reset the cpumask of the tasks in the affected cpusets to the default cpuset value even if those tasks have pre-existing user requested affinity. That is especially easy to trigger under a cgroup v2 environment where writing "+cpuset" to the root cgroup's cgroup.subtree_control file will reset the cpus affinity of all the processes in the system. That is problematic in a nohz_full environment where the tasks running in the nohz_full CPUs usually have their cpus affinity explicitly set and will behave incorrectly if cpus affinity changes. Fix this problem by looking at user_cpus_ptr in __set_cpus_allowed_ptr() and use it to restrcit the given cpumask unless there is no overlap. In that case, it will fallback to the given one. The SCA_USER flag is reused to indicate intent to set user_cpus_ptr and so user_cpus_ptr masking should be skipped. In addition, masking should also be skipped if any of the SCA_MIGRATE_* flag is set. All callers of set_cpus_allowed_ptr() will be affected by this change. A scratch cpumask is added to percpu runqueues structure for doing additional masking when user_cpus_ptr is set. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220922180041.1768141-4-longman@redhat.com
2022-10-27sched: Always preserve the user requested cpumaskWaiman Long
Unconditionally preserve the user requested cpumask on sched_setaffinity() calls. This allows using it outside of the fairly narrow restrict_cpus_allowed_ptr() use-case and fix some cpuset issues that currently suffer destruction of cpumasks. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220922180041.1768141-3-longman@redhat.com
2022-10-27sched: Introduce affinity_contextWaiman Long
In order to prepare for passing through additional data through the affinity call-chains, convert the mask and flags argument into a structure. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220922180041.1768141-5-longman@redhat.com
2022-10-27sched/fair: Detect capacity inversionQais Yousef
Check each performance domain to see if thermal pressure is causing its capacity to be lower than another performance domain. We assume that each performance domain has CPUs with the same capacities, which is similar to an assumption made in energy_model.c We also assume that thermal pressure impacts all CPUs in a performance domain equally. If there're multiple performance domains with the same capacity_orig, we will trigger a capacity inversion if the domain is under thermal pressure. The new cpu_in_capacity_inversion() should help users to know when information about capacity_orig are not reliable and can opt in to use the inverted capacity as the 'actual' capacity_orig. Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220804143609.515789-9-qais.yousef@arm.com
2022-10-27sched/uclamp: Fix fits_capacity() check in feec()Qais Yousef
As reported by Yun Hsiang [1], if a task has its uclamp_min >= 0.8 * 1024, it'll always pick the previous CPU because fits_capacity() will always return false in this case. The new util_fits_cpu() logic should handle this correctly for us beside more corner cases where similar failures could occur, like when using UCLAMP_MAX. We open code uclamp_rq_util_with() except for the clamp() part, util_fits_cpu() needs the 'raw' values to be passed to it. Also introduce uclamp_rq_{set, get}() shorthand accessors to get uclamp value for the rq. Makes the code more readable and ensures the right rules (use READ_ONCE/WRITE_ONCE) are respected transparently. [1] https://lists.linaro.org/pipermail/eas-dev/2020-July/001488.html Fixes: 1d42509e475c ("sched/fair: Make EAS wakeup placement consider uclamp restrictions") Reported-by: Yun Hsiang <hsiang023167@gmail.com> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220804143609.515789-4-qais.yousef@arm.com
2022-10-27sched/uclamp: Make task_fits_capacity() use util_fits_cpu()Qais Yousef
So that the new uclamp rules in regard to migration margin and capacity pressure are taken into account correctly. Fixes: a7008c07a568 ("sched/fair: Make task_fits_capacity() consider uclamp restrictions") Co-developed-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220804143609.515789-3-qais.yousef@arm.com
2022-10-17sched: Introduce struct balance_callback to avoid CFI mismatchesKees Cook
Introduce distinct struct balance_callback instead of performing function pointer casting which will trip CFI. Avoids warnings as found by Clang's future -Wcast-function-type-strict option: In file included from kernel/sched/core.c:84: kernel/sched/sched.h:1755:15: warning: cast from 'void (*)(struct rq *)' to 'void (*)(struct callback_head *)' converts to incompatible function type [-Wcast-function-type-strict] head->func = (void (*)(struct callback_head *))func; ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ No binary differences result from this change. This patch is a cleanup based on Brad Spengler/PaX Team's modifications to sched code in their last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Reported-by: Sami Tolvanen <samitolvanen@google.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Nathan Chancellor <nathan@kernel.org> Link: https://github.com/ClangBuiltLinux/linux/issues/1724 Link: https://lkml.kernel.org/r/20221008000758.2957718-1-keescook@chromium.org
2022-10-17sched/core: Fix comparison in sched_group_cookie_match()Lin Shengwang
In commit 97886d9dcd86 ("sched: Migration changes for core scheduling"), sched_group_cookie_match() was added to help determine if a cookie matches the core state. However, while it iterates the SMT group, it fails to actually use the RQ for each of the CPUs iterated, use cpu_rq(cpu) instead of rq to fix things. Fixes: 97886d9dcd86 ("sched: Migration changes for core scheduling") Signed-off-by: Lin Shengwang <linshengwang1@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221008022709.642-1-linshengwang1@huawei.com
2022-10-10Merge tag 'mm-stable-2022-10-08' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ...
2022-09-15sched/fair: Cleanup loop_max and loop_breakVincent Guittot
sched_nr_migrate_break is set to a fix value and never changes so we can replace it by a define SCHED_NR_MIGRATE_BREAK. Also, we adjust SCHED_NR_MIGRATE_BREAK to be aligned with the init value of sysctl_sched_nr_migrate which can be init to different values. Then, use SCHED_NR_MIGRATE_BREAK to init sysctl_sched_nr_migrate. The behavior stays unchanged unless you modify sysctl_sched_nr_migrate trough debugfs. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220825122726.20819-3-vincent.guittot@linaro.org
2022-09-11memory tiering: hot page selection with hint page fault latencyHuang Ying
Patch series "memory tiering: hot page selection", v4. To optimize page placement in a memory tiering system with NUMA balancing, the hot pages in the slow memory nodes need to be identified. Essentially, the original NUMA balancing implementation selects the mostly recently accessed (MRU) pages to promote. But this isn't a perfect algorithm to identify the hot pages. Because the pages with quite low access frequency may be accessed eventually given the NUMA balancing page table scanning period could be quite long (e.g. 60 seconds). So in this patchset, we implement a new hot page identification algorithm based on the latency between NUMA balancing page table scanning and hint page fault. Which is a kind of mostly frequently accessed (MFU) algorithm. In NUMA balancing memory tiering mode, if there are hot pages in slow memory node and cold pages in fast memory node, we need to promote/demote hot/cold pages between the fast and cold memory nodes. A choice is to promote/demote as fast as possible. But the CPU cycles and memory bandwidth consumed by the high promoting/demoting throughput will hurt the latency of some workload because of accessing inflating and slow memory bandwidth contention. A way to resolve this issue is to restrict the max promoting/demoting throughput. It will take longer to finish the promoting/demoting. But the workload latency will be better. This is implemented in this patchset as the page promotion rate limit mechanism. The promotion hot threshold is workload and system configuration dependent. So in this patchset, a method to adjust the hot threshold automatically is implemented. The basic idea is to control the number of the candidate promotion pages to match the promotion rate limit. We used the pmbench memory accessing benchmark tested the patchset on a 2-socket server system with DRAM and PMEM installed. The test results are as follows, pmbench score promote rate (accesses/s) MB/s ------------- ------------ base 146887704.1 725.6 hot selection 165695601.2 544.0 rate limit 162814569.8 165.2 auto adjustment 170495294.0 136.9 From the results above, With hot page selection patch [1/3], the pmbench score increases about 12.8%, and promote rate (overhead) decreases about 25.0%, compared with base kernel. With rate limit patch [2/3], pmbench score decreases about 1.7%, and promote rate decreases about 69.6%, compared with hot page selection patch. With threshold auto adjustment patch [3/3], pmbench score increases about 4.7%, and promote rate decrease about 17.1%, compared with rate limit patch. Baolin helped to test the patchset with MySQL on a machine which contains 1 DRAM node (30G) and 1 PMEM node (126G). sysbench /usr/share/sysbench/oltp_read_write.lua \ ...... --tables=200 \ --table-size=1000000 \ --report-interval=10 \ --threads=16 \ --time=120 The tps can be improved about 5%. This patch (of 3): To optimize page placement in a memory tiering system with NUMA balancing, the hot pages in the slow memory node need to be identified. Essentially, the original NUMA balancing implementation selects the mostly recently accessed (MRU) pages to promote. But this isn't a perfect algorithm to identify the hot pages. Because the pages with quite low access frequency may be accessed eventually given the NUMA balancing page table scanning period could be quite long (e.g. 60 seconds). The most frequently accessed (MFU) algorithm is better. So, in this patch we implemented a better hot page selection algorithm. Which is based on NUMA balancing page table scanning and hint page fault as follows, - When the page tables of the processes are scanned to change PTE/PMD to be PROT_NONE, the current time is recorded in struct page as scan time. - When the page is accessed, hint page fault will occur. The scan time is gotten from the struct page. And The hint page fault latency is defined as hint page fault time - scan time The shorter the hint page fault latency of a page is, the higher the probability of their access frequency to be higher. So the hint page fault latency is a better estimation of the page hot/cold. It's hard to find some extra space in struct page to hold the scan time. Fortunately, we can reuse some bits used by the original NUMA balancing. NUMA balancing uses some bits in struct page to store the page accessing CPU and PID (referring to page_cpupid_xchg_last()). Which is used by the multi-stage node selection algorithm to avoid to migrate pages shared accessed by the NUMA nodes back and forth. But for pages in the slow memory node, even if they are shared accessed by multiple NUMA nodes, as long as the pages are hot, they need to be promoted to the fast memory node. So the accessing CPU and PID information are unnecessary for the slow memory pages. We can reuse these bits in struct page to record the scan time. For the fast memory pages, these bits are used as before. For the hot threshold, the default value is 1 second, which works well in our performance test. All pages with hint page fault latency < hot threshold will be considered hot. It's hard for users to determine the hot threshold. So we don't provide a kernel ABI to set it, just provide a debugfs interface for advanced users to experiment. We will continue to work on a hot threshold automatic adjustment mechanism. The downside of the above method is that the response time to the workload hot spot changing may be much longer. For example, - A previous cold memory area becomes hot - The hint page fault will be triggered. But the hint page fault latency isn't shorter than the hot threshold. So the pages will not be promoted. - When the memory area is scanned again, maybe after a scan period, the hint page fault latency measured will be shorter than the hot threshold and the pages will be promoted. To mitigate this, if there are enough free space in the fast memory node, the hot threshold will not be used, all pages will be promoted upon the hint page fault for fast response. Thanks Zhong Jiang reported and tested the fix for a bug when disabling memory tiering mode dynamically. Link: https://lkml.kernel.org/r/20220713083954.34196-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220713083954.34196-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: osalvador <osalvador@suse.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-07sched: Rename task_running() to task_on_cpu()Peter Zijlstra
There is some ambiguity about task_running() in that it is unrelated to TASK_RUNNING but instead tests ->on_cpu. As such, rename the thing task_on_cpu(). Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/Yxhkhn55uHZx+NGl@hirez.programming.kicks-ass.net
2022-08-30Merge branch 'sched/warnings' into sched/core, to pick up WARN_ON_ONCE() ↵Ingo Molnar
conversion commit Merge in the BUG_ON() => WARN_ON_ONCE() conversion commit. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-08-27sched: Add update_current_exec_runtime helperShang XiaoJing
Wrap repeated code in helper function update_current_exec_runtime for update the exec time of the current. Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220824082856.15674-1-shangxiaojing@huawei.com
2022-08-23sched/fair: Remove redundant cpu_cgrp_subsys->fork()Chengming Zhou
We use cpu_cgrp_subsys->fork() to set task group for the new fair task in cgroup_post_fork(). Since commit b1e8206582f9 ("sched: Fix yet more sched_fork() races") has already set_task_rq() for the new fair task in sched_cgroup_fork(), so cpu_cgrp_subsys->fork() can be removed. cgroup_can_fork() --> pin parent's sched_task_group sched_cgroup_fork() __set_task_cpu() set_task_rq() cgroup_post_fork() ss->fork() := cpu_cgroup_fork() sched_change_group(..., TASK_SET_GROUP) task_set_group_fair() set_task_rq() --> can be removed After this patch's change, task_change_group_fair() only need to care about task cgroup migration, make the code much simplier. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20220818124805.601-3-zhouchengming@bytedance.com
2022-08-23sched/fair: Maintain task se depth in set_task_rq()Chengming Zhou
Previously we only maintain task se depth in task_move_group_fair(), if a !fair task change task group, its se depth will not be updated, so commit eb7a59b2c888 ("sched/fair: Reset se-depth when task switched to FAIR") fix the problem by updating se depth in switched_to_fair() too. Then commit daa59407b558 ("sched/fair: Unify switched_{from,to}_fair() and task_move_group_fair()") unified these two functions, moved se.depth setting to attach_task_cfs_rq(), which further into attach_entity_cfs_rq() with commit df217913e72e ("sched/fair: Factorize attach/detach entity"). This patch move task se depth maintenance from attach_entity_cfs_rq() to set_task_rq(), which will be called when CPU/cgroup change, so its depth will always be correct. This patch is preparation for the next patch. Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220818124805.601-2-zhouchengming@bytedance.com
2022-08-12sched/all: Change all BUG_ON() instances in the scheduler to WARN_ON_ONCE()Ingo Molnar
There's no good reason to crash a user's system with a BUG_ON(), chances are high that they'll never even see the crash message on Xorg, and it won't make it into the syslog either. By using a WARN_ON_ONCE() we at least give the user a chance to report any bugs triggered here - instead of getting silent hangs. None of these WARN_ON_ONCE()s are supposed to trigger, ever - so we ignore cases where a NULL check is done via a BUG_ON() and we let a NULL pointer through after a WARN_ON_ONCE(). There's one exception: WARN_ON_ONCE() arguments with side-effects, such as locking - in this case we use the return value of the WARN_ON_ONCE(), such as in: - BUG_ON(!lock_task_sighand(p, &flags)); + if (WARN_ON_ONCE(!lock_task_sighand(p, &flags))) + return; Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/YvSsKcAXISmshtHo@gmail.com
2022-08-06Merge tag 'sched-urgent-2022-08-06' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "Various fixes: a deadline scheduler fix, a migration fix, a Sparse fix and a comment fix" * tag 'sched-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/core: Do not requeue task on CPU excluded from cpus_mask sched/rt: Fix Sparse warnings due to undefined rt.c declarations exit: Fix typo in comment: s/sub-theads/sub-threads sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed
2022-08-03sched/rt: Fix Sparse warnings due to undefined rt.c declarationsBen Dooks
There are several symbols defined in kernel/sched/sched.h but get wrapped in CONFIG_CGROUP_SCHED, even though dummy versions get built in rt.c and therefore trigger Sparse warnings: kernel/sched/rt.c:309:6: warning: symbol 'unregister_rt_sched_group' was not declared. Should it be static? kernel/sched/rt.c:311:6: warning: symbol 'free_rt_sched_group' was not declared. Should it be static? kernel/sched/rt.c:313:5: warning: symbol 'alloc_rt_sched_group' was not declared. Should it be static? Fix this by moving them outside the CONFIG_CGROUP_SCHED block. [ mingo: Refreshed to the latest scheduler tree, tweaked changelog. ] Signed-off-by: Ben Dooks <ben-linux@fluff.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20220721145155.358366-1-ben-linux@fluff.org
2022-08-02Merge tag 'rcu.2022.07.26a' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU updates from Paul McKenney: - Documentation updates - Miscellaneous fixes - Callback-offload updates, perhaps most notably a new RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be offloaded at boot time, regardless of kernel boot parameters. This is useful to battery-powered systems such as ChromeOS and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot parameter prevents offloaded callbacks from interfering with real-time workloads and with energy-efficiency mechanisms - Polled grace-period updates, perhaps most notably making these APIs account for both normal and expedited grace periods - Tasks RCU updates, perhaps most notably reducing the CPU overhead of RCU tasks trace grace periods by more than a factor of two on a system with 15,000 tasks. The reduction is expected to increase with the number of tasks, so it seems reasonable to hypothesize that a system with 150,000 tasks might see a 20-fold reduction in CPU overhead - Torture-test updates - Updates that merge RCU's dyntick-idle tracking into context tracking, thus reducing the overhead of transitioning to kernel mode from either idle or nohz_full userspace execution for kernels that track context independently of RCU. This is expected to be helpful primarily for kernels built with CONFIG_NO_HZ_FULL=y * tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits) rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings rcu: Diagnose extended sync_rcu_do_polled_gp() loops rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings rcutorture: Test polled expedited grace-period primitives rcu: Add polled expedited grace-period primitives rcutorture: Verify that polled GP API sees synchronous grace periods rcu: Make Tiny RCU grace periods visible to polled APIs rcu: Make polled grace-period API account for expedited grace periods rcu: Switch polled grace-period APIs to ->gp_seq_polled rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty rcu/nocb: Add option to opt rcuo kthreads out of RT priority rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread() rcu/nocb: Add an option to offload all CPUs on boot rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order rcu/nocb: Add/del rdp to iterate from rcuog itself rcu/tree: Add comment to describe GP-done condition in fqs loop rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs() rcu/kvfree: Remove useless monitor_todo flag rcu: Cleanup RCU urgency state for offline CPU ...
2022-08-02sched/deadline: Use sched_dl_entity's dl_density in dl_task_fits_capacity()Dietmar Eggemann
Save a multiplication in dl_task_fits_capacity() by using already maintained per-sched_dl_entity (i.e. per-task) `dl_runtime/dl_deadline` (dl_density). cap_scale(dl_deadline, cap) >= dl_runtime dl_deadline * cap >> SCHED_CAPACITY_SHIFT >= dl_runtime cap >= dl_runtime << SCHED_CAPACITY_SHIFT / dl_deadline cap >= (dl_runtime << BW_SHIFT / dl_deadline) >> BW_SHIFT - SCHED_CAPACITY_SHIFT cap >= dl_density >> BW_SHIFT - SCHED_CAPACITY_SHIFT __sched_setscheduler()->__checkparam_dl() ensures that the 2 corner cases (if conditions) `runtime == RUNTIME_INF (-1)` and `period == 0` of to_ratio(deadline, runtime) are not met when setting dl_density in __sched_setscheduler()-> __setscheduler_params()->__setparam_dl(). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20220729111305.1275158-4-dietmar.eggemann@arm.com
2022-08-02sched/core: Introduce sched_asym_cpucap_active()Dietmar Eggemann
Create an inline helper for conditional code to be only executed on asymmetric CPU capacity systems. This makes these (currently ~10 and future) conditions a lot more readable. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20220729111305.1275158-2-dietmar.eggemann@arm.com
2022-08-01Merge tag 'sched-core-2022-08-01' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "Load-balancing improvements: - Improve NUMA balancing on AMD Zen systems for affine workloads. - Improve the handling of reduced-capacity CPUs in load-balancing. - Energy Model improvements: fix & refine all the energy fairness metrics (PELT), and remove the conservative threshold requiring 6% energy savings to migrate a task. Doing this improves power efficiency for most workloads, and also increases the reliability of energy-efficiency scheduling. - Optimize/tweak select_idle_cpu() to spend (much) less time searching for an idle CPU on overloaded systems. There's reports of several milliseconds spent there on large systems with large workloads ... [ Since the search logic changed, there might be behavioral side effects. ] - Improve NUMA imbalance behavior. On certain systems with spare capacity, initial placement of tasks is non-deterministic, and such an artificial placement imbalance can persist for a long time, hurting (and sometimes helping) performance. The fix is to make fork-time task placement consistent with runtime NUMA balancing placement. Note that some performance regressions were reported against this, caused by workloads that are not memory bandwith limited, which benefit from the artificial locality of the placement bug(s). Mel Gorman's conclusion, with which we concur, was that consistency is better than random workload benefits from non-deterministic bugs: "Given there is no crystal ball and it's a tradeoff, I think it's better to be consistent and use similar logic at both fork time and runtime even if it doesn't have universal benefit." - Improve core scheduling by fixing a bug in sched_core_update_cookie() that caused unnecessary forced idling. - Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs for newly woken tasks. - Fix a newidle balancing bug that introduced unnecessary wakeup latencies. ABI improvements/fixes: - Do not check capabilities and do not issue capability check denial messages when a scheduler syscall doesn't require privileges. (Such as increasing niceness.) - Add forced-idle accounting to cgroups too. - Fix/improve the RSEQ ABI to not just silently accept unknown flags. (No existing tooling is known to have learned to rely on the previous behavior.) - Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags. Optimizations: - Optimize & simplify leaf_cfs_rq_list() - Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg(). Misc fixes & cleanups: - Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems. - Fix a full-NOHZ bug that can in some cases result in the tick not being re-enabled when the last SCHED_RT task is gone from a runqueue but there's still SCHED_OTHER tasks around. - Various PREEMPT_RT related fixes. - Misc cleanups & smaller fixes" * tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) rseq: Kill process when unknown flags are encountered in ABI structures rseq: Deprecate RSEQ_CS_FLAG_NO_RESTART_ON_* flags sched/core: Fix the bug that task won't enqueue into core tree when update cookie nohz/full, sched/rt: Fix missed tick-reenabling bug in dequeue_task_rt() sched/core: Always flush pending blk_plug sched/fair: fix case with reduced capacity CPU sched/core: Use try_cmpxchg in set_nr_{and_not,if}_polling sched/core: add forced idle accounting for cgroups sched/fair: Remove the energy margin in feec() sched/fair: Remove task_util from effective utilization in feec() sched/fair: Use the same cpumask per-PD throughout find_energy_efficient_cpu() sched/fair: Rename select_idle_mask to select_rq_mask sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util() sched/fair: Decay task PELT values during wakeup migration sched/fair: Provide u64 read for 32-bits arch helper sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg sched: only perform capability check on privileged operation sched: Remove unused function group_first_cpu() sched/fair: Remove redundant word " *" selftests/rseq: check if libc rseq support is registered ...
2022-07-05context_tracking: Take idle eqs entrypoints over RCUFrederic Weisbecker
The RCU dynticks counter is going to be merged into the context tracking subsystem. Start with moving the idle extended quiescent states entrypoints to context tracking. For now those are dumb redirections to existing RCU calls. [ paulmck: Apply kernel test robot feedback. ] Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicolas Saenz Julienne <nsaenz@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com> Cc: Yu Liao <liaoyu15@huawei.com> Cc: Phil Auld <pauld@redhat.com> Cc: Paul Gortmaker<paul.gortmaker@windriver.com> Cc: Alex Belits <abelits@marvell.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
2022-06-28sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util()Dietmar Eggemann
effective_cpu_util() already has a `int cpu' parameter which allows to retrieve the CPU capacity scale factor (or maximum CPU capacity) inside this function via an arch_scale_cpu_capacity(cpu). A lot of code calling effective_cpu_util() (or the shim sched_cpu_util()) needs the maximum CPU capacity, i.e. it will call arch_scale_cpu_capacity() already. But not having to pass it into effective_cpu_util() will make the EAS wake-up code easier, especially when the maximum CPU capacity reduced by the thermal pressure is passed through the EAS wake-up functions. Due to the asymmetric CPU capacity support of arm/arm64 architectures, arch_scale_cpu_capacity(int cpu) is a per-CPU variable read access via per_cpu(cpu_scale, cpu) on such a system. On all other architectures it is a a compile-time constant (SCHED_CAPACITY_SCALE). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Link: https://lkml.kernel.org/r/20220621090414.433602-4-vdonnefort@google.com
2022-06-28sched/fair: Decay task PELT values during wakeup migrationVincent Donnefort
Before being migrated to a new CPU, a task sees its PELT values synchronized with rq last_update_time. Once done, that same task will also have its sched_avg last_update_time reset. This means the time between the migration and the last clock update will not be accounted for in util_avg and a discontinuity will appear. This issue is amplified by the PELT clock scaling. It takes currently one tick after the CPU being idle to let clock_pelt catching up clock_task. This is especially problematic for asymmetric CPU capacity systems which need stable util_avg signals for task placement and energy estimation. Ideally, this problem would be solved by updating the runqueue clocks before the migration. But that would require taking the runqueue lock which is quite expensive [1]. Instead estimate the missing time and update the task util_avg with that value. To that end, we need sched_clock_cpu() but it is a costly function. Limit the usage to the case where the source CPU is idle as we know this is when the clock is having the biggest risk of being outdated. See comment in migrate_se_pelt_lag() for more details about how the PELT value is estimated. Notice though this estimation doesn't take into account IRQ and Paravirt time. [1] https://lkml.kernel.org/r/20190709115759.10451-1-chris.redpath@arm.com Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Link: https://lkml.kernel.org/r/20220621090414.433602-3-vdonnefort@google.com
2022-06-28sched/fair: Provide u64 read for 32-bits arch helperVincent Donnefort
Introducing macro helpers u64_u32_{store,load}() to factorize lockless accesses to u64 variables for 32-bits architectures. Users are for now cfs_rq.min_vruntime and sched_avg.last_update_time. To accommodate the later where the copy lies outside of the structure (cfs_rq.last_udpate_time_copy instead of sched_avg.last_update_time_copy), use the _copy() version of those helpers. Those new helpers encapsulate smp_rmb() and smp_wmb() synchronization and therefore, have a small penalty for 32-bits machines in set_task_rq_fair() and init_cfs_rq(). Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Link: https://lkml.kernel.org/r/20220621090414.433602-2-vdonnefort@google.com
2022-06-28sched: Remove unused function group_first_cpu()Zhang Qiao
As of commit afe06efdf07c ("sched: Extend scheduler's asym packing") group_first_cpu() became an unused function, remove it. Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/20220617181151.29980-3-zhangqiao22@huawei.com
2022-06-13sched: Remove the limitation of WF_ON_CPU on wakelist if wakee cpu is idleTianchen Ding
Wakelist can help avoid cache bouncing and offload the overhead of waker cpu. So far, using wakelist within the same llc only happens on WF_ON_CPU, and this limitation could be removed to further improve wakeup performance. The commit 518cd6234178 ("sched: Only queue remote wakeups when crossing cache boundaries") disabled queuing tasks on wakelist when the cpus share llc. This is because, at that time, the scheduler must send IPIs to do ttwu_queue_wakelist. Nowadays, ttwu_queue_wakelist also supports TIF_POLLING, so this is not a problem now when the wakee cpu is in idle polling. Benefits: Queuing the task on idle cpu can help improving performance on waker cpu and utilization on wakee cpu, and further improve locality because the wakee cpu can handle its own rq. This patch helps improving rt on our real java workloads where wakeup happens frequently. Consider the normal condition (CPU0 and CPU1 share same llc) Before this patch: CPU0 CPU1 select_task_rq() idle rq_lock(CPU1->rq) enqueue_task(CPU1->rq) notify CPU1 (by sending IPI or CPU1 polling) resched() After this patch: CPU0 CPU1 select_task_rq() idle add to wakelist of CPU1 notify CPU1 (by sending IPI or CPU1 polling) rq_lock(CPU1->rq) enqueue_task(CPU1->rq) resched() We see CPU0 can finish its work earlier. It only needs to put task to wakelist and return. While CPU1 is idle, so let itself handle its own runqueue data. This patch brings no difference about IPI. This patch only takes effect when the wakee cpu is: 1) idle polling 2) idle not polling For 1), there will be no IPI with or without this patch. For 2), there will always be an IPI before or after this patch. Before this patch: waker cpu will enqueue task and check preempt. Since "idle" will be sure to be preempted, waker cpu must send a resched IPI. After this patch: waker cpu will put the task to the wakelist of wakee cpu, and send an IPI. Benchmark: We've tested schbench, unixbench, and hachbench on both x86 and arm64. On x86 (Intel Xeon Platinum 8269CY): schbench -m 2 -t 8 Latency percentiles (usec) before after 50.0000th: 8 6 75.0000th: 10 7 90.0000th: 11 8 95.0000th: 12 8 *99.0000th: 13 10 99.5000th: 15 11 99.9000th: 18 14 Unixbench with full threads (104) before after Dhrystone 2 using register variables 3011862938 3009935994 -0.06% Double-Precision Whetstone 617119.3 617298.5 0.03% Execl Throughput 27667.3 27627.3 -0.14% File Copy 1024 bufsize 2000 maxblocks 785871.4 784906.2 -0.12% File Copy 256 bufsize 500 maxblocks 210113.6 212635.4 1.20% File Copy 4096 bufsize 8000 maxblocks 2328862.2 2320529.1 -0.36% Pipe Throughput 145535622.8 145323033.2 -0.15% Pipe-based Context Switching 3221686.4 3583975.4 11.25% Process Creation 101347.1 103345.4 1.97% Shell Scripts (1 concurrent) 120193.5 123977.8 3.15% Shell Scripts (8 concurrent) 17233.4 17138.4 -0.55% System Call Overhead 5300604.8 5312213.6 0.22% hackbench -g 1 -l 100000 before after Time 3.246 2.251 On arm64 (Ampere Altra): schbench -m 2 -t 8 Latency percentiles (usec) before after 50.0000th: 14 10 75.0000th: 19 14 90.0000th: 22 16 95.0000th: 23 16 *99.0000th: 24 17 99.5000th: 24 17 99.9000th: 28 25 Unixbench with full threads (80) before after Dhrystone 2 using register variables 3536194249 3537019613 0.02% Double-Precision Whetstone 629383.6 629431.6 0.01% Execl Throughput 65920.5 65846.2 -0.11% File Copy 1024 bufsize 2000 maxblocks 1063722.8 1064026.8 0.03% File Copy 256 bufsize 500 maxblocks 322684.5 318724.5 -1.23% File Copy 4096 bufsize 8000 maxblocks 2348285.3 2328804.8 -0.83% Pipe Throughput 133542875.3 131619389.8 -1.44% Pipe-based Context Switching 3215356.1 3576945.1 11.25% Process Creation 108520.5 120184.6 10.75% Shell Scripts (1 concurrent) 122636.3 121888 -0.61% Shell Scripts (8 concurrent) 17462.1 17381.4 -0.46% System Call Overhead 4429998.9 4435006.7 0.11% hackbench -g 1 -l 100000 before after Time 4.217 2.916 Our patch has improvement on schbench, hackbench and Pipe-based Context Switching of unixbench when there exists idle cpus, and no obvious regression on other tests of unixbench. This can help improve rt in scenes where wakeup happens frequently. Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/20220608233412.327341-3-dtcccc@linux.alibaba.com
2022-06-13sched: Fix balance_push() vs __sched_setscheduler()Peter Zijlstra
The purpose of balance_push() is to act as a filter on task selection in the case of CPU hotplug, specifically when taking the CPU out. It does this by (ab)using the balance callback infrastructure, with the express purpose of keeping all the unlikely/odd cases in a single place. In order to serve its purpose, the balance_push_callback needs to be (exclusively) on the callback list at all times (noting that the callback always places itself back on the list the moment it runs, also noting that when the CPU goes down, regular balancing concerns are moot, so ignoring them is fine). And here-in lies the problem, __sched_setscheduler()'s use of splice_balance_callbacks() takes the callbacks off the list across a lock-break, making it possible for, an interleaving, __schedule() to see an empty list and not get filtered. Fixes: ae7927023243 ("sched: Optimize finish_lock_switch()") Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Jing-Ting Wu <jing-ting.wu@mediatek.com> Link: https://lkml.kernel.org/r/20220519134706.GH2578@worktop.programming.kicks-ass.net
2022-05-26Merge tag 'sysctl-5.19-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux Pull sysctl updates from Luis Chamberlain: "For two kernel releases now kernel/sysctl.c has been being cleaned up slowly, since the tables were grossly long, sprinkled with tons of #ifdefs and all this caused merge conflicts with one susbystem or another. This tree was put together to help try to avoid conflicts with these cleanups going on different trees at time. So nothing exciting on this pull request, just cleanups. Thanks a lot to the Uniontech and Huawei folks for doing some of this nasty work" * tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (28 commits) sched: Fix build warning without CONFIG_SYSCTL reboot: Fix build warning without CONFIG_SYSCTL kernel/kexec_core: move kexec_core sysctls into its own file sysctl: minor cleanup in new_dir() ftrace: fix building with SYSCTL=y but DYNAMIC_FTRACE=n fs/proc: Introduce list_for_each_table_entry for proc sysctl mm: fix unused variable kernel warning when SYSCTL=n latencytop: move sysctl to its own file ftrace: fix building with SYSCTL=n but DYNAMIC_FTRACE=y ftrace: Fix build warning ftrace: move sysctl_ftrace_enabled to ftrace.c kernel/do_mount_initrd: move real_root_dev sysctls to its own file kernel/delayacct: move delayacct sysctls to its own file kernel/acct: move acct sysctls to its own file kernel/panic: move panic sysctls to its own file kernel/lockdep: move lockdep sysctls to its own file mm: move page-writeback sysctls to their own file mm: move oom_kill sysctls to their own file kernel/reboot: move reboot sysctls to its own file sched: Move energy_aware sysctls to topology.c ...
2022-05-19sched: Reverse sched_class layoutPeter Zijlstra
Because GCC-12 is fully stupid about array bounds and it's just really hard to get a solid array definition from a linker script, flip the array order to avoid needing negative offsets :-/ This makes the whole relational pointer magic a little less obvious, but alas. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/YoOLLmLG7HRTXeEm@hirez.programming.kicks-ass.net
2022-05-11sched/core: Avoid obvious double update_rq_clock warningHao Jia
When we use raw_spin_rq_lock() to acquire the rq lock and have to update the rq clock while holding the lock, the kernel may issue a WARN_DOUBLE_CLOCK warning. Since we directly use raw_spin_rq_lock() to acquire rq lock instead of rq_lock(), there is no corresponding change to rq->clock_update_flags. In particular, we have obtained the rq lock of other CPUs, the rq->clock_update_flags of this CPU may be RQCF_UPDATED at this time, and then calling update_rq_clock() will trigger the WARN_DOUBLE_CLOCK warning. So we need to clear RQCF_UPDATED of rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. For the sched_rt_period_timer() and migrate_task_rq_dl() cases we simply replace raw_spin_rq_lock()/raw_spin_rq_unlock() with rq_lock()/rq_unlock(). For the {pull,push}_{rt,dl}_task() cases, we add the double_rq_clock_clear_update() function to clear RQCF_UPDATED of rq->clock_update_flags, and call double_rq_clock_clear_update() before double_lock_balance()/double_rq_lock() returns to avoid the WARN_DOUBLE_CLOCK warning. Some call trace reports: Call Trace 1: <IRQ> sched_rt_period_timer+0x10f/0x3a0 ? enqueue_top_rt_rq+0x110/0x110 __hrtimer_run_queues+0x1a9/0x490 hrtimer_interrupt+0x10b/0x240 __sysvec_apic_timer_interrupt+0x8a/0x250 sysvec_apic_timer_interrupt+0x9a/0xd0 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x12/0x20 Call Trace 2: <TASK> activate_task+0x8b/0x110 push_rt_task.part.108+0x241/0x2c0 push_rt_tasks+0x15/0x30 finish_task_switch+0xaa/0x2e0 ? __switch_to+0x134/0x420 __schedule+0x343/0x8e0 ? hrtimer_start_range_ns+0x101/0x340 schedule+0x4e/0xb0 do_nanosleep+0x8e/0x160 hrtimer_nanosleep+0x89/0x120 ? hrtimer_init_sleeper+0x90/0x90 __x64_sys_nanosleep+0x96/0xd0 do_syscall_64+0x34/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Call Trace 3: <TASK> deactivate_task+0x93/0xe0 pull_rt_task+0x33e/0x400 balance_rt+0x7e/0x90 __schedule+0x62f/0x8e0 do_task_dead+0x3f/0x50 do_exit+0x7b8/0xbb0 do_group_exit+0x2d/0x90 get_signal+0x9df/0x9e0 ? preempt_count_add+0x56/0xa0 ? __remove_hrtimer+0x35/0x70 arch_do_signal_or_restart+0x36/0x720 ? nanosleep_copyout+0x39/0x50 ? do_nanosleep+0x131/0x160 ? audit_filter_inodes+0xf5/0x120 exit_to_user_mode_prepare+0x10f/0x1e0 syscall_exit_to_user_mode+0x17/0x30 do_syscall_64+0x40/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Call Trace 4: update_rq_clock+0x128/0x1a0 migrate_task_rq_dl+0xec/0x310 set_task_cpu+0x84/0x1e4 try_to_wake_up+0x1d8/0x5c0 wake_up_process+0x1c/0x30 hrtimer_wakeup+0x24/0x3c __hrtimer_run_queues+0x114/0x270 hrtimer_interrupt+0xe8/0x244 arch_timer_handler_phys+0x30/0x50 handle_percpu_devid_irq+0x88/0x140 generic_handle_domain_irq+0x40/0x60 gic_handle_irq+0x48/0xe0 call_on_irq_stack+0x2c/0x60 do_interrupt_handler+0x80/0x84 Steps to reproduce: 1. Enable CONFIG_SCHED_DEBUG when compiling the kernel 2. echo 1 > /sys/kernel/debug/clear_warn_once echo "WARN_DOUBLE_CLOCK" > /sys/kernel/debug/sched/features echo "NO_RT_PUSH_IPI" > /sys/kernel/debug/sched/features 3. Run some rt/dl tasks that periodically work and sleep, e.g. Create 2*n rt or dl (90% running) tasks via rt-app (on a system with n CPUs), and Dietmar Eggemann reports Call Trace 4 when running on PREEMPT_RT kernel. Signed-off-by: Hao Jia <jiahao.os@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20220430085843.62939-2-jiahao.os@bytedance.com