Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- Revert the printk format based wchan() symbol resolution as it can
leak the raw value in case that the symbol is not resolvable.
- Make wchan() more robust and work with all kind of unwinders by
enforcing that the task stays blocked while unwinding is in progress.
- Prevent sched_fork() from accessing an invalid sched_task_group
- Improve asymmetric packing logic
- Extend scheduler statistics to RT and DL scheduling classes and add
statistics for bandwith burst to the SCHED_FAIR class.
- Properly account SCHED_IDLE entities
- Prevent a potential deadlock when initial priority is assigned to a
newly created kthread. A recent change to plug a race between cpuset
and __sched_setscheduler() introduced a new lock dependency which is
now triggered. Break the lock dependency chain by moving the priority
assignment to the thread function.
- Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.
- Improve idle balancing in general and especially for NOHZ enabled
systems.
- Provide proper interfaces for live patching so it does not have to
fiddle with scheduler internals.
- Add cluster aware scheduling support.
- A small set of tweaks for RT (irqwork, wait_task_inactive(), various
scheduler options and delaying mmdrop)
- The usual small tweaks and improvements all over the place
* tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
sched/fair: Cleanup newidle_balance
sched/fair: Remove sysctl_sched_migration_cost condition
sched/fair: Wait before decaying max_newidle_lb_cost
sched/fair: Skip update_blocked_averages if we are defering load balance
sched/fair: Account update_blocked_averages in newidle_balance cost
x86: Fix __get_wchan() for !STACKTRACE
sched,x86: Fix L2 cache mask
sched/core: Remove rq_relock()
sched: Improve wake_up_all_idle_cpus() take #2
irq_work: Also rcuwait for !IRQ_WORK_HARD_IRQ on PREEMPT_RT
irq_work: Handle some irq_work in a per-CPU thread on PREEMPT_RT
irq_work: Allow irq_work_sync() to sleep if irq_work() no IRQ support.
sched/rt: Annotate the RT balancing logic irqwork as IRQ_WORK_HARD_IRQ
sched: Add cluster scheduler level for x86
sched: Add cluster scheduler level in core and related Kconfig for ARM64
topology: Represent clusters of CPUs within a die
sched: Disable -Wunused-but-set-variable
sched: Add wrapper for get_wchan() to keep task blocked
x86: Fix get_wchan() to support the ORC unwinder
proc: Use task_is_running() for wchan in /proc/$pid/stat
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Thomas Gleixner:
- Move futex code into kernel/futex/ and split up the kitchen sink into
seperate files to make integration of sys_futex_waitv() simpler.
- Add a new sys_futex_waitv() syscall which allows to wait on multiple
futexes.
The main use case is emulating Windows' WaitForMultipleObjects which
allows Wine to improve the performance of Windows Games. Also native
Linux games can benefit from this interface as this is a common wait
pattern for this kind of applications.
- Add context to ww_mutex_trylock() to provide a path for i915 to
rework their eviction code step by step without making lockdep upset
until the final steps of rework are completed. It's also useful for
regulator and TTM to avoid dropping locks in the non contended path.
- Lockdep and might_sleep() cleanups and improvements
- A few improvements for the RT substitutions.
- The usual small improvements and cleanups.
* tag 'locking-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
locking: Remove spin_lock_flags() etc
locking/rwsem: Fix comments about reader optimistic lock stealing conditions
locking: Remove rcu_read_{,un}lock() for preempt_{dis,en}able()
locking/rwsem: Disable preemption for spinning region
docs: futex: Fix kernel-doc references
futex: Fix PREEMPT_RT build
futex2: Documentation: Document sys_futex_waitv() uAPI
selftests: futex: Test sys_futex_waitv() wouldblock
selftests: futex: Test sys_futex_waitv() timeout
selftests: futex: Add sys_futex_waitv() test
futex,arm: Wire up sys_futex_waitv()
futex,x86: Wire up sys_futex_waitv()
futex: Implement sys_futex_waitv()
futex: Simplify double_lock_hb()
futex: Split out wait/wake
futex: Split out requeue
futex: Rename mark_wake_futex()
futex: Rename: match_futex()
futex: Rename: hb_waiter_{inc,dec,pending}()
futex: Split out PI futex
...
|
|
Pull block updates from Jens Axboe:
- mq-deadline accounting improvements (Bart)
- blk-wbt timer fix (Andrea)
- Untangle the block layer includes (Christoph)
- Rework the poll support to be bio based, which will enable adding
support for polling for bio based drivers (Christoph)
- Block layer core support for multi-actuator drives (Damien)
- blk-crypto improvements (Eric)
- Batched tag allocation support (me)
- Request completion batching support (me)
- Plugging improvements (me)
- Shared tag set improvements (John)
- Concurrent queue quiesce support (Ming)
- Cache bdev in ->private_data for block devices (Pavel)
- bdev dio improvements (Pavel)
- Block device invalidation and block size improvements (Xie)
- Various cleanups, fixes, and improvements (Christoph, Jackie,
Masahira, Tejun, Yu, Pavel, Zheng, me)
* tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block: (174 commits)
blk-mq-debugfs: Show active requests per queue for shared tags
block: improve readability of blk_mq_end_request_batch()
virtio-blk: Use blk_validate_block_size() to validate block size
loop: Use blk_validate_block_size() to validate block size
nbd: Use blk_validate_block_size() to validate block size
block: Add a helper to validate the block size
block: re-flow blk_mq_rq_ctx_init()
block: prefetch request to be initialized
block: pass in blk_mq_tags to blk_mq_rq_ctx_init()
block: add rq_flags to struct blk_mq_alloc_data
block: add async version of bio_set_polled
block: kill DIO_MULTI_BIO
block: kill unused polling bits in __blkdev_direct_IO()
block: avoid extra iter advance with async iocb
block: Add independent access ranges support
blk-mq: don't issue request directly in case that current is to be blocked
sbitmap: silence data race warning
blk-cgroup: synchronize blkg creation against policy deactivation
block: refactor bio_iov_bvec_set()
block: add single bio async direct IO helper
...
|
|
update_next_balance() uses sd->last_balance which is not modified by
load_balance() so we can merge the 2 calls in one place.
No functional change
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-6-vincent.guittot@linaro.org
|
|
With a default value of 500us, sysctl_sched_migration_cost is
significanlty higher than the cost of load_balance. Remove the
condition and rely on the sd->max_newidle_lb_cost to abort
newidle_balance.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-5-vincent.guittot@linaro.org
|
|
Decay max_newidle_lb_cost only when it has not been updated for a while
and ensure to not decay a recently changed value.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-4-vincent.guittot@linaro.org
|
|
In newidle_balance(), the scheduler skips load balance to the new idle cpu
when the 1st sd of this_rq is:
this_rq->avg_idle < sd->max_newidle_lb_cost
Doing a costly call to update_blocked_averages() will not be useful and
simply adds overhead when this condition is true.
Check the condition early in newidle_balance() to skip
update_blocked_averages() when possible.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-3-vincent.guittot@linaro.org
|
|
The time spent to update the blocked load can be significant depending of
the complexity fo the cgroup hierarchy. Take this time into account in
the cost of the 1st load balance of a newly idle cpu.
Also reduce the number of call to sched_clock_cpu() and track more actual
work.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20211019123537.17146-2-vincent.guittot@linaro.org
|
|
After the removal of migrate_tasks(), there is no user of
rq_relock() left, so remove it.
Signed-off-by: Peng Wang <rocking@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/449948fdf9be4764b3929c52572917dd25eef758.1634611953.git.rocking@linux.alibaba.com
|
|
Consolidate the various helpers into a single blk_flush_plug helper that
takes a plk_plug and the from_scheduler bool and switch all callsites to
call it directly. Checks that the plug is non-NULL must be performed by
the caller, something that most already do anyway.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20211020144119.142582-5-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Commit f1a0a376ca0c ("sched/core: Initialize the idle task with
preemption disabled") removed the init_idle() call from
idle_thread_get(). This was the sole call-path on hotplug that resets
the Shadow Call Stack (scs) Stack Pointer (sp).
Not resetting the scs-sp leads to scs overflow after enough hotplug
cycles. Therefore add an explicit scs_task_reset() to the hotplug code
to make sure the scs-sp does get reset on hotplug.
Fixes: f1a0a376ca0c ("sched/core: Initialize the idle task with preemption disabled")
Signed-off-by: Woody Lin <woodylin@google.com>
[peterz: Changelog]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20211012083521.973587-1-woodylin@google.com
|
|
Only core.c needs blkdev.h, so move the #include statement there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20210920123328.1399408-8-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The push-IPI logic for RT tasks expects to be invoked from hardirq
context. One reason is that a RT task on the remote CPU would block the
softirq processing on PREEMPT_RT and so avoid pulling / balancing the RT
tasks as intended.
Annotate root_domain::rto_push_work as IRQ_WORK_HARD_IRQ.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211006111852.1514359-2-bigeasy@linutronix.de
|
|
This patch adds scheduler level for clusters and automatically enables
the load balance among clusters. It will directly benefit a lot of
workload which loves more resources such as memory bandwidth, caches.
Testing has widely been done in two different hardware configurations of
Kunpeng920:
24 cores in one NUMA(6 clusters in each NUMA node);
32 cores in one NUMA(8 clusters in each NUMA node)
Workload is running on either one NUMA node or four NUMA nodes, thus,
this can estimate the effect of cluster spreading w/ and w/o NUMA load
balance.
* Stream benchmark:
4threads stream (on 1NUMA * 24cores = 24cores)
stream stream
w/o patch w/ patch
MB/sec copy 29929.64 ( 0.00%) 32932.68 ( 10.03%)
MB/sec scale 29861.10 ( 0.00%) 32710.58 ( 9.54%)
MB/sec add 27034.42 ( 0.00%) 32400.68 ( 19.85%)
MB/sec triad 27225.26 ( 0.00%) 31965.36 ( 17.41%)
6threads stream (on 1NUMA * 24cores = 24cores)
stream stream
w/o patch w/ patch
MB/sec copy 40330.24 ( 0.00%) 42377.68 ( 5.08%)
MB/sec scale 40196.42 ( 0.00%) 42197.90 ( 4.98%)
MB/sec add 37427.00 ( 0.00%) 41960.78 ( 12.11%)
MB/sec triad 37841.36 ( 0.00%) 42513.64 ( 12.35%)
12threads stream (on 1NUMA * 24cores = 24cores)
stream stream
w/o patch w/ patch
MB/sec copy 52639.82 ( 0.00%) 53818.04 ( 2.24%)
MB/sec scale 52350.30 ( 0.00%) 53253.38 ( 1.73%)
MB/sec add 53607.68 ( 0.00%) 55198.82 ( 2.97%)
MB/sec triad 54776.66 ( 0.00%) 56360.40 ( 2.89%)
Thus, it could help memory-bound workload especially under medium load.
Similar improvement is also seen in lkp-pbzip2:
* lkp-pbzip2 benchmark
2-96 threads (on 4NUMA * 24cores = 96cores)
lkp-pbzip2 lkp-pbzip2
w/o patch w/ patch
Hmean tput-2 11062841.57 ( 0.00%) 11341817.51 * 2.52%*
Hmean tput-5 26815503.70 ( 0.00%) 27412872.65 * 2.23%*
Hmean tput-8 41873782.21 ( 0.00%) 43326212.92 * 3.47%*
Hmean tput-12 61875980.48 ( 0.00%) 64578337.51 * 4.37%*
Hmean tput-21 105814963.07 ( 0.00%) 111381851.01 * 5.26%*
Hmean tput-30 150349470.98 ( 0.00%) 156507070.73 * 4.10%*
Hmean tput-48 237195937.69 ( 0.00%) 242353597.17 * 2.17%*
Hmean tput-79 360252509.37 ( 0.00%) 362635169.23 * 0.66%*
Hmean tput-96 394571737.90 ( 0.00%) 400952978.48 * 1.62%*
2-24 threads (on 1NUMA * 24cores = 24cores)
lkp-pbzip2 lkp-pbzip2
w/o patch w/ patch
Hmean tput-2 11071705.49 ( 0.00%) 11296869.10 * 2.03%*
Hmean tput-4 20782165.19 ( 0.00%) 21949232.15 * 5.62%*
Hmean tput-6 30489565.14 ( 0.00%) 33023026.96 * 8.31%*
Hmean tput-8 40376495.80 ( 0.00%) 42779286.27 * 5.95%*
Hmean tput-12 61264033.85 ( 0.00%) 62995632.78 * 2.83%*
Hmean tput-18 86697139.39 ( 0.00%) 86461545.74 ( -0.27%)
Hmean tput-24 104854637.04 ( 0.00%) 104522649.46 * -0.32%*
In the case of 6 threads and 8 threads, we see the greatest performance
improvement.
Similar improvement can be seen on lkp-pixz though the improvement is
smaller:
* lkp-pixz benchmark
2-24 threads lkp-pixz (on 1NUMA * 24cores = 24cores)
lkp-pixz lkp-pixz
w/o patch w/ patch
Hmean tput-2 6486981.16 ( 0.00%) 6561515.98 * 1.15%*
Hmean tput-4 11645766.38 ( 0.00%) 11614628.43 ( -0.27%)
Hmean tput-6 15429943.96 ( 0.00%) 15957350.76 * 3.42%*
Hmean tput-8 19974087.63 ( 0.00%) 20413746.98 * 2.20%*
Hmean tput-12 28172068.18 ( 0.00%) 28751997.06 * 2.06%*
Hmean tput-18 39413409.54 ( 0.00%) 39896830.55 * 1.23%*
Hmean tput-24 49101815.85 ( 0.00%) 49418141.47 * 0.64%*
* SPECrate benchmark
4,8,16 copies mcf_r(on 1NUMA * 32cores = 32cores)
Base Base
Run Time Rate
------- ---------
4 Copies w/o 580 (w/ 570) w/o 11.1 (w/ 11.3)
8 Copies w/o 647 (w/ 605) w/o 20.0 (w/ 21.4, +7%)
16 Copies w/o 844 (w/ 844) w/o 30.6 (w/ 30.6)
32 Copies(on 4NUMA * 32 cores = 128cores)
[w/o patch]
Base Base Base
Benchmarks Copies Run Time Rate
--------------- ------- --------- ---------
500.perlbench_r 32 584 87.2 *
502.gcc_r 32 503 90.2 *
505.mcf_r 32 745 69.4 *
520.omnetpp_r 32 1031 40.7 *
523.xalancbmk_r 32 597 56.6 *
525.x264_r 1 -- CE
531.deepsjeng_r 32 336 109 *
541.leela_r 32 556 95.4 *
548.exchange2_r 32 513 163 *
557.xz_r 32 530 65.2 *
Est. SPECrate2017_int_base 80.3
[w/ patch]
Base Base Base
Benchmarks Copies Run Time Rate
--------------- ------- --------- ---------
500.perlbench_r 32 580 87.8 (+0.688%) *
502.gcc_r 32 477 95.1 (+5.432%) *
505.mcf_r 32 644 80.3 (+13.574%) *
520.omnetpp_r 32 942 44.6 (+9.58%) *
523.xalancbmk_r 32 560 60.4 (+6.714%%) *
525.x264_r 1 -- CE
531.deepsjeng_r 32 337 109 (+0.000%) *
541.leela_r 32 554 95.6 (+0.210%) *
548.exchange2_r 32 515 163 (+0.000%) *
557.xz_r 32 524 66.0 (+1.227%) *
Est. SPECrate2017_int_base 83.7 (+4.062%)
On the other hand, it is slightly helpful to CPU-bound tasks like
kernbench:
* 24-96 threads kernbench (on 4NUMA * 24cores = 96cores)
kernbench kernbench
w/o cluster w/ cluster
Min user-24 12054.67 ( 0.00%) 12024.19 ( 0.25%)
Min syst-24 1751.51 ( 0.00%) 1731.68 ( 1.13%)
Min elsp-24 600.46 ( 0.00%) 598.64 ( 0.30%)
Min user-48 12361.93 ( 0.00%) 12315.32 ( 0.38%)
Min syst-48 1917.66 ( 0.00%) 1892.73 ( 1.30%)
Min elsp-48 333.96 ( 0.00%) 332.57 ( 0.42%)
Min user-96 12922.40 ( 0.00%) 12921.17 ( 0.01%)
Min syst-96 2143.94 ( 0.00%) 2110.39 ( 1.56%)
Min elsp-96 211.22 ( 0.00%) 210.47 ( 0.36%)
Amean user-24 12063.99 ( 0.00%) 12030.78 * 0.28%*
Amean syst-24 1755.20 ( 0.00%) 1735.53 * 1.12%*
Amean elsp-24 601.60 ( 0.00%) 600.19 ( 0.23%)
Amean user-48 12362.62 ( 0.00%) 12315.56 * 0.38%*
Amean syst-48 1921.59 ( 0.00%) 1894.95 * 1.39%*
Amean elsp-48 334.10 ( 0.00%) 332.82 * 0.38%*
Amean user-96 12925.27 ( 0.00%) 12922.63 ( 0.02%)
Amean syst-96 2146.66 ( 0.00%) 2122.20 * 1.14%*
Amean elsp-96 211.96 ( 0.00%) 211.79 ( 0.08%)
Note this patch isn't an universal win, it might hurt those workload
which can benefit from packing. Though tasks which want to take
advantages of lower communication latency of one cluster won't
necessarily been packed in one cluster while kernel is not aware of
clusters, they have some chance to be randomly packed. But this
patch will make them more likely spread.
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
The compilers can't deal with obvious DCE vs that warning, resulting
in code like:
if (0) {
sched sched_statistics *stats;
stats = __schedstats_from_se(se);
...
}
triggering the warning. Kill the warning to make the robots stop
reporting this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lkml.kernel.org/r/YWWPLnaZGybHsTkv@hirez.programming.kicks-ass.net
|
|
Having a stable wchan means the process must be blocked and for it to
stay that way while performing stack unwinding.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> [arm]
Tested-by: Mark Rutland <mark.rutland@arm.com> [arm64]
Link: https://lkml.kernel.org/r/20211008111626.332092234@infradead.org
|
|
There is a small race between copy_process() and sched_fork()
where child->sched_task_group point to an already freed pointer.
parent doing fork() | someone moving the parent
| to another cgroup
-------------------------------+-------------------------------
copy_process()
+ dup_task_struct()<1>
parent move to another cgroup,
and free the old cgroup. <2>
+ sched_fork()
+ __set_task_cpu()<3>
+ task_fork_fair()
+ sched_slice()<4>
In the worst case, this bug can lead to "use-after-free" and
cause panic as shown above:
(1) parent copy its sched_task_group to child at <1>;
(2) someone move the parent to another cgroup and free the old
cgroup at <2>;
(3) the sched_task_group and cfs_rq that belong to the old cgroup
will be accessed at <3> and <4>, which cause a panic:
[] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
[] PGD 8000001fa0a86067 P4D 8000001fa0a86067 PUD 2029955067 PMD 0
[] Oops: 0000 [#1] SMP PTI
[] CPU: 7 PID: 648398 Comm: ebizzy Kdump: loaded Tainted: G OE --------- - - 4.18.0.x86_64+ #1
[] RIP: 0010:sched_slice+0x84/0xc0
[] Call Trace:
[] task_fork_fair+0x81/0x120
[] sched_fork+0x132/0x240
[] copy_process.part.5+0x675/0x20e0
[] ? __handle_mm_fault+0x63f/0x690
[] _do_fork+0xcd/0x3b0
[] do_syscall_64+0x5d/0x1d0
[] entry_SYSCALL_64_after_hwframe+0x65/0xca
[] RIP: 0033:0x7f04418cd7e1
Between cgroup_can_fork() and cgroup_post_fork(), the cgroup
membership and thus sched_task_group can't change. So update child's
sched_task_group at sched_post_fork() and move task_fork() and
__set_task_cpu() (where accees the sched_task_group) from sched_fork()
to sched_post_fork().
Fixes: 8323f26ce342 ("sched: Fix race in task_group")
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20210915064030.2231-1-zhangqiao22@huawei.com
|
|
numa_distance in cpu_attach_domain() is introduced in
commit b5b217346de8 ("sched/topology: Warn when NUMA diameter > 2")
to warn user when NUMA diameter > 2 as we'll misrepresent
the scheduler topology structures at that time. This is
fixed by Barry in commit 585b6d2723dc ("sched/topology: fix the issue
groups don't span domain->span for NUMA diameter > 2") and
numa_distance is unused now. So remove it.
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Barry Song <baohua@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20210915063158.80639-1-yangyicong@hisilicon.com
|
|
Fix a few comments to help understand them better.
Signed-off-by: Bharata B Rao <bharata@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20211004105706.3669-4-bharata@amd.com
|
|
numa_group::fault_cpus is actually a pointer to the region
in numa_group::faults[] where NUMA_CPU stats are located.
Remove this redundant member and use numa_group::faults[NUMA_CPU]
directly like it is done for similar per-process numa fault stats.
There is no functionality change due to this commit.
Signed-off-by: Bharata B Rao <bharata@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20211004105706.3669-3-bharata@amd.com
|
|
While allocating group fault stats, task_numa_group()
is using a hard coded number 4. Replace this by
NR_NUMA_HINT_FAULT_STATS.
No functionality change in this commit.
Signed-off-by: Bharata B Rao <bharata@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20211004105706.3669-2-bharata@amd.com
|
|
Simplify and make wake_up_if_idle() more robust, also don't iterate
the whole machine with preempt_disable() in it's caller:
wake_up_all_idle_cpus().
This prepares for another wake_up_if_idle() user that needs a full
do_idle() cycle.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390
Link: https://lkml.kernel.org/r/20210929152428.769328779@infradead.org
|
|
Give try_invoke_on_locked_down_task() a saner name and have it return
an int so that the caller might distinguish between different reasons
of failure.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390
Link: https://lkml.kernel.org/r/20210929152428.649944917@infradead.org
|
|
Clarify and tighten try_invoke_on_locked_down_task().
Basically the function calls @func under task_rq_lock(), except it
avoids taking rq->lock when possible.
This makes calling @func unconditional (the function will get renamed
in a later patch to remove the try).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Tested-by: Vasily Gorbik <gor@linux.ibm.com> # on s390
Link: https://lkml.kernel.org/r/20210929152428.589323576@infradead.org
|
|
When !SCHEDSTATS schedstat_enabled() is an unconditional 0 and the
whole block doesn't exist, however GCC figures the scoped variable
'stats' is unused and complains about it.
Upgrade the warning from -Wunused-variable to -Wunused-but-set-variable
by writing it in two statements. This fixes the build because the new
warning is in W=1.
Given that whole if(0) {} thing, I don't feel motivated to change
things overly much and quite strongly feel this is the compiler being
daft.
Fixes: cb3e971c435d ("sched: Make struct sched_statistics independent of fair sched class")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Since commit 89aafd67f28c ("sched/fair: Use prev instead of new target as recent_used_cpu"),
p->recent_used_cpu is unconditionnaly set with prev.
Fixes: 89aafd67f28c ("sched/fair: Use prev instead of new target as recent_used_cpu")
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210928103544.27489-1-vincent.guittot@linaro.org
|
|
Neither wq_worker_sleeping() nor io_wq_worker_sleeping() require to be invoked
with preemption disabled:
- The worker flag checks operations only need to be serialized against
the worker thread itself.
- The accounting and worker pool operations are serialized with locks.
which means that disabling preemption has neither a reason nor a
value. Remove it and update the stale comment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Link: https://lkml.kernel.org/r/8735pnafj7.ffs@tglx
|
|
Doing cleanups in the tail of schedule() is a latency punishment for the
incoming task. The point of invoking kprobes_task_flush() for a dead task
is that the instances are returned and cannot leak when __schedule() is
kprobed.
Move it into the delayed cleanup.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.537994026@linutronix.de
|
|
The queued remote wakeup mechanism has turned out to be suboptimal for RT
enabled kernels. The maximum latencies go up by a factor of > 5x in certain
scenarious.
This is caused by either long wake lists or by a large number of TTWU IPIs
which are processed back to back.
Disable it for RT.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.482262764@linutronix.de
|
|
Batched task migrations are a source for large latencies as they keep the
scheduler from running while processing the migrations.
Limit the batch size to 8 instead of 32 when running on a RT enabled
kernel.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.425097596@linutronix.de
|
|
mmdrop() is invoked from finish_task_switch() by the incoming task to drop
the mm which was handed over by the previous task. mmdrop() can be quite
expensive which prevents an incoming real-time task from getting useful
work done.
Provide mmdrop_sched() which maps to mmdrop() on !RT kernels. On RT kernels
it delagates the eventually required invocation of __mmdrop() to RCU.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210928122411.648582026@linutronix.de
|
|
Make cookie functions static as these are no longer invoked directly
by other code.
No functional change intended.
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210922085735.52812-1-zhangshaokun@hisilicon.com
|
|
When deciding to pull tasks in ASYM_PACKING, it is necessary not only to
check for the idle state of the destination CPU, dst_cpu, but also of
its SMT siblings.
If dst_cpu is idle but its SMT siblings are busy, performance suffers
if it pulls tasks from a medium priority CPU that does not have SMT
siblings.
Implement asym_smt_can_pull_tasks() to inspect the state of the SMT
siblings of both dst_cpu and the CPUs in the candidate busiest group.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-7-ricardo.neri-calderon@linux.intel.com
|
|
Create a separate function, sched_asym(). A subsequent changeset will
introduce logic to deal with SMT in conjunction with asmymmetric
packing. Such logic will need the statistics of the scheduling
group provided as argument. Update them before calling sched_asym().
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-6-ricardo.neri-calderon@linux.intel.com
|
|
Before deciding to pull tasks when using asymmetric packing of tasks,
on some architectures (e.g., x86) it is necessary to know not only the
state of dst_cpu but also of its SMT siblings. The decision to classify
a candidate busiest group as group_asym_packing is done in
update_sg_lb_stats(). Give this function access to the scheduling domain
statistics, which contains the statistics of the local group.
Originally-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-5-ricardo.neri-calderon@linux.intel.com
|
|
sched_asmy_prefer() always returns false when called on the local group. By
checking local_group, we can avoid additional checks and invoking
sched_asmy_prefer() when it is not needed. No functional changes are
introduced.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-4-ricardo.neri-calderon@linux.intel.com
|
|
There exist situations in which the load balance needs to know the
properties of the CPUs in a scheduling group. When using asymmetric
packing, for instance, the load balancer needs to know not only the
state of dst_cpu but also of its SMT siblings, if any.
Use the flags of the child scheduling domains to initialize scheduling
group flags. This will reflect the properties of the CPUs in the
group.
A subsequent changeset will make use of these new flags. No functional
changes are introduced.
Originally-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210911011819.12184-3-ricardo.neri-calderon@linux.intel.com
|
|
Currently the boot defined preempt behaviour (aka dynamic preempt)
selects full preemption by default when the "preempt=" boot parameter
is omitted. However distros may rather want to default to either
no preemption or voluntary preemption.
To provide with this flexibility, make dynamic preemption a visible
Kconfig option and adapt the preemption behaviour selected by the user
to either static or dynamic preemption.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210914103134.11309-1-frederic@kernel.org
|
|
These is no caller in tree since commit
523e979d3164 ("sched/core: Use PELT for scale_rt_capacity()")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210914095244.52780-1-yuehaibing@huawei.com
|
|
After we make the struct sched_statistics and the helpers of it
independent of fair sched class, we can easily use the schedstats
facility for deadline sched class.
The schedstat usage in DL sched class is similar with fair sched class,
for example,
fair deadline
enqueue update_stats_enqueue_fair update_stats_enqueue_dl
dequeue update_stats_dequeue_fair update_stats_dequeue_dl
put_prev_task update_stats_wait_start update_stats_wait_start_dl
set_next_task update_stats_wait_end update_stats_wait_end_dl
The user can get the schedstats information in the same way in fair sched
class. For example,
fair deadline
/proc/[pid]/sched /proc/[pid]/sched
The output of a deadline task's schedstats as follows,
$ cat /proc/69662/sched
...
se.sum_exec_runtime : 3067.696449
se.nr_migrations : 0
sum_sleep_runtime : 720144.029661
sum_block_runtime : 0.547853
wait_start : 0.000000
sleep_start : 14131540.828955
block_start : 0.000000
sleep_max : 2999.974045
block_max : 0.283637
exec_max : 1.000269
slice_max : 0.000000
wait_max : 0.002217
wait_sum : 0.762179
wait_count : 733
iowait_sum : 0.547853
iowait_count : 3
nr_migrations_cold : 0
nr_failed_migrations_affine : 0
nr_failed_migrations_running : 0
nr_failed_migrations_hot : 0
nr_forced_migrations : 0
nr_wakeups : 246
nr_wakeups_sync : 2
nr_wakeups_migrate : 0
nr_wakeups_local : 244
nr_wakeups_remote : 2
nr_wakeups_affine : 0
nr_wakeups_affine_attempts : 0
nr_wakeups_passive : 0
nr_wakeups_idle : 0
...
The sched:sched_stat_{wait, sleep, iowait, blocked} tracepoints can
be used to trace deadlline tasks as well.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-9-laoar.shao@gmail.com
|
|
The runtime of a DL task has already been there, so we only need to
add a tracepoint.
One difference between fair task and DL task is that there is no vruntime
in dl task. To reuse the sched_stat_runtime tracepoint, '0' is passed as
vruntime for DL task.
The output of this tracepoint for DL task as follows,
top-36462 [047] d.h. 6083.452103: sched_stat_runtime: comm=top pid=36462 runtime=409898 [ns] vruntime=0 [ns]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-8-laoar.shao@gmail.com
|
|
We want to measure the latency of RT tasks in our production
environment with schedstats facility, but currently schedstats is only
supported for fair sched class. This patch enable it for RT sched class
as well.
After we make the struct sched_statistics and the helpers of it
independent of fair sched class, we can easily use the schedstats
facility for RT sched class.
The schedstat usage in RT sched class is similar with fair sched class,
for example,
fair RT
enqueue update_stats_enqueue_fair update_stats_enqueue_rt
dequeue update_stats_dequeue_fair update_stats_dequeue_rt
put_prev_task update_stats_wait_start update_stats_wait_start_rt
set_next_task update_stats_wait_end update_stats_wait_end_rt
The user can get the schedstats information in the same way in fair sched
class. For example,
fair RT
/proc/[pid]/sched /proc/[pid]/sched
schedstats is not supported for RT group.
The output of a RT task's schedstats as follows,
$ cat /proc/10349/sched
...
sum_sleep_runtime : 972.434535
sum_block_runtime : 960.433522
wait_start : 188510.871584
sleep_start : 0.000000
block_start : 0.000000
sleep_max : 12.001013
block_max : 952.660622
exec_max : 0.049629
slice_max : 0.000000
wait_max : 0.018538
wait_sum : 0.424340
wait_count : 49
iowait_sum : 956.495640
iowait_count : 24
nr_migrations_cold : 0
nr_failed_migrations_affine : 0
nr_failed_migrations_running : 0
nr_failed_migrations_hot : 0
nr_forced_migrations : 0
nr_wakeups : 49
nr_wakeups_sync : 0
nr_wakeups_migrate : 0
nr_wakeups_local : 49
nr_wakeups_remote : 0
nr_wakeups_affine : 0
nr_wakeups_affine_attempts : 0
nr_wakeups_passive : 0
nr_wakeups_idle : 0
...
The sched:sched_stat_{wait, sleep, iowait, blocked} tracepoints can
be used to trace RT tasks as well. The output of these tracepoints for a
RT tasks as follows,
- runtime
stress-10352 [004] d.h. 1035.382286: sched_stat_runtime: comm=stress pid=10352 runtime=995769 [ns] vruntime=0 [ns]
[vruntime=0 means it is a RT task]
- wait
<idle>-0 [004] dN.. 1227.688544: sched_stat_wait: comm=stress pid=10352 delay=46849882 [ns]
- blocked
kworker/4:1-465 [004] dN.. 1585.676371: sched_stat_blocked: comm=stress pid=17194 delay=189963 [ns]
- iowait
kworker/4:1-465 [004] dN.. 1585.675330: sched_stat_iowait: comm=stress pid=17189 delay=182848 [ns]
- sleep
sleep-18194 [023] dN.. 1780.891840: sched_stat_sleep: comm=sleep.sh pid=17767 delay=1001160770 [ns]
sleep-18196 [023] dN.. 1781.893208: sched_stat_sleep: comm=sleep.sh pid=17767 delay=1001161970 [ns]
sleep-18197 [023] dN.. 1782.894544: sched_stat_sleep: comm=sleep.sh pid=17767 delay=1001128840 [ns]
[ In sleep.sh, it sleeps 1 sec each time. ]
[lkp@intel.com: reported build failure in earlier version]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-7-laoar.shao@gmail.com
|
|
The runtime of a RT task has already been there, so we only need to
add a tracepoint.
One difference between fair task and RT task is that there is no vruntime
in RT task. To reuse the sched_stat_runtime tracepoint, '0' is passed as
vruntime for RT task.
The output of this tracepoint for RT task as follows,
stress-9748 [039] d.h. 113.519352: sched_stat_runtime: comm=stress pid=9748 runtime=997573 [ns] vruntime=0 [ns]
stress-9748 [039] d.h. 113.520352: sched_stat_runtime: comm=stress pid=9748 runtime=997627 [ns] vruntime=0 [ns]
stress-9748 [039] d.h. 113.521352: sched_stat_runtime: comm=stress pid=9748 runtime=998203 [ns] vruntime=0 [ns]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-6-laoar.shao@gmail.com
|
|
Currently in schedstats we have sum_sleep_runtime and iowait_sum, but
there's no metric to show how long the task is in D state. Once a task in
D state, it means the task is blocked in the kernel, for example the
task may be waiting for a mutex. The D state is more frequent than
iowait, and it is more critital than S state. So it is worth to add a
metric to measure it.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210905143547.4668-5-laoar.shao@gmail.com
|
|
The original prototype of the schedstats helpers are
update_stats_wait_*(struct cfs_rq *cfs_rq, struct sched_entity *se)
The cfs_rq in these helpers is used to get the rq_clock, and the se is
used to get the struct sched_statistics and the struct task_struct. In
order to make these helpers available by all sched classes, we can pass
the rq, sched_statistics and task_struct directly.
Then the new helpers are
update_stats_wait_*(struct rq *rq, struct task_struct *p,
struct sched_statistics *stats)
which are independent of fair sched class.
To avoid vmlinux growing too large or introducing ovehead when
!schedstat_enabled(), some new helpers after schedstat_enabled() are also
introduced, Suggested by Mel. These helpers are in sched/stats.c,
__update_stats_wait_*(struct rq *rq, struct task_struct *p,
struct sched_statistics *stats)
The size of vmlinux as follows,
Before After
Size of vmlinux 826308552 826304640
The size is a litte smaller as some functions are not inlined again after
the change.
I also compared the sched performance with 'perf bench sched pipe',
suggested by Mel. The result as followsi (in usecs/op),
Before After
kernel.sched_schedstats=0 5.2~5.4 5.2~5.4
kernel.sched_schedstats=1 5.3~5.5 5.3~5.5
[These data is a little difference with the prev version, that is
because my old test machine is destroyed so I have to use a new
different test machine.]
Almost no difference.
No functional change.
[lkp@intel.com: reported build failure in prev version]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-4-laoar.shao@gmail.com
|
|
If we want to use the schedstats facility to trace other sched classes, we
should make it independent of fair sched class. The struct sched_statistics
is the schedular statistics of a task_struct or a task_group. So we can
move it into struct task_struct and struct task_group to achieve the goal.
After the patch, schestats are orgnized as follows,
struct task_struct {
...
struct sched_entity se;
struct sched_rt_entity rt;
struct sched_dl_entity dl;
...
struct sched_statistics stats;
...
};
Regarding the task group, schedstats is only supported for fair group
sched, and a new struct sched_entity_stats is introduced, suggested by
Peter -
struct sched_entity_stats {
struct sched_entity se;
struct sched_statistics stats;
} __no_randomize_layout;
Then with the se in a task_group, we can easily get the stats.
The sched_statistics members may be frequently modified when schedstats is
enabled, in order to avoid impacting on random data which may in the same
cacheline with them, the struct sched_statistics is defined as cacheline
aligned.
As this patch changes the core struct of scheduler, so I verified the
performance it may impact on the scheduler with 'perf bench sched
pipe', suggested by Mel. Below is the result, in which all the values
are in usecs/op.
Before After
kernel.sched_schedstats=0 5.2~5.4 5.2~5.4
kernel.sched_schedstats=1 5.3~5.5 5.3~5.5
[These data is a little difference with the earlier version, that is
because my old test machine is destroyed so I have to use a new
different test machine.]
Almost no impact on the sched performance.
No functional change.
[lkp@intel.com: reported build failure in earlier version]
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-3-laoar.shao@gmail.com
|
|
schedstat_enabled() has been already checked, so we can use
__schedstat_set() directly.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/20210905143547.4668-2-laoar.shao@gmail.com
|
|
Two new statistics are introduced to show the internal of burst feature
and explain why burst helps or not.
nr_bursts: number of periods bandwidth burst occurs
burst_time: cumulative wall-time (in nanoseconds) that any cpus has
used above quota in respective periods
Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20210830032215.16302-2-changhuaixin@linux.alibaba.com
|
|
Give reduced sleeper credit to SCHED_IDLE entities. As a result, woken
SCHED_IDLE entities will take longer to preempt normal entities.
The benefit of this change is to make it less likely that a newly woken
SCHED_IDLE entity will preempt a short-running normal entity before it
blocks.
We still give a small sleeper credit to SCHED_IDLE entities, so that
idle<->idle competition retains some fairness.
Example: With HZ=1000, spawned four threads affined to one cpu, one of
which was set to SCHED_IDLE. Without this patch, wakeup latency for the
SCHED_IDLE thread was ~1-2ms, with the patch the wakeup latency was
~5ms.
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Jiang Biao <benbjiang@tencent.com>
Link: https://lore.kernel.org/r/20210820010403.946838-5-joshdon@google.com
|
|
Use a small, non-scaled min granularity for SCHED_IDLE entities, when
competing with normal entities. This reduces the latency of getting
a normal entity back on cpu, at the expense of increased context
switch frequency of SCHED_IDLE entities.
The benefit of this change is to reduce the round-robin latency for
normal entities when competing with a SCHED_IDLE entity.
Example: on a machine with HZ=1000, spawned two threads, one of which is
SCHED_IDLE, and affined to one cpu. Without this patch, the SCHED_IDLE
thread runs for 4ms then waits for 1.4s. With this patch, it runs for
1ms and waits 340ms (as it round-robins with the other thread).
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20210820010403.946838-4-joshdon@google.com
|