Age | Commit message (Collapse) | Author |
|
Turn BPF_PROG_RUN into a proper always inlined function. No functional and
performance changes are intended, but it makes it much easier to understand
what's going on with how BPF programs are actually get executed. It's more
obvious what types and callbacks are expected. Also extra () around input
parameters can be dropped, as well as `__` variable prefixes intended to avoid
naming collisions, which makes the code simpler to read and write.
This refactoring also highlighted one extra issue. BPF_PROG_RUN is both
a macro and an enum value (BPF_PROG_RUN == BPF_PROG_TEST_RUN). Turning
BPF_PROG_RUN into a function causes naming conflict compilation error. So
rename BPF_PROG_RUN into lower-case bpf_prog_run(), similar to
bpf_prog_run_xdp(), bpf_prog_run_pin_on_cpu(), etc. All existing callers of
BPF_PROG_RUN, the macro, are switched to bpf_prog_run() explicitly.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210815070609.987780-2-andrii@kernel.org
|
|
/proc/net/unix uses "%c" to print a single-byte character to escape '\0' in
the name of the abstract UNIX domain socket. The following selftest uses
it, so this patch adds support for "%c". Note that it does not support
wide character ("%lc" and "%llc") for simplicity.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210814015718.42704-3-kuniyu@amazon.co.jp
|
|
This is similar to existing BPF_PROG_TYPE_CGROUP_SOCK
and BPF_PROG_TYPE_CGROUP_SOCK_ADDR.
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210813230530.333779-2-sdf@google.com
|
|
Conflicts:
drivers/net/ethernet/broadcom/bnxt/bnxt_ptp.h
9e26680733d5 ("bnxt_en: Update firmware call to retrieve TX PTP timestamp")
9e518f25802c ("bnxt_en: 1PPS functions to configure TSIO pins")
099fdeda659d ("bnxt_en: Event handler for PPS events")
kernel/bpf/helpers.c
include/linux/bpf-cgroup.h
a2baf4e8bb0f ("bpf: Fix potentially incorrect results with bpf_get_local_storage()")
c7603cfa04e7 ("bpf: Add ambient BPF runtime context stored in current")
drivers/net/ethernet/mellanox/mlx5/core/pci_irq.c
5957cc557dc5 ("net/mlx5: Set all field of mlx5_irq before inserting it to the xarray")
2d0b41a37679 ("net/mlx5: Refcount mlx5_irq with integer")
MAINTAINERS
7b637cd52f02 ("MAINTAINERS: fix Microchip CAN BUS Analyzer Tool entry typo")
7d901a1e878a ("net: phy: add Maxlinear GPY115/21x/24x driver")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Networking fixes, including fixes from netfilter, bpf, can and
ieee802154.
The size of this is pretty normal, but we got more fixes for 5.14
changes this week than last week. Nothing major but the trend is the
opposite of what we like. We'll see how the next week goes..
Current release - regressions:
- r8169: fix ASPM-related link-up regressions
- bridge: fix flags interpretation for extern learn fdb entries
- phy: micrel: fix link detection on ksz87xx switch
- Revert "tipc: Return the correct errno code"
- ptp: fix possible memory leak caused by invalid cast
Current release - new code bugs:
- bpf: add missing bpf_read_[un]lock_trace() for syscall program
- bpf: fix potentially incorrect results with bpf_get_local_storage()
- page_pool: mask the page->signature before the checking, avoid dma
mapping leaks
- netfilter: nfnetlink_hook: 5 fixes to information in netlink dumps
- bnxt_en: fix firmware interface issues with PTP
- mlx5: Bridge, fix ageing time
Previous releases - regressions:
- linkwatch: fix failure to restore device state across
suspend/resume
- bareudp: fix invalid read beyond skb's linear data
Previous releases - always broken:
- bpf: fix integer overflow involving bucket_size
- ppp: fix issues when desired interface name is specified via
netlink
- wwan: mhi_wwan_ctrl: fix possible deadlock
- dsa: microchip: ksz8795: fix number of VLAN related bugs
- dsa: drivers: fix broken backpressure in .port_fdb_dump
- dsa: qca: ar9331: make proper initial port defaults
Misc:
- bpf: add lockdown check for probe_write_user helper
- netfilter: conntrack: remove offload_pickup sysctl before 5.14 is
out
- netfilter: conntrack: collect all entries in one cycle,
heuristically slow down garbage collection scans on idle systems to
prevent frequent wake ups"
* tag 'net-5.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (87 commits)
vsock/virtio: avoid potential deadlock when vsock device remove
wwan: core: Avoid returning NULL from wwan_create_dev()
net: dsa: sja1105: unregister the MDIO buses during teardown
Revert "tipc: Return the correct errno code"
net: mscc: Fix non-GPL export of regmap APIs
net: igmp: increase size of mr_ifc_count
MAINTAINERS: switch to my OMP email for Renesas Ethernet drivers
tcp_bbr: fix u32 wrap bug in round logic if bbr_init() called after 2B packets
net: pcs: xpcs: fix error handling on failed to allocate memory
net: linkwatch: fix failure to restore device state across suspend/resume
net: bridge: fix memleak in br_add_if()
net: switchdev: zero-initialize struct switchdev_notifier_fdb_info emitted by drivers towards the bridge
net: bridge: fix flags interpretation for extern learn fdb entries
net: dsa: sja1105: fix broken backpressure in .port_fdb_dump
net: dsa: lantiq: fix broken backpressure in .port_fdb_dump
net: dsa: lan9303: fix broken backpressure in .port_fdb_dump
net: dsa: hellcreek: fix broken backpressure in .port_fdb_dump
bpf, core: Fix kernel-doc notation
net: igmp: fix data-race in igmp_ifc_timer_expire()
net: Fix memory leak in ieee802154_raw_deliver
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull ucounts fix from Eric Biederman:
"This fixes the ucount sysctls on big endian architectures.
The counts were expanded to be longs instead of ints, and the sysctl
code was overlooked, so only the low 32bit were being processed. On
litte endian just processing the low 32bits is fine, but on 64bit big
endian processing just the low 32bits results in the high order bits
instead of the low order bits being processed and nothing works
proper.
This change took a little bit to mature as we have the SYSCTL_ZERO,
and SYSCTL_INT_MAX macros that are only usable for sysctls operating
on ints, but unfortunately are not obviously broken. Which resulted in
the versions of this change working on big endian and not on little
endian, because the int SYSCTL_ZERO when extended 64bit wound up being
0x100000000. So we only allowed values greater than 0x100000000 and
less than 0faff. Which unfortunately broken everything that tried to
set the sysctls. (First reported with the windows subsystem for
linux).
I have tested this on x86_64 64bit after first reproducing the
problems with the earlier version of this change, and then verifying
the problems do not exist when we use appropriate long min and max
values for extra1 and extra2"
* 'for-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
ucounts: add missing data type changes
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull seccomp fixes from Kees Cook:
- Fix typo in user notification documentation (Rodrigo Campos)
- Fix userspace counter report when using TSYNC (Hsuan-Chi Kuo, Wiktor
Garbacz)
* tag 'seccomp-v5.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
seccomp: Fix setting loaded filter count during TSYNC
Documentation: seccomp: Fix typo in user notification
|
|
The desired behavior is to set the caller's filter count to thread's.
This value is reported via /proc, so this fixes the inaccurate count
exposed to userspace; it is not used for reference counting, etc.
Signed-off-by: Hsuan-Chi Kuo <hsuanchikuo@gmail.com>
Link: https://lore.kernel.org/r/20210304233708.420597-1-hsuanchikuo@gmail.com
Co-developed-by: Wiktor Garbacz <wiktorg@google.com>
Signed-off-by: Wiktor Garbacz <wiktorg@google.com>
Link: https://lore.kernel.org/lkml/20210810125158.329849-1-wiktorg@google.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Fixes: c818c03b661c ("seccomp: Report number of loaded filters in /proc/$pid/status")
|
|
Daniel Borkmann says:
====================
bpf-next 2021-08-10
We've added 31 non-merge commits during the last 8 day(s) which contain
a total of 28 files changed, 3644 insertions(+), 519 deletions(-).
1) Native XDP support for bonding driver & related BPF selftests, from Jussi Maki.
2) Large batch of new BPF JIT tests for test_bpf.ko that came out as a result from
32-bit MIPS JIT development, from Johan Almbladh.
3) Rewrite of netcnt BPF selftest and merge into test_progs, from Stanislav Fomichev.
4) Fix XDP bpf_prog_test_run infra after net to net-next merge, from Andrii Nakryiko.
5) Follow-up fix in unix_bpf_update_proto() to enforce socket type, from Cong Wang.
6) Fix bpf-iter-tcp4 selftest to print the correct dest IP, from Jose Blanquicet.
7) Various misc BPF XDP sample improvements, from Niklas Söderlund, Matthew Cover,
and Muhammad Falak R Wani.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (31 commits)
bpf, tests: Add tail call test suite
bpf, tests: Add tests for BPF_CMPXCHG
bpf, tests: Add tests for atomic operations
bpf, tests: Add test for 32-bit context pointer argument passing
bpf, tests: Add branch conversion JIT test
bpf, tests: Add word-order tests for load/store of double words
bpf, tests: Add tests for ALU operations implemented with function calls
bpf, tests: Add more ALU64 BPF_MUL tests
bpf, tests: Add more BPF_LSH/RSH/ARSH tests for ALU64
bpf, tests: Add more ALU32 tests for BPF_LSH/RSH/ARSH
bpf, tests: Add more tests of ALU32 and ALU64 bitwise operations
bpf, tests: Fix typos in test case descriptions
bpf, tests: Add BPF_MOV tests for zero and sign extension
bpf, tests: Add BPF_JMP32 test cases
samples, bpf: Add an explict comment to handle nested vlan tagging.
selftests/bpf: Add tests for XDP bonding
selftests/bpf: Fix xdp_tx.c prog section name
net, core: Allow netdev_lower_get_next_private_rcu in bh context
bpf, devmap: Exclude XDP broadcast to master device
net, bonding: Add XDP support to the bonding driver
...
====================
Link: https://lore.kernel.org/r/20210810130038.16927-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Fix kernel-doc warnings in kernel/bpf/core.c (found by scripts/kernel-doc
and W=1 builds). That is, correct a function name in a comment and add
return descriptions for 2 functions.
Fixes these kernel-doc warnings:
kernel/bpf/core.c:1372: warning: expecting prototype for __bpf_prog_run(). Prototype was for ___bpf_prog_run() instead
kernel/bpf/core.c:1372: warning: No description found for return value of '___bpf_prog_run'
kernel/bpf/core.c:1883: warning: No description found for return value of 'bpf_prog_select_runtime'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210809215229.7556-1-rdunlap@infradead.org
|
|
Commit b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage()
helper") fixed a bug for bpf_get_local_storage() helper so different tasks
won't mess up with each other's percpu local storage.
The percpu data contains 8 slots so it can hold up to 8 contexts (same or
different tasks), for 8 different program runs, at the same time. This in
general is sufficient. But our internal testing showed the following warning
multiple times:
[...]
warning: WARNING: CPU: 13 PID: 41661 at include/linux/bpf-cgroup.h:193
__cgroup_bpf_run_filter_sock_ops+0x13e/0x180
RIP: 0010:__cgroup_bpf_run_filter_sock_ops+0x13e/0x180
<IRQ>
tcp_call_bpf.constprop.99+0x93/0xc0
tcp_conn_request+0x41e/0xa50
? tcp_rcv_state_process+0x203/0xe00
tcp_rcv_state_process+0x203/0xe00
? sk_filter_trim_cap+0xbc/0x210
? tcp_v6_inbound_md5_hash.constprop.41+0x44/0x160
tcp_v6_do_rcv+0x181/0x3e0
tcp_v6_rcv+0xc65/0xcb0
ip6_protocol_deliver_rcu+0xbd/0x450
ip6_input_finish+0x11/0x20
ip6_input+0xb5/0xc0
ip6_sublist_rcv_finish+0x37/0x50
ip6_sublist_rcv+0x1dc/0x270
ipv6_list_rcv+0x113/0x140
__netif_receive_skb_list_core+0x1a0/0x210
netif_receive_skb_list_internal+0x186/0x2a0
gro_normal_list.part.170+0x19/0x40
napi_complete_done+0x65/0x150
mlx5e_napi_poll+0x1ae/0x680
__napi_poll+0x25/0x120
net_rx_action+0x11e/0x280
__do_softirq+0xbb/0x271
irq_exit_rcu+0x97/0xa0
common_interrupt+0x7f/0xa0
</IRQ>
asm_common_interrupt+0x1e/0x40
RIP: 0010:bpf_prog_1835a9241238291a_tw_egress+0x5/0xbac
? __cgroup_bpf_run_filter_skb+0x378/0x4e0
? do_softirq+0x34/0x70
? ip6_finish_output2+0x266/0x590
? ip6_finish_output+0x66/0xa0
? ip6_output+0x6c/0x130
? ip6_xmit+0x279/0x550
? ip6_dst_check+0x61/0xd0
[...]
Using drgn [0] to dump the percpu buffer contents showed that on this CPU
slot 0 is still available, but slots 1-7 are occupied and those tasks in
slots 1-7 mostly don't exist any more. So we might have issues in
bpf_cgroup_storage_unset().
Further debugging confirmed that there is a bug in bpf_cgroup_storage_unset().
Currently, it tries to unset "current" slot with searching from the start.
So the following sequence is possible:
1. A task is running and claims slot 0
2. Running BPF program is done, and it checked slot 0 has the "task"
and ready to reset it to NULL (not yet).
3. An interrupt happens, another BPF program runs and it claims slot 1
with the *same* task.
4. The unset() in interrupt context releases slot 0 since it matches "task".
5. Interrupt is done, the task in process context reset slot 0.
At the end, slot 1 is not reset and the same process can continue to occupy
slots 2-7 and finally, when the above step 1-5 is repeated again, step 3 BPF
program won't be able to claim an empty slot and a warning will be issued.
To fix the issue, for unset() function, we should traverse from the last slot
to the first. This way, the above issue can be avoided.
The same reverse traversal should also be done in bpf_get_local_storage() helper
itself. Otherwise, incorrect local storage may be returned to BPF program.
[0] https://github.com/osandov/drgn
Fixes: b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810010413.1976277-1-yhs@fb.com
|
|
Back then, commit 96ae52279594 ("bpf: Add bpf_probe_write_user BPF helper
to be called in tracers") added the bpf_probe_write_user() helper in order
to allow to override user space memory. Its original goal was to have a
facility to "debug, divert, and manipulate execution of semi-cooperative
processes" under CAP_SYS_ADMIN. Write to kernel was explicitly disallowed
since it would otherwise tamper with its integrity.
One use case was shown in cf9b1199de27 ("samples/bpf: Add test/example of
using bpf_probe_write_user bpf helper") where the program DNATs traffic
at the time of connect(2) syscall, meaning, it rewrites the arguments to
a syscall while they're still in userspace, and before the syscall has a
chance to copy the argument into kernel space. These days we have better
mechanisms in BPF for achieving the same (e.g. for load-balancers), but
without having to write to userspace memory.
Of course the bpf_probe_write_user() helper can also be used to abuse
many other things for both good or bad purpose. Outside of BPF, there is
a similar mechanism for ptrace(2) such as PTRACE_PEEK{TEXT,DATA} and
PTRACE_POKE{TEXT,DATA}, but would likely require some more effort.
Commit 96ae52279594 explicitly dedicated the helper for experimentation
purpose only. Thus, move the helper's availability behind a newly added
LOCKDOWN_BPF_WRITE_USER lockdown knob so that the helper is disabled under
the "integrity" mode. More fine-grained control can be implemented also
from LSM side with this change.
Fixes: 96ae52279594 ("bpf: Add bpf_probe_write_user BPF helper to be called in tracers")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fix from Tejun Heo:
"One commit to fix a possible A-A deadlock around u64_stats_sync on
32bit machines caused by updating it without disabling IRQ when it may
be read from IRQ context"
* 'for-5.14-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: rstat: fix A-A deadlock on 32bit around u64_stats_sync
|
|
If the ingress device is bond slave, do not broadcast back through it or
the bond master.
Signed-off-by: Jussi Maki <joamaki@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210731055738.16820-5-joamaki@gmail.com
|
|
commit f9c82a4ea89c3 ("Increase size of ucounts to atomic_long_t")
changed the data type of ucounts/ucounts_max to long, but missed to
adjust a few other places. This is noticeable on big endian platforms
from user space because the /proc/sys/user/max_*_names files all
contain 0.
v4 - Made the min and max constants long so the sysctl values
are actually settable on little endian machines.
-- EWB
Fixes: f9c82a4ea89c ("Increase size of ucounts to atomic_long_t")
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Acked-by: Alexey Gladkov <legion@kernel.org>
v1: https://lkml.kernel.org/r/20210721115800.910778-1-svens@linux.ibm.com
v2: https://lkml.kernel.org/r/20210721125233.1041429-1-svens@linux.ibm.com
v3: https://lkml.kernel.org/r/20210730062854.3601635-1-svens@linux.ibm.com
Link: https://lkml.kernel.org/r/8735rijqlv.fsf_-_@disp2133
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Rename LOCKDOWN_BPF_READ into LOCKDOWN_BPF_READ_KERNEL so we have naming
more consistent with a LOCKDOWN_BPF_WRITE_USER option that we are adding.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fix from Thomas Gleixner:
"A single timer fix:
- Prevent a memory ordering issue in the timer expiry code which
makes it possible to observe falsely that the callback has been
executed already while that's not the case, which violates the
guarantee of del_timer_sync()"
* tag 'timers-urgent-2021-08-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timers: Move clearing of base::timer_running under base:: Lock
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fix from Thomas Gleixner:
"A single scheduler fix:
- Prevent a double enqueue caused by rt_effective_prio() being
invoked twice in __sched_setscheduler()"
* tag 'sched-urgent-2021-08-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/rt: Fix double enqueue caused by rt_effective_prio
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Thomas Gleixner:
"A set of perf fixes:
- Correct the permission checks for perf event which send SIGTRAP to
a different process and clean up that code to be more readable.
- Prevent an out of bound MSR access in the x86 perf code which
happened due to an incomplete limiting to the actually available
hardware counters.
- Prevent access to the AMD64_EVENTSEL_HOSTONLY bit when running
inside a guest.
- Handle small core counter re-enabling correctly by issuing an ACK
right before reenabling it to prevent a stale PEBS record being
kept around"
* tag 'perf-urgent-2021-08-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Apply mid ACK for small core
perf/x86/amd: Don't touch the AMD64_EVENTSEL_HOSTONLY bit inside the guest
perf/x86: Fix out of bound MSR access
perf: Refactor permissions check into perf_check_permission()
perf: Fix required permissions if sigtrap is requested
|
|
Daniel Borkmann says:
====================
pull-request: bpf 2021-08-07
The following pull-request contains BPF updates for your *net* tree.
We've added 4 non-merge commits during the last 9 day(s) which contain
a total of 4 files changed, 8 insertions(+), 7 deletions(-).
The main changes are:
1) Fix integer overflow in htab's lookup + delete batch op, from Tatsuhiko Yasumatsu.
2) Fix invalid fd 0 close in libbpf if BTF parsing failed, from Daniel Xu.
3) Fix libbpf feature probe for BPF_PROG_TYPE_CGROUP_SOCKOPT, from Robin Gögge.
4) Fix minor libbpf doc warning regarding code-block language, from Randy Dunlap.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In __htab_map_lookup_and_delete_batch(), hash buckets are iterated
over to count the number of elements in each bucket (bucket_size).
If bucket_size is large enough, the multiplication to calculate
kvmalloc() size could overflow, resulting in out-of-bounds write
as reported by KASAN:
[...]
[ 104.986052] BUG: KASAN: vmalloc-out-of-bounds in __htab_map_lookup_and_delete_batch+0x5ce/0xb60
[ 104.986489] Write of size 4194224 at addr ffffc9010503be70 by task crash/112
[ 104.986889]
[ 104.987193] CPU: 0 PID: 112 Comm: crash Not tainted 5.14.0-rc4 #13
[ 104.987552] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
[ 104.988104] Call Trace:
[ 104.988410] dump_stack_lvl+0x34/0x44
[ 104.988706] print_address_description.constprop.0+0x21/0x140
[ 104.988991] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60
[ 104.989327] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60
[ 104.989622] kasan_report.cold+0x7f/0x11b
[ 104.989881] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60
[ 104.990239] kasan_check_range+0x17c/0x1e0
[ 104.990467] memcpy+0x39/0x60
[ 104.990670] __htab_map_lookup_and_delete_batch+0x5ce/0xb60
[ 104.990982] ? __wake_up_common+0x4d/0x230
[ 104.991256] ? htab_of_map_free+0x130/0x130
[ 104.991541] bpf_map_do_batch+0x1fb/0x220
[...]
In hashtable, if the elements' keys have the same jhash() value, the
elements will be put into the same bucket. By putting a lot of elements
into a single bucket, the value of bucket_size can be increased to
trigger the integer overflow.
Triggering the overflow is possible for both callers with CAP_SYS_ADMIN
and callers without CAP_SYS_ADMIN.
It will be trivial for a caller with CAP_SYS_ADMIN to intentionally
reach this overflow by enabling BPF_F_ZERO_SEED. As this flag will set
the random seed passed to jhash() to 0, it will be easy for the caller
to prepare keys which will be hashed into the same value, and thus put
all the elements into the same bucket.
If the caller does not have CAP_SYS_ADMIN, BPF_F_ZERO_SEED cannot be
used. However, it will be still technically possible to trigger the
overflow, by guessing the random seed value passed to jhash() (32bit)
and repeating the attempt to trigger the overflow. In this case,
the probability to trigger the overflow will be low and will take
a very long time.
Fix the integer overflow by calling kvmalloc_array() instead of
kvmalloc() to allocate memory.
Fixes: 057996380a42 ("bpf: Add batch ops to all htab bpf map")
Signed-off-by: Tatsuhiko Yasumatsu <th.yasumatsu@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210806150419.109658-1-th.yasumatsu@gmail.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"Fix tracepoint race between static_call and callback data
As callbacks to a tracepoint are paired with the data that is passed
in when the callback is registered to the tracepoint, it must have
that data passed to the callback when the tracepoint is triggered,
else bad things will happen. To keep the two together, they are both
assigned to a tracepoint structure and added to an array. The
tracepoint call site will dereference the structure (via RCU) and call
the callback in that structure along with the data in that structure.
This keeps the callback and data tightly coupled.
Because of the overhead that retpolines have on tracepoint callbacks,
if there's only one callback attached to a tracepoint (a common case),
then it is called via a static call (code modified to do a direct call
instead of an indirect call). But to implement this, the data had to
be decoupled from the callback, as now the callback is implemented via
a direct call from the static call and not an indirect call from the
dereferenced structure.
Note, the static call only calls a callback used when there's a single
callback attached to the tracepoint. If more than one callback is
attached to the same tracepoint, then the static call will call an
iterator function that goes back to dereferencing the structure
keeping the callback and its data tightly coupled again.
Issues can arise when going from 0 callbacks to one, as the static
call is assigned to the callback, and it must take care that the data
passed to it is loaded before the static call calls the callback.
Going from 1 to 2 callbacks is not an issue, as long as the static
call is updated to the iterator before the tracepoint structure array
is updated via RCU. Going from 2 to more or back down to 2 is not an
issue as the iterator can handle all theses cases. But going from 2 to
1, care must be taken as the static call is now calling a callback and
the data that is loaded must be the data for that callback.
Care was taken to ensure the callback and data would be in-sync, but
after a bug was reported, it became clear that not enough was done to
make sure that was the case. These changes address this.
The first change is to compare the old and new data instead of the old
and new callback, as it's the data that can corrupt the callback, even
if the callback is the same (something getting freed).
The next change is to convert these transitions into states, to make
it easier to know when a synchronization is needed, and to perform
those synchronizations. The problem with this patch is that it slows
down disabling all events from under a second, to making it take over
10 seconds to do the same work. But that is addressed in the final
patch.
The final patch uses the RCU state functions to keep track of the RCU
state between the transitions, and only needs to perform the
synchronization if an RCU synchronization hasn't been done already.
This brings the performance of disabling all events back to its
original value. That's because no synchronization is required between
disabling tracepoints but is required when enabling a tracepoint after
its been disabled. If an RCU synchronization happens after the
tracepoint is disabled, and before it is re-enabled, there's no need
to do the synchronization again.
Both the second and third patch have subtle complexities that they are
separated into two patches. But because the second patch causes such a
regression in performance, the third patch adds a "Fixes" tag to the
second patch, such that the two must be backported together and not
just the second patch"
* tag 'trace-v5.14-rc4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracepoint: Use rcu get state and cond sync for static call updates
tracepoint: Fix static call function vs data state mismatch
tracepoint: static call: Compare data on transition from 2->1 callees
|
|
State transitions from 1->0->1 and N->2->1 callbacks require RCU
synchronization. Rather than performing the RCU synchronization every
time the state change occurs, which is quite slow when many tracepoints
are registered in batch, instead keep a snapshot of the RCU state on the
most recent transitions which belong to a chain, and conditionally wait
for a grace period on the last transition of the chain if one g.p. has
not elapsed since the last snapshot.
This applies to both RCU and SRCU.
This brings the performance regression caused by commit 231264d6927f
("Fix: tracepoint: static call function vs data state mismatch") back to
what it was originally.
Before this commit:
# trace-cmd start -e all
# time trace-cmd start -p nop
real 0m10.593s
user 0m0.017s
sys 0m0.259s
After this commit:
# trace-cmd start -e all
# time trace-cmd start -p nop
real 0m0.878s
user 0m0.000s
sys 0m0.103s
Link: https://lkml.kernel.org/r/20210805192954.30688-1-mathieu.desnoyers@efficios.com
Link: https://lore.kernel.org/io-uring/4ebea8f0-58c9-e571-fd30-0ce4f6f09c70@samba.org/
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Stefan Metzmacher <metze@samba.org>
Fixes: 231264d6927f ("Fix: tracepoint: static call function vs data state mismatch")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Build failure in drivers/net/wwan/mhi_wwan_mbim.c:
add missing parameter (0, assuming we don't want buffer pre-alloc).
Conflict in drivers/net/dsa/sja1105/sja1105_main.c between:
589918df9322 ("net: dsa: sja1105: be stateless with FDB entries on SJA1105P/Q/R/S/SJA1110 too")
0fac6aa098ed ("net: dsa: sja1105: delete the best_effort_vlan_filtering mode")
Follow the instructions from the commit message of the former commit
- removed the if conditions. When looking at commit 589918df9322 ("net:
dsa: sja1105: be stateless with FDB entries on SJA1105P/Q/R/S/SJA1110 too")
note that the mask_iotag fields get removed by the following patch.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
On a 1->0->1 callbacks transition, there is an issue with the new
callback using the old callback's data.
Considering __DO_TRACE_CALL:
do { \
struct tracepoint_func *it_func_ptr; \
void *__data; \
it_func_ptr = \
rcu_dereference_raw((&__tracepoint_##name)->funcs); \
if (it_func_ptr) { \
__data = (it_func_ptr)->data; \
----> [ delayed here on one CPU (e.g. vcpu preempted by the host) ]
static_call(tp_func_##name)(__data, args); \
} \
} while (0)
It has loaded the tp->funcs of the old callback, so it will try to use the old
data. This can be fixed by adding a RCU sync anywhere in the 1->0->1
transition chain.
On a N->2->1 transition, we need an rcu-sync because you may have a
sequence of 3->2->1 (or 1->2->1) where the element 0 data is unchanged
between 2->1, but was changed from 3->2 (or from 1->2), which may be
observed by the static call. This can be fixed by adding an
unconditional RCU sync in transition 2->1.
Note, this fixes a correctness issue at the cost of adding a tremendous
performance regression to the disabling of tracepoints.
Before this commit:
# trace-cmd start -e all
# time trace-cmd start -p nop
real 0m0.778s
user 0m0.000s
sys 0m0.061s
After this commit:
# trace-cmd start -e all
# time trace-cmd start -p nop
real 0m10.593s
user 0m0.017s
sys 0m0.259s
A follow up fix will introduce a more lightweight scheme based on RCU
get_state and cond_sync, that will return the performance back to what it
was. As both this change and the lightweight versions are complex on their
own, for bisecting any issues that this may cause, they are kept as two
separate changes.
Link: https://lkml.kernel.org/r/20210805132717.23813-3-mathieu.desnoyers@efficios.com
Link: https://lore.kernel.org/io-uring/4ebea8f0-58c9-e571-fd30-0ce4f6f09c70@samba.org/
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Stefan Metzmacher <metze@samba.org>
Fixes: d25e37d89dd2 ("tracepoint: Optimize using static_call()")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
On transition from 2->1 callees, we should be comparing .data rather
than .func, because the same callback can be registered twice with
different data, and what we care about here is that the data of array
element 0 is unchanged to skip rcu sync.
Link: https://lkml.kernel.org/r/20210805132717.23813-2-mathieu.desnoyers@efficios.com
Link: https://lore.kernel.org/io-uring/4ebea8f0-58c9-e571-fd30-0ce4f6f09c70@samba.org/
Cc: stable@vger.kernel.org
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Stefan Metzmacher <metze@samba.org>
Fixes: 547305a64632 ("tracepoint: Fix out of sync data passing by static caller")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull ucounts fix from Eric Biederman:
"Fix a subtle locking versus reference counting bug in the ucount
changes, found by syzbot"
* 'for-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
ucounts: Fix race condition between alloc_ucounts and put_ucounts
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"Various tracing fixes:
- Fix NULL pointer dereference caused by an error path
- Give histogram calculation fields a size, otherwise it breaks
synthetic creation based on them.
- Reject strings being used for number calculations.
- Fix recordmcount.pl warning on llvm building RISC-V allmodconfig
- Fix the draw_functrace.py script to handle the new trace output
- Fix warning of smp_processor_id() in preemptible code"
* tag 'trace-v5.14-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Quiet smp_processor_id() use in preemptable warning in hwlat
scripts/tracing: fix the bug that can't parse raw_trace_func
scripts/recordmcount.pl: Remove check_objcopy() and $can_use_local
tracing: Reject string operand in the histogram expression
tracing / histogram: Give calculation hist_fields a size
tracing: Fix NULL pointer dereference in start_creating
|
|
The hardware latency detector (hwlat) has a mode that it runs one thread
across CPUs. The logic to move from the currently running CPU to the next
one in the list does a smp_processor_id() to find where it currently is.
Unfortunately, it's done with preemption enabled, and this triggers a
warning for using smp_processor_id() in a preempt enabled section.
As it is only using smp_processor_id() to get information on where it
currently is in order to simply move it to the next CPU, it doesn't really
care if it got moved in the mean time. It will simply balance out later if
such a case arises.
Switch smp_processor_id() to raw_smp_processor_id() to quiet that warning.
Link: https://lkml.kernel.org/r/20210804141848.79edadc0@oasis.local.home
Acked-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Fixes: 8fa826b7344d ("trace/hwlat: Implement the mode config option")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Since the string type can not be the target of the addition / subtraction
operation, it must be rejected. Without this fix, the string type silently
converted to digits.
Link: https://lkml.kernel.org/r/162742654278.290973.1523000673366456634.stgit@devnote2
Cc: stable@vger.kernel.org
Fixes: 100719dcef447 ("tracing: Add simple expression support to hist triggers")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
When working on my user space applications, I found a bug in the synthetic
event code where the automated synthetic event field was not matching the
event field calculation it was attached to. Looking deeper into it, it was
because the calculation hist_field was not given a size.
The synthetic event fields are matched to their hist_fields either by
having the field have an identical string type, or if that does not match,
then the size and signed values are used to match the fields.
The problem arose when I tried to match a calculation where the fields
were "unsigned int". My tool created a synthetic event of type "u32". But
it failed to match. The string was:
diff=field1-field2:onmatch(event).trace(synth,$diff)
Adding debugging into the kernel, I found that the size of "diff" was 0.
And since it was given "unsigned int" as a type, the histogram fallback
code used size and signed. The signed matched, but the size of u32 (4) did
not match zero, and the event failed to be created.
This can be worse if the field you want to match is not one of the
acceptable fields for a synthetic event. As event fields can have any type
that is supported in Linux, this can cause an issue. For example, if a
type is an enum. Then there's no way to use that with any calculations.
Have the calculation field simply take on the size of what it is
calculating.
Link: https://lkml.kernel.org/r/20210730171951.59c7743f@oasis.local.home
Cc: Tom Zanussi <zanussi@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes: 100719dcef447 ("tracing: Add simple expression support to hist triggers")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Double enqueues in rt runqueues (list) have been reported while running
a simple test that spawns a number of threads doing a short sleep/run
pattern while being concurrently setscheduled between rt and fair class.
WARNING: CPU: 3 PID: 2825 at kernel/sched/rt.c:1294 enqueue_task_rt+0x355/0x360
CPU: 3 PID: 2825 Comm: setsched__13
RIP: 0010:enqueue_task_rt+0x355/0x360
Call Trace:
__sched_setscheduler+0x581/0x9d0
_sched_setscheduler+0x63/0xa0
do_sched_setscheduler+0xa0/0x150
__x64_sys_sched_setscheduler+0x1a/0x30
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
list_add double add: new=ffff9867cb629b40, prev=ffff9867cb629b40,
next=ffff98679fc67ca0.
kernel BUG at lib/list_debug.c:31!
invalid opcode: 0000 [#1] PREEMPT_RT SMP PTI
CPU: 3 PID: 2825 Comm: setsched__13
RIP: 0010:__list_add_valid+0x41/0x50
Call Trace:
enqueue_task_rt+0x291/0x360
__sched_setscheduler+0x581/0x9d0
_sched_setscheduler+0x63/0xa0
do_sched_setscheduler+0xa0/0x150
__x64_sys_sched_setscheduler+0x1a/0x30
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
__sched_setscheduler() uses rt_effective_prio() to handle proper queuing
of priority boosted tasks that are setscheduled while being boosted.
rt_effective_prio() is however called twice per each
__sched_setscheduler() call: first directly by __sched_setscheduler()
before dequeuing the task and then by __setscheduler() to actually do
the priority change. If the priority of the pi_top_task is concurrently
being changed however, it might happen that the two calls return
different results. If, for example, the first call returned the same rt
priority the task was running at and the second one a fair priority, the
task won't be removed by the rt list (on_list still set) and then
enqueued in the fair runqueue. When eventually setscheduled back to rt
it will be seen as enqueued already and the WARNING/BUG be issued.
Fix this by calling rt_effective_prio() only once and then reusing the
return value. While at it refactor code as well for clarity. Concurrent
priority inheritance handling is still safe and will eventually converge
to a new state by following the inheritance chain(s).
Fixes: 0782e63bc6fe ("sched: Handle priority boosted tasks proper in setscheduler()")
[squashed Peterz changes; added changelog]
Reported-by: Mark Simmons <msimmons@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210803104501.38333-1-juri.lelli@redhat.com
|
|
Before, the interpreter allowed up to MAX_TAIL_CALL_CNT + 1 tail calls.
Now precisely MAX_TAIL_CALL_CNT is allowed, which is in line with the
behavior of the x86 JITs.
Signed-off-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210728164741.350370-1-johan.almbladh@anyfinetworks.com
|
|
Andrii Nakryiko says:
====================
bpf-next 2021-07-30
We've added 64 non-merge commits during the last 15 day(s) which contain
a total of 83 files changed, 5027 insertions(+), 1808 deletions(-).
The main changes are:
1) BTF-guided binary data dumping libbpf API, from Alan.
2) Internal factoring out of libbpf CO-RE relocation logic, from Alexei.
3) Ambient BPF run context and cgroup storage cleanup, from Andrii.
4) Few small API additions for libbpf 1.0 effort, from Evgeniy and Hengqi.
5) bpf_program__attach_kprobe_opts() fixes in libbpf, from Jiri.
6) bpf_{get,set}sockopt() support in BPF iterators, from Martin.
7) BPF map pinning improvements in libbpf, from Martynas.
8) Improved module BTF support in libbpf and bpftool, from Quentin.
9) Bpftool cleanups and documentation improvements, from Quentin.
10) Libbpf improvements for supporting CO-RE on old kernels, from Shuyi.
11) Increased maximum cgroup storage size, from Stanislav.
12) Small fixes and improvements to BPF tests and samples, from various folks.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (64 commits)
tools: bpftool: Complete metrics list in "bpftool prog profile" doc
tools: bpftool: Document and add bash completion for -L, -B options
selftests/bpf: Update bpftool's consistency script for checking options
tools: bpftool: Update and synchronise option list in doc and help msg
tools: bpftool: Complete and synchronise attach or map types
selftests/bpf: Check consistency between bpftool source, doc, completion
tools: bpftool: Slightly ease bash completion updates
unix_bpf: Fix a potential deadlock in unix_dgram_bpf_recvmsg()
libbpf: Add btf__load_vmlinux_btf/btf__load_module_btf
tools: bpftool: Support dumping split BTF by id
libbpf: Add split BTF support for btf__load_from_kernel_by_id()
tools: Replace btf__get_from_id() with btf__load_from_kernel_by_id()
tools: Free BTF objects at various locations
libbpf: Rename btf__get_from_id() as btf__load_from_kernel_by_id()
libbpf: Rename btf__load() as btf__load_into_kernel()
libbpf: Return non-null error on failures in libbpf_find_prog_btf_id()
bpf: Emit better log message if bpf_iter ctx arg btf_id == 0
tools/resolve_btfids: Emit warnings and patch zero id for missing symbols
bpf: Increase supported cgroup storage value size
libbpf: Fix race when pinning maps in parallel
...
====================
Link: https://lore.kernel.org/r/20210730225606.1897330-1-andrii@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Conflicting commits, all resolutions pretty trivial:
drivers/bus/mhi/pci_generic.c
5c2c85315948 ("bus: mhi: pci-generic: configurable network interface MRU")
56f6f4c4eb2a ("bus: mhi: pci_generic: Apply no-op for wake using sideband wake boolean")
drivers/nfc/s3fwrn5/firmware.c
a0302ff5906a ("nfc: s3fwrn5: remove unnecessary label")
46573e3ab08f ("nfc: s3fwrn5: fix undefined parameter values in dev_err()")
801e541c79bb ("nfc: s3fwrn5: fix undefined parameter values in dev_err()")
MAINTAINERS
7d901a1e878a ("net: phy: add Maxlinear GPY115/21x/24x driver")
8a7b46fa7902 ("MAINTAINERS: add Yasushi SHOJI as reviewer for the Microchip CAN BUS Analyzer Tool driver")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Networking fixes for 5.14-rc4, including fixes from bpf, can, WiFi
(mac80211) and netfilter trees.
Current release - regressions:
- mac80211: fix starting aggregation sessions on mesh interfaces
Current release - new code bugs:
- sctp: send pmtu probe only if packet loss in Search Complete state
- bnxt_en: add missing periodic PHC overflow check
- devlink: fix phys_port_name of virtual port and merge error
- hns3: change the method of obtaining default ptp cycle
- can: mcba_usb_start(): add missing urb->transfer_dma initialization
Previous releases - regressions:
- set true network header for ECN decapsulation
- mlx5e: RX, avoid possible data corruption w/ relaxed ordering and
LRO
- phy: re-add check for PHY_BRCM_DIS_TXCRXC_NOENRGY on the BCM54811
PHY
- sctp: fix return value check in __sctp_rcv_asconf_lookup
Previous releases - always broken:
- bpf:
- more spectre corner case fixes, introduce a BPF nospec
instruction for mitigating Spectre v4
- fix OOB read when printing XDP link fdinfo
- sockmap: fix cleanup related races
- mac80211: fix enabling 4-address mode on a sta vif after assoc
- can:
- raw: raw_setsockopt(): fix raw_rcv panic for sock UAF
- j1939: j1939_session_deactivate(): clarify lifetime of session
object, avoid UAF
- fix number of identical memory leaks in USB drivers
- tipc:
- do not blindly write skb_shinfo frags when doing decryption
- fix sleeping in tipc accept routine"
* tag 'net-5.14-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (91 commits)
gve: Update MAINTAINERS list
can: esd_usb2: fix memory leak
can: ems_usb: fix memory leak
can: usb_8dev: fix memory leak
can: mcba_usb_start(): add missing urb->transfer_dma initialization
can: hi311x: fix a signedness bug in hi3110_cmd()
MAINTAINERS: add Yasushi SHOJI as reviewer for the Microchip CAN BUS Analyzer Tool driver
bpf: Fix leakage due to insufficient speculative store bypass mitigation
bpf: Introduce BPF nospec instruction for mitigating Spectre v4
sis900: Fix missing pci_disable_device() in probe and remove
net: let flow have same hash in two directions
nfc: nfcsim: fix use after free during module unload
tulip: windbond-840: Fix missing pci_disable_device() in probe and remove
sctp: fix return value check in __sctp_rcv_asconf_lookup
nfc: s3fwrn5: fix undefined parameter values in dev_err()
net/mlx5: Fix mlx5_vport_tbl_attr chain from u16 to u32
net/mlx5e: Fix nullptr in mlx5e_hairpin_get_mdev()
net/mlx5: Unload device upon firmware fatal error
net/mlx5e: Fix page allocation failure for ptp-RQ over SF
net/mlx5e: Fix page allocation failure for trap-RQ over SF
...
|
|
The event_trace_add_tracer() can fail. In this case, it leads to a crash
in start_creating with below call stack. Handle the error scenario
properly in trace_array_create_dir.
Call trace:
down_write+0x7c/0x204
start_creating.25017+0x6c/0x194
tracefs_create_file+0xc4/0x2b4
init_tracer_tracefs+0x5c/0x940
trace_array_create_dir+0x58/0xb4
trace_array_create+0x1bc/0x2b8
trace_array_get_by_name+0xdc/0x18c
Link: https://lkml.kernel.org/r/1627651386-21315-1-git-send-email-kamaagra@codeaurora.org
Cc: stable@vger.kernel.org
Fixes: 4114fbfd02f1 ("tracing: Enable creating new instance early boot")
Signed-off-by: Kamal Agrawal <kamaagra@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
To avoid kernel build failure due to some missing .BTF-ids referenced
functions/types, the patch ([1]) tries to fill btf_id 0 for
these types.
In bpf verifier, for percpu variable and helper returning btf_id cases,
verifier already emitted proper warning with something like
verbose(env, "Helper has invalid btf_id in R%d\n", regno);
verbose(env, "invalid return type %d of func %s#%d\n",
fn->ret_type, func_id_name(func_id), func_id);
But this is not the case for bpf_iter context arguments.
I hacked resolve_btfids to encode btf_id 0 for struct task_struct.
With `./test_progs -n 7/5`, I got,
0: (79) r2 = *(u64 *)(r1 +0)
func 'bpf_iter_task' arg0 has btf_id 29739 type STRUCT 'bpf_iter_meta'
; struct seq_file *seq = ctx->meta->seq;
1: (79) r6 = *(u64 *)(r2 +0)
; struct task_struct *task = ctx->task;
2: (79) r7 = *(u64 *)(r1 +8)
; if (task == (void *)0) {
3: (55) if r7 != 0x0 goto pc+11
...
; BPF_SEQ_PRINTF(seq, "%8d %8d\n", task->tgid, task->pid);
26: (61) r1 = *(u32 *)(r7 +1372)
Type '(anon)' is not a struct
Basically, verifier will return btf_id 0 for task_struct.
Later on, when the code tries to access task->tgid, the
verifier correctly complains the type is '(anon)' and it is
not a struct. Users still need to backtrace to find out
what is going on.
Let us catch the invalid btf_id 0 earlier
and provide better message indicating btf_id is wrong.
The new error message looks like below:
R1 type=ctx expected=fp
; struct seq_file *seq = ctx->meta->seq;
0: (79) r2 = *(u64 *)(r1 +0)
func 'bpf_iter_task' arg0 has btf_id 29739 type STRUCT 'bpf_iter_meta'
; struct seq_file *seq = ctx->meta->seq;
1: (79) r6 = *(u64 *)(r2 +0)
; struct task_struct *task = ctx->task;
2: (79) r7 = *(u64 *)(r1 +8)
invalid btf_id for context argument offset 8
invalid bpf_context access off=8 size=8
[1] https://lore.kernel.org/bpf/20210727132532.2473636-1-hengqi.chen@gmail.com/
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210728183025.1461750-1-yhs@fb.com
|
|
Daniel Borkmann says:
====================
pull-request: bpf 2021-07-29
The following pull-request contains BPF updates for your *net* tree.
We've added 9 non-merge commits during the last 14 day(s) which contain
a total of 20 files changed, 446 insertions(+), 138 deletions(-).
The main changes are:
1) Fix UBSAN out-of-bounds splat for showing XDP link fdinfo, from Lorenz Bauer.
2) Fix insufficient Spectre v4 mitigation in BPF runtime, from Daniel Borkmann,
Piotr Krysiuk and Benedict Schlueter.
3) Batch of fixes for BPF sockmap found under stress testing, from John Fastabend.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Spectre v4 gadgets make use of memory disambiguation, which is a set of
techniques that execute memory access instructions, that is, loads and
stores, out of program order; Intel's optimization manual, section 2.4.4.5:
A load instruction micro-op may depend on a preceding store. Many
microarchitectures block loads until all preceding store addresses are
known. The memory disambiguator predicts which loads will not depend on
any previous stores. When the disambiguator predicts that a load does
not have such a dependency, the load takes its data from the L1 data
cache. Eventually, the prediction is verified. If an actual conflict is
detected, the load and all succeeding instructions are re-executed.
af86ca4e3088 ("bpf: Prevent memory disambiguation attack") tried to mitigate
this attack by sanitizing the memory locations through preemptive "fast"
(low latency) stores of zero prior to the actual "slow" (high latency) store
of a pointer value such that upon dependency misprediction the CPU then
speculatively executes the load of the pointer value and retrieves the zero
value instead of the attacker controlled scalar value previously stored at
that location, meaning, subsequent access in the speculative domain is then
redirected to the "zero page".
The sanitized preemptive store of zero prior to the actual "slow" store is
done through a simple ST instruction based on r10 (frame pointer) with
relative offset to the stack location that the verifier has been tracking
on the original used register for STX, which does not have to be r10. Thus,
there are no memory dependencies for this store, since it's only using r10
and immediate constant of zero; hence af86ca4e3088 /assumed/ a low latency
operation.
However, a recent attack demonstrated that this mitigation is not sufficient
since the preemptive store of zero could also be turned into a "slow" store
and is thus bypassed as well:
[...]
// r2 = oob address (e.g. scalar)
// r7 = pointer to map value
31: (7b) *(u64 *)(r10 -16) = r2
// r9 will remain "fast" register, r10 will become "slow" register below
32: (bf) r9 = r10
// JIT maps BPF reg to x86 reg:
// r9 -> r15 (callee saved)
// r10 -> rbp
// train store forward prediction to break dependency link between both r9
// and r10 by evicting them from the predictor's LRU table.
33: (61) r0 = *(u32 *)(r7 +24576)
34: (63) *(u32 *)(r7 +29696) = r0
35: (61) r0 = *(u32 *)(r7 +24580)
36: (63) *(u32 *)(r7 +29700) = r0
37: (61) r0 = *(u32 *)(r7 +24584)
38: (63) *(u32 *)(r7 +29704) = r0
39: (61) r0 = *(u32 *)(r7 +24588)
40: (63) *(u32 *)(r7 +29708) = r0
[...]
543: (61) r0 = *(u32 *)(r7 +25596)
544: (63) *(u32 *)(r7 +30716) = r0
// prepare call to bpf_ringbuf_output() helper. the latter will cause rbp
// to spill to stack memory while r13/r14/r15 (all callee saved regs) remain
// in hardware registers. rbp becomes slow due to push/pop latency. below is
// disasm of bpf_ringbuf_output() helper for better visual context:
//
// ffffffff8117ee20: 41 54 push r12
// ffffffff8117ee22: 55 push rbp
// ffffffff8117ee23: 53 push rbx
// ffffffff8117ee24: 48 f7 c1 fc ff ff ff test rcx,0xfffffffffffffffc
// ffffffff8117ee2b: 0f 85 af 00 00 00 jne ffffffff8117eee0 <-- jump taken
// [...]
// ffffffff8117eee0: 49 c7 c4 ea ff ff ff mov r12,0xffffffffffffffea
// ffffffff8117eee7: 5b pop rbx
// ffffffff8117eee8: 5d pop rbp
// ffffffff8117eee9: 4c 89 e0 mov rax,r12
// ffffffff8117eeec: 41 5c pop r12
// ffffffff8117eeee: c3 ret
545: (18) r1 = map[id:4]
547: (bf) r2 = r7
548: (b7) r3 = 0
549: (b7) r4 = 4
550: (85) call bpf_ringbuf_output#194288
// instruction 551 inserted by verifier \
551: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here
// storing map value pointer r7 at fp-16 | since value of r10 is "slow".
552: (7b) *(u64 *)(r10 -16) = r7 /
// following "fast" read to the same memory location, but due to dependency
// misprediction it will speculatively execute before insn 551/552 completes.
553: (79) r2 = *(u64 *)(r9 -16)
// in speculative domain contains attacker controlled r2. in non-speculative
// domain this contains r7, and thus accesses r7 +0 below.
554: (71) r3 = *(u8 *)(r2 +0)
// leak r3
As can be seen, the current speculative store bypass mitigation which the
verifier inserts at line 551 is insufficient since /both/, the write of
the zero sanitation as well as the map value pointer are a high latency
instruction due to prior memory access via push/pop of r10 (rbp) in contrast
to the low latency read in line 553 as r9 (r15) which stays in hardware
registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally,
fp-16 can still be r2.
Initial thoughts to address this issue was to track spilled pointer loads
from stack and enforce their load via LDX through r10 as well so that /both/
the preemptive store of zero /as well as/ the load use the /same/ register
such that a dependency is created between the store and load. However, this
option is not sufficient either since it can be bypassed as well under
speculation. An updated attack with pointer spill/fills now _all_ based on
r10 would look as follows:
[...]
// r2 = oob address (e.g. scalar)
// r7 = pointer to map value
[...]
// longer store forward prediction training sequence than before.
2062: (61) r0 = *(u32 *)(r7 +25588)
2063: (63) *(u32 *)(r7 +30708) = r0
2064: (61) r0 = *(u32 *)(r7 +25592)
2065: (63) *(u32 *)(r7 +30712) = r0
2066: (61) r0 = *(u32 *)(r7 +25596)
2067: (63) *(u32 *)(r7 +30716) = r0
// store the speculative load address (scalar) this time after the store
// forward prediction training.
2068: (7b) *(u64 *)(r10 -16) = r2
// preoccupy the CPU store port by running sequence of dummy stores.
2069: (63) *(u32 *)(r7 +29696) = r0
2070: (63) *(u32 *)(r7 +29700) = r0
2071: (63) *(u32 *)(r7 +29704) = r0
2072: (63) *(u32 *)(r7 +29708) = r0
2073: (63) *(u32 *)(r7 +29712) = r0
2074: (63) *(u32 *)(r7 +29716) = r0
2075: (63) *(u32 *)(r7 +29720) = r0
2076: (63) *(u32 *)(r7 +29724) = r0
2077: (63) *(u32 *)(r7 +29728) = r0
2078: (63) *(u32 *)(r7 +29732) = r0
2079: (63) *(u32 *)(r7 +29736) = r0
2080: (63) *(u32 *)(r7 +29740) = r0
2081: (63) *(u32 *)(r7 +29744) = r0
2082: (63) *(u32 *)(r7 +29748) = r0
2083: (63) *(u32 *)(r7 +29752) = r0
2084: (63) *(u32 *)(r7 +29756) = r0
2085: (63) *(u32 *)(r7 +29760) = r0
2086: (63) *(u32 *)(r7 +29764) = r0
2087: (63) *(u32 *)(r7 +29768) = r0
2088: (63) *(u32 *)(r7 +29772) = r0
2089: (63) *(u32 *)(r7 +29776) = r0
2090: (63) *(u32 *)(r7 +29780) = r0
2091: (63) *(u32 *)(r7 +29784) = r0
2092: (63) *(u32 *)(r7 +29788) = r0
2093: (63) *(u32 *)(r7 +29792) = r0
2094: (63) *(u32 *)(r7 +29796) = r0
2095: (63) *(u32 *)(r7 +29800) = r0
2096: (63) *(u32 *)(r7 +29804) = r0
2097: (63) *(u32 *)(r7 +29808) = r0
2098: (63) *(u32 *)(r7 +29812) = r0
// overwrite scalar with dummy pointer; same as before, also including the
// sanitation store with 0 from the current mitigation by the verifier.
2099: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here
2100: (7b) *(u64 *)(r10 -16) = r7 | since store unit is still busy.
// load from stack intended to bypass stores.
2101: (79) r2 = *(u64 *)(r10 -16)
2102: (71) r3 = *(u8 *)(r2 +0)
// leak r3
[...]
Looking at the CPU microarchitecture, the scheduler might issue loads (such
as seen in line 2101) before stores (line 2099,2100) because the load execution
units become available while the store execution unit is still busy with the
sequence of dummy stores (line 2069-2098). And so the load may use the prior
stored scalar from r2 at address r10 -16 for speculation. The updated attack
may work less reliable on CPU microarchitectures where loads and stores share
execution resources.
This concludes that the sanitizing with zero stores from af86ca4e3088 ("bpf:
Prevent memory disambiguation attack") is insufficient. Moreover, the detection
of stack reuse from af86ca4e3088 where previously data (STACK_MISC) has been
written to a given stack slot where a pointer value is now to be stored does
not have sufficient coverage as precondition for the mitigation either; for
several reasons outlined as follows:
1) Stack content from prior program runs could still be preserved and is
therefore not "random", best example is to split a speculative store
bypass attack between tail calls, program A would prepare and store the
oob address at a given stack slot and then tail call into program B which
does the "slow" store of a pointer to the stack with subsequent "fast"
read. From program B PoV such stack slot type is STACK_INVALID, and
therefore also must be subject to mitigation.
2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr)
condition, for example, the previous content of that memory location could
also be a pointer to map or map value. Without the fix, a speculative
store bypass is not mitigated in such precondition and can then lead to
a type confusion in the speculative domain leaking kernel memory near
these pointer types.
While brainstorming on various alternative mitigation possibilities, we also
stumbled upon a retrospective from Chrome developers [0]:
[...] For variant 4, we implemented a mitigation to zero the unused memory
of the heap prior to allocation, which cost about 1% when done concurrently
and 4% for scavenging. Variant 4 defeats everything we could think of. We
explored more mitigations for variant 4 but the threat proved to be more
pervasive and dangerous than we anticipated. For example, stack slots used
by the register allocator in the optimizing compiler could be subject to
type confusion, leading to pointer crafting. Mitigating type confusion for
stack slots alone would have required a complete redesign of the backend of
the optimizing compiler, perhaps man years of work, without a guarantee of
completeness. [...]
From BPF side, the problem space is reduced, however, options are rather
limited. One idea that has been explored was to xor-obfuscate pointer spills
to the BPF stack:
[...]
// preoccupy the CPU store port by running sequence of dummy stores.
[...]
2106: (63) *(u32 *)(r7 +29796) = r0
2107: (63) *(u32 *)(r7 +29800) = r0
2108: (63) *(u32 *)(r7 +29804) = r0
2109: (63) *(u32 *)(r7 +29808) = r0
2110: (63) *(u32 *)(r7 +29812) = r0
// overwrite scalar with dummy pointer; xored with random 'secret' value
// of 943576462 before store ...
2111: (b4) w11 = 943576462
2112: (af) r11 ^= r7
2113: (7b) *(u64 *)(r10 -16) = r11
2114: (79) r11 = *(u64 *)(r10 -16)
2115: (b4) w2 = 943576462
2116: (af) r2 ^= r11
// ... and restored with the same 'secret' value with the help of AX reg.
2117: (71) r3 = *(u8 *)(r2 +0)
[...]
While the above would not prevent speculation, it would make data leakage
infeasible by directing it to random locations. In order to be effective
and prevent type confusion under speculation, such random secret would have
to be regenerated for each store. The additional complexity involved for a
tracking mechanism that prevents jumps such that restoring spilled pointers
would not get corrupted is not worth the gain for unprivileged. Hence, the
fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC
instruction which the x86 JIT translates into a lfence opcode. Inserting the
latter in between the store and load instruction is one of the mitigations
options [1]. The x86 instruction manual notes:
[...] An LFENCE that follows an instruction that stores to memory might
complete before the data being stored have become globally visible. [...]
The latter meaning that the preceding store instruction finished execution
and the store is at minimum guaranteed to be in the CPU's store queue, but
it's not guaranteed to be in that CPU's L1 cache at that point (globally
visible). The latter would only be guaranteed via sfence. So the load which
is guaranteed to execute after the lfence for that local CPU would have to
rely on store-to-load forwarding. [2], in section 2.3 on store buffers says:
[...] For every store operation that is added to the ROB, an entry is
allocated in the store buffer. This entry requires both the virtual and
physical address of the target. Only if there is no free entry in the store
buffer, the frontend stalls until there is an empty slot available in the
store buffer again. Otherwise, the CPU can immediately continue adding
subsequent instructions to the ROB and execute them out of order. On Intel
CPUs, the store buffer has up to 56 entries. [...]
One small upside on the fix is that it lifts constraints from af86ca4e3088
where the sanitize_stack_off relative to r10 must be the same when coming
from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX
or BPF_ST instruction. This happens either when we store a pointer or data
value to the BPF stack for the first time, or upon later pointer spills.
The former needs to be enforced since otherwise stale stack data could be
leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST |
BPF_NOSPEC mapping is currently optimized away, but others could emit a
speculation barrier as well if necessary. For real-world unprivileged
programs e.g. generated by LLVM, pointer spill/fill is only generated upon
register pressure and LLVM only tries to do that for pointers which are not
used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC
sanitation for the STACK_INVALID case when the first write to a stack slot
occurs e.g. upon map lookup. In future we might refine ways to mitigate
the latter cost.
[0] https://arxiv.org/pdf/1902.05178.pdf
[1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
[2] https://arxiv.org/pdf/1905.05725.pdf
Fixes: af86ca4e3088 ("bpf: Prevent memory disambiguation attack")
Fixes: f7cf25b2026d ("bpf: track spill/fill of constants")
Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
In case of JITs, each of the JIT backends compiles the BPF nospec instruction
/either/ to a machine instruction which emits a speculation barrier /or/ to
/no/ machine instruction in case the underlying architecture is not affected
by Speculative Store Bypass or has different mitigations in place already.
This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence'
instruction for mitigation. In case of arm64, we rely on the firmware mitigation
as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled,
it works for all of the kernel code with no need to provide any additional
instructions here (hence only comment in arm64 JIT). Other archs can follow
as needed. The BPF nospec instruction is specifically targeting Spectre v4
since i) we don't use a serialization barrier for the Spectre v1 case, and
ii) mitigation instructions for v1 and v4 might be different on some archs.
The BPF nospec is required for a future commit, where the BPF verifier does
annotate intermediate BPF programs with speculation barriers.
Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
The race happens because put_ucounts() doesn't use spinlock and
get_ucounts is not under spinlock:
CPU0 CPU1
---- ----
alloc_ucounts() put_ucounts()
spin_lock_irq(&ucounts_lock);
ucounts = find_ucounts(ns, uid, hashent);
atomic_dec_and_test(&ucounts->count))
spin_unlock_irq(&ucounts_lock);
spin_lock_irqsave(&ucounts_lock, flags);
hlist_del_init(&ucounts->node);
spin_unlock_irqrestore(&ucounts_lock, flags);
kfree(ucounts);
ucounts = get_ucounts(ucounts);
==================================================================
BUG: KASAN: use-after-free in instrument_atomic_read_write include/linux/instrumented.h:101 [inline]
BUG: KASAN: use-after-free in atomic_add_negative include/asm-generic/atomic-instrumented.h:556 [inline]
BUG: KASAN: use-after-free in get_ucounts kernel/ucount.c:152 [inline]
BUG: KASAN: use-after-free in get_ucounts kernel/ucount.c:150 [inline]
BUG: KASAN: use-after-free in alloc_ucounts+0x19b/0x5b0 kernel/ucount.c:188
Write of size 4 at addr ffff88802821e41c by task syz-executor.4/16785
CPU: 1 PID: 16785 Comm: syz-executor.4 Not tainted 5.14.0-rc1-next-20210712-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:105
print_address_description.constprop.0.cold+0x6c/0x309 mm/kasan/report.c:233
__kasan_report mm/kasan/report.c:419 [inline]
kasan_report.cold+0x83/0xdf mm/kasan/report.c:436
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0x13d/0x180 mm/kasan/generic.c:189
instrument_atomic_read_write include/linux/instrumented.h:101 [inline]
atomic_add_negative include/asm-generic/atomic-instrumented.h:556 [inline]
get_ucounts kernel/ucount.c:152 [inline]
get_ucounts kernel/ucount.c:150 [inline]
alloc_ucounts+0x19b/0x5b0 kernel/ucount.c:188
set_cred_ucounts+0x171/0x3a0 kernel/cred.c:684
__sys_setuid+0x285/0x400 kernel/sys.c:623
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x4665d9
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fde54097188 EFLAGS: 00000246 ORIG_RAX: 0000000000000069
RAX: ffffffffffffffda RBX: 000000000056bf80 RCX: 00000000004665d9
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00000000000000ff
RBP: 00000000004bfcb9 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000056bf80
R13: 00007ffc8655740f R14: 00007fde54097300 R15: 0000000000022000
Allocated by task 16784:
kasan_save_stack+0x1b/0x40 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:46 [inline]
set_alloc_info mm/kasan/common.c:434 [inline]
____kasan_kmalloc mm/kasan/common.c:513 [inline]
____kasan_kmalloc mm/kasan/common.c:472 [inline]
__kasan_kmalloc+0x9b/0xd0 mm/kasan/common.c:522
kmalloc include/linux/slab.h:591 [inline]
kzalloc include/linux/slab.h:721 [inline]
alloc_ucounts+0x23d/0x5b0 kernel/ucount.c:169
set_cred_ucounts+0x171/0x3a0 kernel/cred.c:684
__sys_setuid+0x285/0x400 kernel/sys.c:623
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Freed by task 16785:
kasan_save_stack+0x1b/0x40 mm/kasan/common.c:38
kasan_set_track+0x1c/0x30 mm/kasan/common.c:46
kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360
____kasan_slab_free mm/kasan/common.c:366 [inline]
____kasan_slab_free mm/kasan/common.c:328 [inline]
__kasan_slab_free+0xfb/0x130 mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:229 [inline]
slab_free_hook mm/slub.c:1650 [inline]
slab_free_freelist_hook+0xdf/0x240 mm/slub.c:1675
slab_free mm/slub.c:3235 [inline]
kfree+0xeb/0x650 mm/slub.c:4295
put_ucounts kernel/ucount.c:200 [inline]
put_ucounts+0x117/0x150 kernel/ucount.c:192
put_cred_rcu+0x27a/0x520 kernel/cred.c:124
rcu_do_batch kernel/rcu/tree.c:2550 [inline]
rcu_core+0x7ab/0x1380 kernel/rcu/tree.c:2785
__do_softirq+0x29b/0x9c2 kernel/softirq.c:558
Last potentially related work creation:
kasan_save_stack+0x1b/0x40 mm/kasan/common.c:38
kasan_record_aux_stack+0xe5/0x110 mm/kasan/generic.c:348
insert_work+0x48/0x370 kernel/workqueue.c:1332
__queue_work+0x5c1/0xed0 kernel/workqueue.c:1498
queue_work_on+0xee/0x110 kernel/workqueue.c:1525
queue_work include/linux/workqueue.h:507 [inline]
call_usermodehelper_exec+0x1f0/0x4c0 kernel/umh.c:435
kobject_uevent_env+0xf8f/0x1650 lib/kobject_uevent.c:618
netdev_queue_add_kobject net/core/net-sysfs.c:1621 [inline]
netdev_queue_update_kobjects+0x374/0x450 net/core/net-sysfs.c:1655
register_queue_kobjects net/core/net-sysfs.c:1716 [inline]
netdev_register_kobject+0x35a/0x430 net/core/net-sysfs.c:1959
register_netdevice+0xd33/0x1500 net/core/dev.c:10331
nsim_init_netdevsim drivers/net/netdevsim/netdev.c:317 [inline]
nsim_create+0x381/0x4d0 drivers/net/netdevsim/netdev.c:364
__nsim_dev_port_add+0x32e/0x830 drivers/net/netdevsim/dev.c:1295
nsim_dev_port_add_all+0x53/0x150 drivers/net/netdevsim/dev.c:1355
nsim_dev_probe+0xcb5/0x1190 drivers/net/netdevsim/dev.c:1496
call_driver_probe drivers/base/dd.c:517 [inline]
really_probe+0x23c/0xcd0 drivers/base/dd.c:595
__driver_probe_device+0x338/0x4d0 drivers/base/dd.c:747
driver_probe_device+0x4c/0x1a0 drivers/base/dd.c:777
__device_attach_driver+0x20b/0x2f0 drivers/base/dd.c:894
bus_for_each_drv+0x15f/0x1e0 drivers/base/bus.c:427
__device_attach+0x228/0x4a0 drivers/base/dd.c:965
bus_probe_device+0x1e4/0x290 drivers/base/bus.c:487
device_add+0xc2f/0x2180 drivers/base/core.c:3356
nsim_bus_dev_new drivers/net/netdevsim/bus.c:431 [inline]
new_device_store+0x436/0x710 drivers/net/netdevsim/bus.c:298
bus_attr_store+0x72/0xa0 drivers/base/bus.c:122
sysfs_kf_write+0x110/0x160 fs/sysfs/file.c:139
kernfs_fop_write_iter+0x342/0x500 fs/kernfs/file.c:296
call_write_iter include/linux/fs.h:2152 [inline]
new_sync_write+0x426/0x650 fs/read_write.c:518
vfs_write+0x75a/0xa40 fs/read_write.c:605
ksys_write+0x12d/0x250 fs/read_write.c:658
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Second to last potentially related work creation:
kasan_save_stack+0x1b/0x40 mm/kasan/common.c:38
kasan_record_aux_stack+0xe5/0x110 mm/kasan/generic.c:348
insert_work+0x48/0x370 kernel/workqueue.c:1332
__queue_work+0x5c1/0xed0 kernel/workqueue.c:1498
queue_work_on+0xee/0x110 kernel/workqueue.c:1525
queue_work include/linux/workqueue.h:507 [inline]
call_usermodehelper_exec+0x1f0/0x4c0 kernel/umh.c:435
kobject_uevent_env+0xf8f/0x1650 lib/kobject_uevent.c:618
kobject_synth_uevent+0x701/0x850 lib/kobject_uevent.c:208
uevent_store+0x20/0x50 drivers/base/core.c:2371
dev_attr_store+0x50/0x80 drivers/base/core.c:2072
sysfs_kf_write+0x110/0x160 fs/sysfs/file.c:139
kernfs_fop_write_iter+0x342/0x500 fs/kernfs/file.c:296
call_write_iter include/linux/fs.h:2152 [inline]
new_sync_write+0x426/0x650 fs/read_write.c:518
vfs_write+0x75a/0xa40 fs/read_write.c:605
ksys_write+0x12d/0x250 fs/read_write.c:658
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The buggy address belongs to the object at ffff88802821e400
which belongs to the cache kmalloc-192 of size 192
The buggy address is located 28 bytes inside of
192-byte region [ffff88802821e400, ffff88802821e4c0)
The buggy address belongs to the page:
page:ffffea0000a08780 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x2821e
flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000000200 dead000000000100 dead000000000122 ffff888010841a00
raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x12cc0(GFP_KERNEL|__GFP_NOWARN|__GFP_NORETRY), pid 1, ts 12874702440, free_ts 12637793385
prep_new_page mm/page_alloc.c:2433 [inline]
get_page_from_freelist+0xa72/0x2f80 mm/page_alloc.c:4166
__alloc_pages+0x1b2/0x500 mm/page_alloc.c:5374
alloc_page_interleave+0x1e/0x200 mm/mempolicy.c:2119
alloc_pages+0x238/0x2a0 mm/mempolicy.c:2242
alloc_slab_page mm/slub.c:1713 [inline]
allocate_slab+0x32b/0x4c0 mm/slub.c:1853
new_slab mm/slub.c:1916 [inline]
new_slab_objects mm/slub.c:2662 [inline]
___slab_alloc+0x4ba/0x820 mm/slub.c:2825
__slab_alloc.constprop.0+0xa7/0xf0 mm/slub.c:2865
slab_alloc_node mm/slub.c:2947 [inline]
slab_alloc mm/slub.c:2989 [inline]
__kmalloc+0x312/0x330 mm/slub.c:4133
kmalloc include/linux/slab.h:596 [inline]
kzalloc include/linux/slab.h:721 [inline]
__register_sysctl_table+0x112/0x1090 fs/proc/proc_sysctl.c:1318
rds_tcp_init_net+0x1db/0x4f0 net/rds/tcp.c:551
ops_init+0xaf/0x470 net/core/net_namespace.c:140
__register_pernet_operations net/core/net_namespace.c:1137 [inline]
register_pernet_operations+0x35a/0x850 net/core/net_namespace.c:1214
register_pernet_device+0x26/0x70 net/core/net_namespace.c:1301
rds_tcp_init+0x77/0xe0 net/rds/tcp.c:717
do_one_initcall+0x103/0x650 init/main.c:1285
do_initcall_level init/main.c:1360 [inline]
do_initcalls init/main.c:1376 [inline]
do_basic_setup init/main.c:1396 [inline]
kernel_init_freeable+0x6b8/0x741 init/main.c:1598
page last free stack trace:
reset_page_owner include/linux/page_owner.h:24 [inline]
free_pages_prepare mm/page_alloc.c:1343 [inline]
free_pcp_prepare+0x312/0x7d0 mm/page_alloc.c:1394
free_unref_page_prepare mm/page_alloc.c:3329 [inline]
free_unref_page+0x19/0x690 mm/page_alloc.c:3408
__vunmap+0x783/0xb70 mm/vmalloc.c:2587
free_work+0x58/0x70 mm/vmalloc.c:82
process_one_work+0x98d/0x1630 kernel/workqueue.c:2276
worker_thread+0x658/0x11f0 kernel/workqueue.c:2422
kthread+0x3e5/0x4d0 kernel/kthread.c:319
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
Memory state around the buggy address:
ffff88802821e300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff88802821e380: 00 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc
>ffff88802821e400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff88802821e480: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
ffff88802821e500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
==================================================================
- The race fix has two parts.
* Changing the code to guarantee that ucounts->count is only decremented
when ucounts_lock is held. This guarantees that find_ucounts
will never find a structure with a zero reference count.
* Changing alloc_ucounts to increment ucounts->count while
ucounts_lock is held. This guarantees the reference count on the
found data structure will not be decremented to zero (and the data
structure freed) before the reference count is incremented.
-- Eric Biederman
Reported-by: syzbot+01985d7909f9468f013c@syzkaller.appspotmail.com
Reported-by: syzbot+59dd63761094a80ad06d@syzkaller.appspotmail.com
Reported-by: syzbot+6cd79f45bb8fa1c9eeae@syzkaller.appspotmail.com
Reported-by: syzbot+b6e65bd125a05f803d6b@syzkaller.appspotmail.com
Fixes: b6c336528926 ("Use atomic_t for ucounts reference counting")
Cc: Hillf Danton <hdanton@sina.com>
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/7b2ace1759b281cdd2d66101d6b305deef722efb.1627397820.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
0fa294fb1985 ("cgroup: Replace cgroup_rstat_mutex with a spinlock") added
cgroup_rstat_flush_irqsafe() allowing flushing to happen from the irq
context. However, rstat paths use u64_stats_sync to synchronize access to
64bit stat counters on 32bit machines. u64_stats_sync is implemented using
seq_lock and trying to read from an irq context can lead to A-A deadlock if
the irq happens to interrupt the stat update.
Fix it by using the irqsafe variants - u64_stats_update_begin_irqsave() and
u64_stats_update_end_irqrestore() - in the update paths. Note that none of
this matters on 64bit machines. All these are just for 32bit SMP setups.
Note that the interface was introduced way back, its first and currently
only use was recently added by 2d146aa3aa84 ("mm: memcontrol: switch to
rstat"). Stable tagging targets this commit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Rik van Riel <riel@surriel.com>
Fixes: 2d146aa3aa84 ("mm: memcontrol: switch to rstat")
Cc: stable@vger.kernel.org # v5.13+
|
|
Current max cgroup storage value size is 4k (PAGE_SIZE). The other local
storages accept up to 64k (BPF_LOCAL_STORAGE_MAX_VALUE_SIZE). Let's align
max cgroup value size with the other storages.
For percpu, the max is 32k (PCPU_MIN_UNIT_SIZE) because percpu
allocator is not happy about larger values.
netcnt test is extended to exercise those maximum values
(non-percpu max size is close to, but not real max).
v4:
* remove inner union (Andrii Nakryiko)
* keep net_cnt on the stack (Andrii Nakryiko)
v3:
* refine SIZEOF_BPF_LOCAL_STORAGE_ELEM comment (Yonghong Song)
* anonymous struct in percpu_net_cnt & net_cnt (Yonghong Song)
* reorder free (Yonghong Song)
v2:
* cap max_value_size instead of BUILD_BUG_ON (Martin KaFai Lau)
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210727222335.4029096-1-sdf@google.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fix from Tejun Heo:
"Fix leak of filesystem context root which is triggered by LTP.
Not too likely to be a problem in non-testing environments"
* 'for-5.14-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup1: fix leaked context root causing sporadic NULL deref in LTP
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fix from Tejun Heo:
"Fix a use-after-free in allocation failure handling path"
* 'for-5.14-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: fix UAF in pwq_unbound_release_workfn()
|
|
syzbot reported KCSAN data races vs. timer_base::timer_running being set to
NULL without holding base::lock in expire_timers().
This looks innocent and most reads are clearly not problematic, but
Frederic identified an issue which is:
int data = 0;
void timer_func(struct timer_list *t)
{
data = 1;
}
CPU 0 CPU 1
------------------------------ --------------------------
base = lock_timer_base(timer, &flags); raw_spin_unlock(&base->lock);
if (base->running_timer != timer) call_timer_fn(timer, fn, baseclk);
ret = detach_if_pending(timer, base, true); base->running_timer = NULL;
raw_spin_unlock_irqrestore(&base->lock, flags); raw_spin_lock(&base->lock);
x = data;
If the timer has previously executed on CPU 1 and then CPU 0 can observe
base->running_timer == NULL and returns, assuming the timer has completed,
but it's not guaranteed on all architectures. The comment for
del_timer_sync() makes that guarantee. Moving the assignment under
base->lock prevents this.
For non-RT kernel it's performance wise completely irrelevant whether the
store happens before or after taking the lock. For an RT kernel moving the
store under the lock requires an extra unlock/lock pair in the case that
there is a waiter for the timer, but that's not the end of the world.
Reported-by: syzbot+aa7c2385d46c5eba0b89@syzkaller.appspotmail.com
Reported-by: syzbot+abea4558531bae1ba9fe@syzkaller.appspotmail.com
Fixes: 030dcdd197d7 ("timers: Prepare support for PREEMPT_RT")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/87lfea7gw8.fsf@nanos.tec.linutronix.de
Cc: stable@vger.kernel.org
|
|
gcc doesn't care, but clang quite reasonably pointed out that the recent
commit e9ba16e68cce ("smpboot: Mark idle_init() as __always_inlined to
work around aggressive compiler un-inlining") did some really odd
things:
kernel/smpboot.c:50:20: warning: duplicate 'inline' declaration specifier [-Wduplicate-decl-specifier]
static inline void __always_inline idle_init(unsigned int cpu)
^
which not only has that duplicate inlining specifier, but the new
__always_inline was put in the wrong place of the function definition.
We put the storage class specifiers (ie things like "static" and
"extern") first, and the type information after that. And while the
compiler may not care, we put the inline specifier before the types.
So it should be just
static __always_inline void idle_init(unsigned int cpu)
instead.
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Thomas Gleixner:
"A small set of timer related fixes:
- Plug a race between rearm and process tick in the posix CPU timers
code
- Make the optimization to avoid recalculation of the next timer
interrupt work correctly when there are no timers pending"
* tag 'timers-urgent-2021-07-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timers: Fix get_next_timer_interrupt() with no timers pending
posix-cpu-timers: Fix rearm racing against process tick
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core fix from Thomas Gleixner:
"A single update for the boot code to prevent aggressive un-inlining
which causes a section mismatch"
* tag 'core-urgent-2021-07-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
smpboot: Mark idle_init() as __always_inlined to work around aggressive compiler un-inlining
|