summaryrefslogtreecommitdiff
path: root/lib/raid6/neon.c
AgeCommit message (Collapse)Author
2015-08-31md/raid6: delta syndrome for ARM NEONArd Biesheuvel
This implements XOR syndrome calculation using NEON intrinsics. As before, the module can be built for ARM and arm64 from the same source. Relative performance on a Cortex-A57 based system: raid6: int64x1 gen() 905 MB/s raid6: int64x1 xor() 881 MB/s raid6: int64x2 gen() 1343 MB/s raid6: int64x2 xor() 1286 MB/s raid6: int64x4 gen() 1896 MB/s raid6: int64x4 xor() 1321 MB/s raid6: int64x8 gen() 1773 MB/s raid6: int64x8 xor() 1165 MB/s raid6: neonx1 gen() 1834 MB/s raid6: neonx1 xor() 1278 MB/s raid6: neonx2 gen() 2528 MB/s raid6: neonx2 xor() 1942 MB/s raid6: neonx4 gen() 2888 MB/s raid6: neonx4 xor() 2334 MB/s raid6: neonx8 gen() 2957 MB/s raid6: neonx8 xor() 2232 MB/s raid6: using algorithm neonx8 gen() 2957 MB/s raid6: .... xor() 2232 MB/s, rmw enabled Cc: Markus Stockhausen <stockhausen@collogia.de> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NeilBrown <neilb@suse.com>
2015-04-22md/raid6 algorithms: delta syndrome functionsMarkus Stockhausen
v3: s-o-b comment, explanation of performance and descision for the start/stop implementation Implementing rmw functionality for RAID6 requires optimized syndrome calculation. Up to now we can only generate a complete syndrome. The target P/Q pages are always overwritten. With this patch we provide a framework for inplace P/Q modification. In the first place simply fill those functions with NULL values. xor_syndrome() has two additional parameters: start & stop. These will indicate the first and last page that are changing during a rmw run. That makes it possible to avoid several unneccessary loops and speed up calculation. The caller needs to implement the following logic to make the functions work. 1) xor_syndrome(disks, start, stop, ...): "Remove" all data of source blocks inside P/Q between (and including) start and end. 2) modify any block with start <= block <= stop 3) xor_syndrome(disks, start, stop, ...): "Reinsert" all data of source blocks into P/Q between (and including) start and end. Pages between start and stop that won't be changed should be filled with a pointer to the kernel zero page. The reasons for not taking NULL pages are: 1) Algorithms cross the whole source data line by line. Thus avoid additional branches. 2) Having a NULL page avoids calculating the XOR P parity but still need calulation steps for the Q parity. Depending on the algorithm unrolling that might be only a difference of 2 instructions per loop. The benchmark numbers of the gen_syndrome() functions are displayed in the kernel log. Do the same for the xor_syndrome() functions. This will help to analyze performance problems and give an rough estimate how well the algorithm works. The choice of the fastest algorithm will still depend on the gen_syndrome() performance. With the start/stop page implementation the speed can vary a lot in real life. E.g. a change of page 0 & page 15 on a stripe will be harder to compute than the case where page 0 & page 1 are XOR candidates. To be not to enthusiatic about the expected speeds we will run a worse case test that simulates a change on the upper half of the stripe. So we do: 1) calculation of P/Q for the upper pages 2) continuation of Q for the lower (empty) pages Signed-off-by: Markus Stockhausen <stockhausen@collogia.de> Signed-off-by: NeilBrown <neilb@suse.de>
2013-07-08lib/raid6: add ARM-NEON accelerated syndrome calculationArd Biesheuvel
Rebased/reworked a patch contributed by Rob Herring that uses NEON intrinsics to perform the RAID-6 syndrome calculations. It uses the existing unroll.awk code to generate several unrolled versions of which the best performing one is selected at boot time. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Nicolas Pitre <nico@linaro.org> Cc: hpa@linux.intel.com