summaryrefslogtreecommitdiff
path: root/mm/filemap.c
AgeCommit message (Collapse)Author
2022-03-14fs: Convert is_partially_uptodate to foliosMatthew Wilcox (Oracle)
Since the uptodate property is maintained on a per-folio basis, the is_partially_uptodate method should also take a folio. Fix the types at the same time so it's clear that it returns true/false and takes the count in bytes, not blocks. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com> Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com> Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs Tested-by: David Howells <dhowells@redhat.com> # afs
2022-01-22Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge yet more updates from Andrew Morton: "This is the post-linux-next queue. Material which was based on or dependent upon material which was in -next. 69 patches. Subsystems affected by this patch series: mm (migration and zsmalloc), sysctl, proc, and lib" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (69 commits) mm: hide the FRONTSWAP Kconfig symbol frontswap: remove support for multiple ops mm: mark swap_lock and swap_active_head static frontswap: simplify frontswap_register_ops frontswap: remove frontswap_test mm: simplify try_to_unuse frontswap: remove the frontswap exports frontswap: simplify frontswap_init frontswap: remove frontswap_curr_pages frontswap: remove frontswap_shrink frontswap: remove frontswap_tmem_exclusive_gets frontswap: remove frontswap_writethrough mm: remove cleancache lib/stackdepot: always do filter_irq_stacks() in stack_depot_save() lib/stackdepot: allow optional init and stack_table allocation by kvmalloc() proc: remove PDE_DATA() completely fs: proc: store PDE()->data into inode->i_private zsmalloc: replace get_cpu_var with local_lock zsmalloc: replace per zpage lock with pool->migrate_lock locking/rwlocks: introduce write_lock_nested ...
2022-01-22mm: remove cleancacheChristoph Hellwig
Patch series "remove Xen tmem leftovers". Since the removal of the Xen tmem driver in 2019, the cleancache hooks are entirely unused, as are large parts of frontswap. This series against linux-next (with the folio changes included) removes cleancaches, and cuts down frontswap to the bits actually used by zswap. This patch (of 13): The cleancache subsystem is unused since the removal of Xen tmem driver in commit 814bbf49dcd0 ("xen: remove tmem driver"). [akpm@linux-foundation.org: remove now-unreachable code] Link: https://lkml.kernel.org/r/20211224062246.1258487-1-hch@lst.de Link: https://lkml.kernel.org/r/20211224062246.1258487-2-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Juergen Gross <jgross@suse.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Konrad Rzeszutek Wilk <Konrad.wilk@oracle.com> Cc: Hugh Dickins <hughd@google.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Vitaly Wool <vitaly.wool@konsulko.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-22mm/migrate.c: rework migration_entry_wait() to not take a pagerefAlistair Popple
This fixes the FIXME in migrate_vma_check_page(). Before migrating a page migration code will take a reference and check there are no unexpected page references, failing the migration if there are. When a thread faults on a migration entry it will take a temporary reference to the page to wait for the page to become unlocked signifying the migration entry has been removed. This reference is dropped just prior to waiting on the page lock, however the extra reference can cause migration failures so it is desirable to avoid taking it. As migration code already has a reference to the migrating page an extra reference to wait on PG_locked is unnecessary so long as the reference can't be dropped whilst setting up the wait. When faulting on a migration entry the ptl is taken to check the migration entry. Removing a migration entry also requires the ptl, and migration code won't drop its page reference until after the migration entry has been removed. Therefore retaining the ptl of a migration entry is sufficient to ensure the page has a reference. Reworking migration_entry_wait() to hold the ptl until the wait setup is complete means the extra page reference is no longer needed. [apopple@nvidia.com: v5] Link: https://lkml.kernel.org/r/20211213033848.1973946-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20211118020754.954425-1-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-16filemap: Use folio_put_refs() in filemap_free_folio()Matthew Wilcox (Oracle)
This shrinks filemap_free_folio() by 55 bytes in my .config; 24 bytes from removing the VM_BUG_ON_FOLIO() and 31 bytes from unifying the small/large folio paths. We could just use folio_ref_sub() here since the caller should hold a reference (as the VM_BUG_ON_FOLIO() was asserting), but that's fragile. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-01-12Merge tag 'folio-5.17' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds
Pull folio conversion updates from Matthew Wilcox: "Convert much of the page cache to use folios This stops just short of actually enabling large folios. It converts everything that I noticed needs to be converted, but there may still be places I've overlooked which still have page size assumptions. The big change here is using large entries in the page cache XArray instead of many small entries. That only affects shmem for now, but it's a pretty big change for shmem since it changes where memory needs to be allocated (at split time instead of insertion)" * tag 'folio-5.17' of git://git.infradead.org/users/willy/pagecache: (49 commits) mm: Use multi-index entries in the page cache XArray: Add xas_advance() truncate,shmem: Handle truncates that split large folios truncate: Convert invalidate_inode_pages2_range to folios fs: Convert vfs_dedupe_file_range_compare to folios mm: Remove pagevec_remove_exceptionals() mm: Convert find_lock_entries() to use a folio_batch filemap: Return only folios from find_get_entries() filemap: Convert filemap_get_read_batch() to use a folio_batch filemap: Convert filemap_read() to use a folio truncate: Add invalidate_complete_folio2() truncate: Convert invalidate_inode_pages2_range() to use a folio truncate: Skip known-truncated indices truncate,shmem: Add truncate_inode_folio() shmem: Convert part of shmem_undo_range() to use a folio mm: Add unmap_mapping_folio() truncate: Add truncate_cleanup_folio() filemap: Add filemap_release_folio() filemap: Use a folio in filemap_page_mkwrite filemap: Use a folio in filemap_map_pages ...
2022-01-12Merge tag 'for-5.17/block-2022-01-11' of git://git.kernel.dk/linux-blockLinus Torvalds
Pull block updates from Jens Axboe: - Unify where the struct request handling code is located in the blk-mq code (Christoph) - Header cleanups (Christoph) - Clean up the io_context handling code (Christoph, me) - Get rid of ->rq_disk in struct request (Christoph) - Error handling fix for add_disk() (Christoph) - request allocation cleanusp (Christoph) - Documentation updates (Eric, Matthew) - Remove trivial crypto unregister helper (Eric) - Reduce shared tag overhead (John) - Reduce poll_stats memory overhead (me) - Known indirect function call for dio (me) - Use atomic references for struct request (me) - Support request list issue for block and NVMe (me) - Improve queue dispatch pinning (Ming) - Improve the direct list issue code (Keith) - BFQ improvements (Jan) - Direct completion helper and use it in mmc block (Sebastian) - Use raw spinlock for the blktrace code (Wander) - fsync error handling fix (Ye) - Various fixes and cleanups (Lukas, Randy, Yang, Tetsuo, Ming, me) * tag 'for-5.17/block-2022-01-11' of git://git.kernel.dk/linux-block: (132 commits) MAINTAINERS: add entries for block layer documentation docs: block: remove queue-sysfs.rst docs: sysfs-block: document virt_boundary_mask docs: sysfs-block: document stable_writes docs: sysfs-block: fill in missing documentation from queue-sysfs.rst docs: sysfs-block: add contact for nomerges docs: sysfs-block: sort alphabetically docs: sysfs-block: move to stable directory block: don't protect submit_bio_checks by q_usage_counter block: fix old-style declaration nvme-pci: fix queue_rqs list splitting block: introduce rq_list_move block: introduce rq_list_for_each_safe macro block: move rq_list macros to blk-mq.h block: drop needless assignment in set_task_ioprio() block: remove unnecessary trailing '\' bio.h: fix kernel-doc warnings block: check minor range in device_add_disk() block: use "unsigned long" for blk_validate_block_size(). block: fix error unwinding in device_add_disk ...
2022-01-08mm: Use multi-index entries in the page cacheMatthew Wilcox (Oracle)
We currently store large folios as 2^N consecutive entries. While this consumes rather more memory than necessary, it also turns out to be buggy. A writeback operation which starts within a tail page of a dirty folio will not write back the folio as the xarray's dirty bit is only set on the head index. With multi-index entries, the dirty bit will be found no matter where in the folio the operation starts. This does end up simplifying the page cache slightly, although not as much as I had hoped. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-08mm: Convert find_lock_entries() to use a folio_batchMatthew Wilcox (Oracle)
find_lock_entries() already only returned the head page of folios, so convert it to return a folio_batch instead of a pagevec. That cascades through converting truncate_inode_pages_range() to delete_from_page_cache_batch() and page_cache_delete_batch(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-08filemap: Return only folios from find_get_entries()Matthew Wilcox (Oracle)
The callers have all been converted to work on folios, so convert find_get_entries() to return a batch of folios instead of pages. We also now return multiple large folios in a single call. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-01-08filemap: Convert filemap_get_read_batch() to use a folio_batchMatthew Wilcox (Oracle)
This change ripples all the way through the filemap_read() call chain and removes a lot of messing about converting folios to pages and back again. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-08filemap: Convert filemap_read() to use a folioMatthew Wilcox (Oracle)
We know the pagevec always contains folios, but use page_folio() anyway instead of casting. Removes a few calls to legacy functions. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-08truncate: Add invalidate_complete_folio2()Matthew Wilcox (Oracle)
Convert invalidate_complete_page2() to invalidate_complete_folio2(). Use filemap_free_folio() to free the page instead of calling ->freepage manually. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Add filemap_release_folio()Matthew Wilcox (Oracle)
Reimplement try_to_release_page() as a wrapper around filemap_release_folio(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Use a folio in filemap_page_mkwriteMatthew Wilcox (Oracle)
This fixes a bug for tail pages. They always have a NULL mapping, so the check would fail and we would never mark the folio as dirty. Ends up growing the kernel by 19 bytes although there will be fewer calls to compound_head() dynamically. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Use a folio in filemap_map_pagesMatthew Wilcox (Oracle)
Saves 61 bytes due to fewer calls to compound_head(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Use folios in next_uptodate_pageMatthew Wilcox (Oracle)
This saves 105 bytes of text. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert page_cache_delete_batch to foliosMatthew Wilcox (Oracle)
Saves one call to compound_head() and reduces text size by 15 bytes. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert filemap_get_pages to use foliosMatthew Wilcox (Oracle)
This saves a few calls to compound_head(), including one in filemap_update_page(). Shrinks the kernel by 78 bytes. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Drop the refcount while waiting for page lockMatthew Wilcox (Oracle)
Commit bd8a1f3655a7 ("mm/filemap: support readpage splitting a page") changed the read_iter path to drop the refcount while waiting for the page lock. However, it missed the same pattern in read_mapping_page() and friends. Use the same pattern in do_read_cache_folio() that is used in filemap_update_page(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Add read_cache_folio and read_mapping_folioMatthew Wilcox (Oracle)
Reimplement read_cache_page() as a wrapper around read_cache_folio(). Saves over 400 bytes of text from do_read_cache_folio() which more than makes up for the extra 100 bytes of text added to the various wrapper functions. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert filemap_fault to folioMatthew Wilcox (Oracle)
Instead of converting back-and-forth between the actual page and the head page, just convert once at the end of the function where we set the vmf->page. Saves 241 bytes of text, or 15% of the size of filemap_fault(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert do_async_mmap_readahead to take a folioMatthew Wilcox (Oracle)
Call page_cache_async_ra() directly instead of indirecting through page_cache_async_readahead(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert filemap_range_uptodate to foliosMatthew Wilcox (Oracle)
The only caller was already passing a head page, so this simply avoids a call to compound_head(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert filemap_create_page to folioMatthew Wilcox (Oracle)
This is all internal to filemap and saves 100 bytes of text. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert filemap_read_page to take a folioMatthew Wilcox (Oracle)
One of the callers already had a folio; the other two grow by a few bytes, but filemap_read_page() shrinks by 50 bytes for a net reduction of 27 bytes. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert find_get_pages_contig to foliosMatthew Wilcox (Oracle)
None of the callers of find_get_pages_contig() want tail pages. They all use order-0 pages today, but if they were converted, they'd want folios. So just remove the call to find_subpage() instead of replacing it with folio_page(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert filemap_get_read_batch to use foliosMatthew Wilcox (Oracle)
The page cache only stores folios, never tail pages. Saves 29 bytes due to removing calls to compound_head(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert find_get_entry to return a folioMatthew Wilcox (Oracle)
Convert callers to cope. Saves 580 bytes of kernel text; all five callers are reduced in size. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Add filemap_remove_folio and __filemap_remove_folioMatthew Wilcox (Oracle)
Reimplement __delete_from_page_cache() as a wrapper around __filemap_remove_folio() and delete_from_page_cache() as a wrapper around filemap_remove_folio(). Remove the EXPORT_SYMBOL as delete_from_page_cache() was not used by any in-tree modules. Convert page_cache_free_page() into filemap_free_folio(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert tracing of page cache operations to folioMatthew Wilcox (Oracle)
Pass the folio instead of a page. The page was already implicitly a folio as it accessed page->mapping directly. Add the order of the folio to the tracepoint, as this is important information. Also drop printing the address of the struct page as the pfn provides better information than the struct page address. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Add filemap_unaccount_folio()Matthew Wilcox (Oracle)
Replace unaccount_page_cache_page() with filemap_unaccount_folio(). The bug handling path could be a bit more robust (eg taking into account the mapcounts of tail pages), but it's really never supposed to happen. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Convert page_cache_delete to take a folioMatthew Wilcox (Oracle)
It was already assuming a head page, so this is a straightforward conversion. Convert the one caller to call page_folio(), even though it must currently be passing in a head page. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-04filemap: Add folio_put_wait_locked()Matthew Wilcox (Oracle)
Convert all three callers of put_and_wait_on_page_locked() to folio_put_wait_locked(). This shrinks the kernel overall by 19 bytes. filemap_update_page() shrinks by 19 bytes while __migration_entry_wait() is unchanged. folio_put_wait_locked() is 14 bytes smaller than put_and_wait_on_page_locked(), but pmd_migration_entry_wait() grows by 14 bytes. It removes the assumption from pmd_migration_entry_wait() that pages cannot be larger than a PMD (which is true today, but may be interesting to explore in the future). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2022-01-02filemap: Remove PageHWPoison check from next_uptodate_page()Matthew Wilcox (Oracle)
Pages are individually marked as suffering from hardware poisoning. Checking that the head page is not hardware poisoned doesn't make sense; we might be after a subpage. We check each page individually before we use it, so this was an optimisation gone wrong. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2021-12-10filemap: remove PageHWPoison check from next_uptodate_page()Matthew Wilcox (Oracle)
Pages are individually marked as suffering from hardware poisoning. Checking that the head page is not hardware poisoned doesn't make sense; we might be after a subpage. We check each page individually before we use it, so this was an optimisation gone wrong. It will cause us to fall back to the slow path when there was no need to do that Link: https://lkml.kernel.org/r/20211120174429.2596303-1-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Yang Shi <shy828301@gmail.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-12-03mm: move filemap_range_needs_writeback() into headerJens Axboe
No functional changes in this patch, just in preparation for efficiently calling this light function from the block O_DIRECT handling. Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-11-09Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge more updates from Andrew Morton: "87 patches. Subsystems affected by this patch series: mm (pagecache and hugetlb), procfs, misc, MAINTAINERS, lib, checkpatch, binfmt, kallsyms, ramfs, init, codafs, nilfs2, hfs, crash_dump, signals, seq_file, fork, sysvfs, kcov, gdb, resource, selftests, and ipc" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (87 commits) ipc/ipc_sysctl.c: remove fallback for !CONFIG_PROC_SYSCTL ipc: check checkpoint_restore_ns_capable() to modify C/R proc files selftests/kselftest/runner/run_one(): allow running non-executable files virtio-mem: disallow mapping virtio-mem memory via /dev/mem kernel/resource: disallow access to exclusive system RAM regions kernel/resource: clean up and optimize iomem_is_exclusive() scripts/gdb: handle split debug for vmlinux kcov: replace local_irq_save() with a local_lock_t kcov: avoid enable+disable interrupts if !in_task() kcov: allocate per-CPU memory on the relevant node Documentation/kcov: define `ip' in the example Documentation/kcov: include types.h in the example sysv: use BUILD_BUG_ON instead of runtime check kernel/fork.c: unshare(): use swap() to make code cleaner seq_file: fix passing wrong private data seq_file: move seq_escape() to a header signal: remove duplicate include in signal.h crash_dump: remove duplicate include in crash_dump.h crash_dump: fix boolreturn.cocci warning hfs/hfsplus: use WARN_ON for sanity check ...
2021-11-09vfs: keep inodes with page cache off the inode shrinker LRUJohannes Weiner
Historically (pre-2.5), the inode shrinker used to reclaim only empty inodes and skip over those that still contained page cache. This caused problems on highmem hosts: struct inode could put fill lowmem zones before the cache was getting reclaimed in the highmem zones. To address this, the inode shrinker started to strip page cache to facilitate reclaiming lowmem. However, this comes with its own set of problems: the shrinkers may drop actively used page cache just because the inodes are not currently open or dirty - think working with a large git tree. It further doesn't respect cgroup memory protection settings and can cause priority inversions between containers. Nowadays, the page cache also holds non-resident info for evicted cache pages in order to detect refaults. We've come to rely heavily on this data inside reclaim for protecting the cache workingset and driving swap behavior. We also use it to quantify and report workload health through psi. The latter in turn is used for fleet health monitoring, as well as driving automated memory sizing of workloads and containers, proactive reclaim and memory offloading schemes. The consequences of dropping page cache prematurely is that we're seeing subtle and not-so-subtle failures in all of the above-mentioned scenarios, with the workload generally entering unexpected thrashing states while losing the ability to reliably detect it. To fix this on non-highmem systems at least, going back to rotating inodes on the LRU isn't feasible. We've tried (commit a76cf1a474d7 ("mm: don't reclaim inodes with many attached pages")) and failed (commit 69056ee6a8a3 ("Revert "mm: don't reclaim inodes with many attached pages"")). The issue is mostly that shrinker pools attract pressure based on their size, and when objects get skipped the shrinkers remember this as deferred reclaim work. This accumulates excessive pressure on the remaining inodes, and we can quickly eat into heavily used ones, or dirty ones that require IO to reclaim, when there potentially is plenty of cold, clean cache around still. Instead, this patch keeps populated inodes off the inode LRU in the first place - just like an open file or dirty state would. An otherwise clean and unused inode then gets queued when the last cache entry disappears. This solves the problem without reintroducing the reclaim issues, and generally is a bit more scalable than having to wade through potentially hundreds of thousands of busy inodes. Locking is a bit tricky because the locks protecting the inode state (i_lock) and the inode LRU (lru_list.lock) don't nest inside the irq-safe page cache lock (i_pages.xa_lock). Page cache deletions are serialized through i_lock, taken before the i_pages lock, to make sure depopulated inodes are queued reliably. Additions may race with deletions, but we'll check again in the shrinker. If additions race with the shrinker itself, we're protected by the i_lock: if find_inode() or iput() win, the shrinker will bail on the elevated i_count or I_REFERENCED; if the shrinker wins and goes ahead with the inode, it will set I_FREEING and inhibit further igets(), which will cause the other side to create a new instance of the inode instead. Link: https://lkml.kernel.org/r/20210614211904.14420-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge misc updates from Andrew Morton: "257 patches. Subsystems affected by this patch series: scripts, ocfs2, vfs, and mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache, gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools, memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm, vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram, cleanups, kfence, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits) mm/damon: remove return value from before_terminate callback mm/damon: fix a few spelling mistakes in comments and a pr_debug message mm/damon: simplify stop mechanism Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions Docs/admin-guide/mm/damon/start: simplify the content Docs/admin-guide/mm/damon/start: fix a wrong link Docs/admin-guide/mm/damon/start: fix wrong example commands mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on mm/damon: remove unnecessary variable initialization Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) selftests/damon: support watermarks mm/damon/dbgfs: support watermarks mm/damon/schemes: activate schemes based on a watermarks mechanism tools/selftests/damon: update for regions prioritization of schemes mm/damon/dbgfs: support prioritization weights mm/damon/vaddr,paddr: support pageout prioritization mm/damon/schemes: prioritize regions within the quotas mm/damon/selftests: support schemes quotas mm/damon/dbgfs: support quotas of schemes ...
2021-11-06mm/vmscan: throttle reclaim until some writeback completes if congestedMel Gorman
Patch series "Remove dependency on congestion_wait in mm/", v5. This series that removes all calls to congestion_wait in mm/ and deletes wait_iff_congested. It's not a clever implementation but congestion_wait has been broken for a long time [1]. Even if congestion throttling worked, it was never a great idea. While excessive dirty/writeback pages at the tail of the LRU is one possibility that reclaim may be slow, there is also the problem of too many pages being isolated and reclaim failing for other reasons (elevated references, too many pages isolated, excessive LRU contention etc). This series replaces the "congestion" throttling with 3 different types. - If there are too many dirty/writeback pages, sleep until a timeout or enough pages get cleaned - If too many pages are isolated, sleep until enough isolated pages are either reclaimed or put back on the LRU - If no progress is being made, direct reclaim tasks sleep until another task makes progress with acceptable efficiency. This was initially tested with a mix of workloads that used to trigger corner cases that no longer work. A new test case was created called "stutterp" (pagereclaim-stutterp-noreaders in mmtests) using a freshly created XFS filesystem. Note that it may be necessary to increase the timeout of ssh if executing remotely as ssh itself can get throttled and the connection may timeout. stutterp varies the number of "worker" processes from 4 up to NR_CPUS*4 to check the impact as the number of direct reclaimers increase. It has four types of worker. - One "anon latency" worker creates small mappings with mmap() and times how long it takes to fault the mapping reading it 4K at a time - X file writers which is fio randomly writing X files where the total size of the files add up to the allowed dirty_ratio. fio is allowed to run for a warmup period to allow some file-backed pages to accumulate. The duration of the warmup is based on the best-case linear write speed of the storage. - Y file readers which is fio randomly reading small files - Z anon memory hogs which continually map (100-dirty_ratio)% of memory - Total estimated WSS = (100+dirty_ration) percentage of memory X+Y+Z+1 == NR_WORKERS varying from 4 up to NR_CPUS*4 The intent is to maximise the total WSS with a mix of file and anon memory where some anonymous memory must be swapped and there is a high likelihood of dirty/writeback pages reaching the end of the LRU. The test can be configured to have no background readers to stress dirty/writeback pages. The results below are based on having zero readers. The short summary of the results is that the series works and stalls until some event occurs but the timeouts may need adjustment. The test results are not broken down by patch as the series should be treated as one block that replaces a broken throttling mechanism with a working one. Finally, three machines were tested but I'm reporting the worst set of results. The other two machines had much better latencies for example. First the results of the "anon latency" latency stutterp 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r4 Amean mmap-4 31.4003 ( 0.00%) 2661.0198 (-8374.52%) Amean mmap-7 38.1641 ( 0.00%) 149.2891 (-291.18%) Amean mmap-12 60.0981 ( 0.00%) 187.8105 (-212.51%) Amean mmap-21 161.2699 ( 0.00%) 213.9107 ( -32.64%) Amean mmap-30 174.5589 ( 0.00%) 377.7548 (-116.41%) Amean mmap-48 8106.8160 ( 0.00%) 1070.5616 ( 86.79%) Stddev mmap-4 41.3455 ( 0.00%) 27573.9676 (-66591.66%) Stddev mmap-7 53.5556 ( 0.00%) 4608.5860 (-8505.23%) Stddev mmap-12 171.3897 ( 0.00%) 5559.4542 (-3143.75%) Stddev mmap-21 1506.6752 ( 0.00%) 5746.2507 (-281.39%) Stddev mmap-30 557.5806 ( 0.00%) 7678.1624 (-1277.05%) Stddev mmap-48 61681.5718 ( 0.00%) 14507.2830 ( 76.48%) Max-90 mmap-4 31.4243 ( 0.00%) 83.1457 (-164.59%) Max-90 mmap-7 41.0410 ( 0.00%) 41.0720 ( -0.08%) Max-90 mmap-12 66.5255 ( 0.00%) 53.9073 ( 18.97%) Max-90 mmap-21 146.7479 ( 0.00%) 105.9540 ( 27.80%) Max-90 mmap-30 193.9513 ( 0.00%) 64.3067 ( 66.84%) Max-90 mmap-48 277.9137 ( 0.00%) 591.0594 (-112.68%) Max mmap-4 1913.8009 ( 0.00%) 299623.9695 (-15555.96%) Max mmap-7 2423.9665 ( 0.00%) 204453.1708 (-8334.65%) Max mmap-12 6845.6573 ( 0.00%) 221090.3366 (-3129.64%) Max mmap-21 56278.6508 ( 0.00%) 213877.3496 (-280.03%) Max mmap-30 19716.2990 ( 0.00%) 216287.6229 (-997.00%) Max mmap-48 477923.9400 ( 0.00%) 245414.8238 ( 48.65%) For most thread counts, the time to mmap() is unfortunately increased. In earlier versions of the series, this was lower but a large number of throttling events were reaching their timeout increasing the amount of inefficient scanning of the LRU. There is no prioritisation of reclaim tasks making progress based on each tasks rate of page allocation versus progress of reclaim. The variance is also impacted for high worker counts but in all cases, the differences in latency are not statistically significant due to very large maximum outliers. Max-90 shows that 90% of the stalls are comparable but the Max results show the massive outliers which are increased to to stalling. It is expected that this will be very machine dependant. Due to the test design, reclaim is difficult so allocations stall and there are variances depending on whether THPs can be allocated or not. The amount of memory will affect exactly how bad the corner cases are and how often they trigger. The warmup period calculation is not ideal as it's based on linear writes where as fio is randomly writing multiple files from multiple tasks so the start state of the test is variable. For example, these are the latencies on a single-socket machine that had more memory Amean mmap-4 42.2287 ( 0.00%) 49.6838 * -17.65%* Amean mmap-7 216.4326 ( 0.00%) 47.4451 * 78.08%* Amean mmap-12 2412.0588 ( 0.00%) 51.7497 ( 97.85%) Amean mmap-21 5546.2548 ( 0.00%) 51.8862 ( 99.06%) Amean mmap-30 1085.3121 ( 0.00%) 72.1004 ( 93.36%) The overall system CPU usage and elapsed time is as follows 5.15.0-rc3 5.15.0-rc3 vanilla mm-reclaimcongest-v5r4 Duration User 6989.03 983.42 Duration System 7308.12 799.68 Duration Elapsed 2277.67 2092.98 The patches reduce system CPU usage by 89% as the vanilla kernel is rarely stalling. The high-level /proc/vmstats show 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r2 Ops Direct pages scanned 1056608451.00 503594991.00 Ops Kswapd pages scanned 109795048.00 147289810.00 Ops Kswapd pages reclaimed 63269243.00 31036005.00 Ops Direct pages reclaimed 10803973.00 6328887.00 Ops Kswapd efficiency % 57.62 21.07 Ops Kswapd velocity 48204.98 57572.86 Ops Direct efficiency % 1.02 1.26 Ops Direct velocity 463898.83 196845.97 Kswapd scanned less pages but the detailed pattern is different. The vanilla kernel scans slowly over time where as the patches exhibits burst patterns of scan activity. Direct reclaim scanning is reduced by 52% due to stalling. The pattern for stealing pages is also slightly different. Both kernels exhibit spikes but the vanilla kernel when reclaiming shows pages being reclaimed over a period of time where as the patches tend to reclaim in spikes. The difference is that vanilla is not throttling and instead scanning constantly finding some pages over time where as the patched kernel throttles and reclaims in spikes. Ops Percentage direct scans 90.59 77.37 For direct reclaim, vanilla scanned 90.59% of pages where as with the patches, 77.37% were direct reclaim due to throttling Ops Page writes by reclaim 2613590.00 1687131.00 Page writes from reclaim context are reduced. Ops Page writes anon 2932752.00 1917048.00 And there is less swapping. Ops Page reclaim immediate 996248528.00 107664764.00 The number of pages encountered at the tail of the LRU tagged for immediate reclaim but still dirty/writeback is reduced by 89%. Ops Slabs scanned 164284.00 153608.00 Slab scan activity is similar. ftrace was used to gather stall activity Vanilla ------- 1 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=16000 2 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=12000 8 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=8000 29 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=4000 82394 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=0 The fast majority of wait_iff_congested calls do not stall at all. What is likely happening is that cond_resched() reschedules the task for a short period when the BDI is not registering congestion (which it never will in this test setup). 1 writeback_congestion_wait: usec_timeout=100000 usec_delayed=120000 2 writeback_congestion_wait: usec_timeout=100000 usec_delayed=132000 4 writeback_congestion_wait: usec_timeout=100000 usec_delayed=112000 380 writeback_congestion_wait: usec_timeout=100000 usec_delayed=108000 778 writeback_congestion_wait: usec_timeout=100000 usec_delayed=104000 congestion_wait if called always exceeds the timeout as there is no trigger to wake it up. Bottom line: Vanilla will throttle but it's not effective. Patch series ------------ Kswapd throttle activity was always due to scanning pages tagged for immediate reclaim at the tail of the LRU 1 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 4 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 94 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 112 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK The majority of events did not stall or stalled for a short period. Roughly 16% of stalls reached the timeout before expiry. For direct reclaim, the number of times stalled for each reason were 6624 reason=VMSCAN_THROTTLE_ISOLATED 93246 reason=VMSCAN_THROTTLE_NOPROGRESS 96934 reason=VMSCAN_THROTTLE_WRITEBACK The most common reason to stall was due to excessive pages tagged for immediate reclaim at the tail of the LRU followed by a failure to make forward. A relatively small number were due to too many pages isolated from the LRU by parallel threads For VMSCAN_THROTTLE_ISOLATED, the breakdown of delays was 9 usec_timeout=20000 usect_delayed=4000 reason=VMSCAN_THROTTLE_ISOLATED 12 usec_timeout=20000 usect_delayed=16000 reason=VMSCAN_THROTTLE_ISOLATED 83 usec_timeout=20000 usect_delayed=20000 reason=VMSCAN_THROTTLE_ISOLATED 6520 usec_timeout=20000 usect_delayed=0 reason=VMSCAN_THROTTLE_ISOLATED Most did not stall at all. A small number reached the timeout. For VMSCAN_THROTTLE_NOPROGRESS, the breakdown of stalls were all over the map 1 usec_timeout=500000 usect_delayed=324000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=332000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=348000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=360000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=228000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=260000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=340000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=364000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=372000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=428000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=460000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=464000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=244000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=252000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=272000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=188000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=268000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=328000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=380000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=392000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=432000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=204000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=220000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=412000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=436000 reason=VMSCAN_THROTTLE_NOPROGRESS 6 usec_timeout=500000 usect_delayed=488000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=212000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=300000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=316000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=472000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=248000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=356000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=456000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=376000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=484000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=172000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=420000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=452000 reason=VMSCAN_THROTTLE_NOPROGRESS 11 usec_timeout=500000 usect_delayed=256000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=144000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=152000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=264000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=384000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=424000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=492000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=184000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=444000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=308000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=440000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=476000 reason=VMSCAN_THROTTLE_NOPROGRESS 16 usec_timeout=500000 usect_delayed=140000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=232000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=240000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=280000 reason=VMSCAN_THROTTLE_NOPROGRESS 18 usec_timeout=500000 usect_delayed=404000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=148000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=216000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=468000 reason=VMSCAN_THROTTLE_NOPROGRESS 21 usec_timeout=500000 usect_delayed=448000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=168000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=296000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=132000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=352000 reason=VMSCAN_THROTTLE_NOPROGRESS 26 usec_timeout=500000 usect_delayed=180000 reason=VMSCAN_THROTTLE_NOPROGRESS 27 usec_timeout=500000 usect_delayed=284000 reason=VMSCAN_THROTTLE_NOPROGRESS 28 usec_timeout=500000 usect_delayed=164000 reason=VMSCAN_THROTTLE_NOPROGRESS 29 usec_timeout=500000 usect_delayed=136000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=200000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=400000 reason=VMSCAN_THROTTLE_NOPROGRESS 31 usec_timeout=500000 usect_delayed=196000 reason=VMSCAN_THROTTLE_NOPROGRESS 32 usec_timeout=500000 usect_delayed=156000 reason=VMSCAN_THROTTLE_NOPROGRESS 33 usec_timeout=500000 usect_delayed=224000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=368000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=496000 reason=VMSCAN_THROTTLE_NOPROGRESS 37 usec_timeout=500000 usect_delayed=312000 reason=VMSCAN_THROTTLE_NOPROGRESS 38 usec_timeout=500000 usect_delayed=304000 reason=VMSCAN_THROTTLE_NOPROGRESS 40 usec_timeout=500000 usect_delayed=288000 reason=VMSCAN_THROTTLE_NOPROGRESS 43 usec_timeout=500000 usect_delayed=408000 reason=VMSCAN_THROTTLE_NOPROGRESS 55 usec_timeout=500000 usect_delayed=416000 reason=VMSCAN_THROTTLE_NOPROGRESS 56 usec_timeout=500000 usect_delayed=76000 reason=VMSCAN_THROTTLE_NOPROGRESS 58 usec_timeout=500000 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS 59 usec_timeout=500000 usect_delayed=208000 reason=VMSCAN_THROTTLE_NOPROGRESS 61 usec_timeout=500000 usect_delayed=68000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=192000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=480000 reason=VMSCAN_THROTTLE_NOPROGRESS 79 usec_timeout=500000 usect_delayed=60000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=320000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=92000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=64000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=80000 reason=VMSCAN_THROTTLE_NOPROGRESS 88 usec_timeout=500000 usect_delayed=84000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=160000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=292000 reason=VMSCAN_THROTTLE_NOPROGRESS 94 usec_timeout=500000 usect_delayed=56000 reason=VMSCAN_THROTTLE_NOPROGRESS 118 usec_timeout=500000 usect_delayed=88000 reason=VMSCAN_THROTTLE_NOPROGRESS 119 usec_timeout=500000 usect_delayed=72000 reason=VMSCAN_THROTTLE_NOPROGRESS 126 usec_timeout=500000 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS 146 usec_timeout=500000 usect_delayed=52000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=36000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=48000 reason=VMSCAN_THROTTLE_NOPROGRESS 159 usec_timeout=500000 usect_delayed=28000 reason=VMSCAN_THROTTLE_NOPROGRESS 178 usec_timeout=500000 usect_delayed=44000 reason=VMSCAN_THROTTLE_NOPROGRESS 183 usec_timeout=500000 usect_delayed=40000 reason=VMSCAN_THROTTLE_NOPROGRESS 237 usec_timeout=500000 usect_delayed=100000 reason=VMSCAN_THROTTLE_NOPROGRESS 266 usec_timeout=500000 usect_delayed=32000 reason=VMSCAN_THROTTLE_NOPROGRESS 313 usec_timeout=500000 usect_delayed=24000 reason=VMSCAN_THROTTLE_NOPROGRESS 347 usec_timeout=500000 usect_delayed=96000 reason=VMSCAN_THROTTLE_NOPROGRESS 470 usec_timeout=500000 usect_delayed=20000 reason=VMSCAN_THROTTLE_NOPROGRESS 559 usec_timeout=500000 usect_delayed=16000 reason=VMSCAN_THROTTLE_NOPROGRESS 964 usec_timeout=500000 usect_delayed=12000 reason=VMSCAN_THROTTLE_NOPROGRESS 2001 usec_timeout=500000 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS 2447 usec_timeout=500000 usect_delayed=8000 reason=VMSCAN_THROTTLE_NOPROGRESS 7888 usec_timeout=500000 usect_delayed=4000 reason=VMSCAN_THROTTLE_NOPROGRESS 22727 usec_timeout=500000 usect_delayed=0 reason=VMSCAN_THROTTLE_NOPROGRESS 51305 usec_timeout=500000 usect_delayed=500000 reason=VMSCAN_THROTTLE_NOPROGRESS The full timeout is often hit but a large number also do not stall at all. The remainder slept a little allowing other reclaim tasks to make progress. While this timeout could be further increased, it could also negatively impact worst-case behaviour when there is no prioritisation of what task should make progress. For VMSCAN_THROTTLE_WRITEBACK, the breakdown was 1 usec_timeout=100000 usect_delayed=44000 reason=VMSCAN_THROTTLE_WRITEBACK 2 usec_timeout=100000 usect_delayed=76000 reason=VMSCAN_THROTTLE_WRITEBACK 3 usec_timeout=100000 usect_delayed=80000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=48000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=84000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 7 usec_timeout=100000 usect_delayed=88000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=56000 reason=VMSCAN_THROTTLE_WRITEBACK 12 usec_timeout=100000 usect_delayed=64000 reason=VMSCAN_THROTTLE_WRITEBACK 16 usec_timeout=100000 usect_delayed=92000 reason=VMSCAN_THROTTLE_WRITEBACK 24 usec_timeout=100000 usect_delayed=68000 reason=VMSCAN_THROTTLE_WRITEBACK 28 usec_timeout=100000 usect_delayed=32000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=60000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=96000 reason=VMSCAN_THROTTLE_WRITEBACK 32 usec_timeout=100000 usect_delayed=52000 reason=VMSCAN_THROTTLE_WRITEBACK 42 usec_timeout=100000 usect_delayed=40000 reason=VMSCAN_THROTTLE_WRITEBACK 77 usec_timeout=100000 usect_delayed=28000 reason=VMSCAN_THROTTLE_WRITEBACK 99 usec_timeout=100000 usect_delayed=36000 reason=VMSCAN_THROTTLE_WRITEBACK 137 usec_timeout=100000 usect_delayed=24000 reason=VMSCAN_THROTTLE_WRITEBACK 190 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 339 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 518 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 852 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 3359 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK 7147 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 83962 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK The majority hit the timeout in direct reclaim context although a sizable number did not stall at all. This is very different to kswapd where only a tiny percentage of stalls due to writeback reached the timeout. Bottom line, the throttling appears to work and the wakeup events may limit worst case stalls. There might be some grounds for adjusting timeouts but it's likely futile as the worst-case scenarios depend on the workload, memory size and the speed of the storage. A better approach to improve the series further would be to prioritise tasks based on their rate of allocation with the caveat that it may be very expensive to track. This patch (of 5): Page reclaim throttles on wait_iff_congested under the following conditions: - kswapd is encountering pages under writeback and marked for immediate reclaim implying that pages are cycling through the LRU faster than pages can be cleaned. - Direct reclaim will stall if all dirty pages are backed by congested inodes. wait_iff_congested is almost completely broken with few exceptions. This patch adds a new node-based workqueue and tracks the number of throttled tasks and pages written back since throttling started. If enough pages belonging to the node are written back then the throttled tasks will wake early. If not, the throttled tasks sleeps until the timeout expires. [neilb@suse.de: Uninterruptible sleep and simpler wakeups] [hdanton@sina.com: Avoid race when reclaim starts] [vbabka@suse.cz: vmstat irq-safe api, clarifications] Link: https://lore.kernel.org/linux-mm/45d8b7a6-8548-65f5-cccf-9f451d4ae3d4@kernel.dk/ [1] Link: https://lkml.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net Link: https://lkml.kernel.org/r/20211022144651.19914-2-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: NeilBrown <neilb@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Rik van Riel <riel@surriel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: filemap: coding style cleanup for filemap_map_pmd()Yang Shi
Patch series "Solve silent data loss caused by poisoned page cache (shmem/tmpfs)", v5. When discussing the patch that splits page cache THP in order to offline the poisoned page, Noaya mentioned there is a bigger problem [1] that prevents this from working since the page cache page will be truncated if uncorrectable errors happen. By looking this deeper it turns out this approach (truncating poisoned page) may incur silent data loss for all non-readonly filesystems if the page is dirty. It may be worse for in-memory filesystem, e.g. shmem/tmpfs since the data blocks are actually gone. To solve this problem we could keep the poisoned dirty page in page cache then notify the users on any later access, e.g. page fault, read/write, etc. The clean page could be truncated as is since they can be reread from disk later on. The consequence is the filesystems may find poisoned page and manipulate it as healthy page since all the filesystems actually don't check if the page is poisoned or not in all the relevant paths except page fault. In general, we need make the filesystems be aware of poisoned page before we could keep the poisoned page in page cache in order to solve the data loss problem. To make filesystems be aware of poisoned page we should consider: - The page should be not written back: clearing dirty flag could prevent from writeback. - The page should not be dropped (it shows as a clean page) by drop caches or other callers: the refcount pin from hwpoison could prevent from invalidating (called by cache drop, inode cache shrinking, etc), but it doesn't avoid invalidation in DIO path. - The page should be able to get truncated/hole punched/unlinked: it works as it is. - Notify users when the page is accessed, e.g. read/write, page fault and other paths (compression, encryption, etc). The scope of the last one is huge since almost all filesystems need do it once a page is returned from page cache lookup. There are a couple of options to do it: 1. Check hwpoison flag for every path, the most straightforward way. 2. Return NULL for poisoned page from page cache lookup, the most callsites check if NULL is returned, this should have least work I think. But the error handling in filesystems just return -ENOMEM, the error code will incur confusion to the users obviously. 3. To improve #2, we could return error pointer, e.g. ERR_PTR(-EIO), but this will involve significant amount of code change as well since all the paths need check if the pointer is ERR or not just like option #1. I did prototypes for both #1 and #3, but it seems #3 may require more changes than #1. For #3 ERR_PTR will be returned so all the callers need to check the return value otherwise invalid pointer may be dereferenced, but not all callers really care about the content of the page, for example, partial truncate which just sets the truncated range in one page to 0. So for such paths it needs additional modification if ERR_PTR is returned. And if the callers have their own way to handle the problematic pages we need to add a new FGP flag to tell FGP functions to return the pointer to the page. It may happen very rarely, but once it happens the consequence (data corruption) could be very bad and it is very hard to debug. It seems this problem had been slightly discussed before, but seems no action was taken at that time. [2] As the aforementioned investigation, it needs huge amount of work to solve the potential data loss for all filesystems. But it is much easier for in-memory filesystems and such filesystems actually suffer more than others since even the data blocks are gone due to truncating. So this patchset starts from shmem/tmpfs by taking option #1. TODO: * The unpoison has been broken since commit 0ed950d1f281 ("mm,hwpoison: make get_hwpoison_page() call get_any_page()"), and this patch series make refcount check for unpoisoning shmem page fail. * Expand to other filesystems. But I haven't heard feedback from filesystem developers yet. Patch breakdown: Patch #1: cleanup, depended by patch #2 Patch #2: fix THP with hwpoisoned subpage(s) PMD map bug Patch #3: coding style cleanup Patch #4: refactor and preparation. Patch #5: keep the poisoned page in page cache and handle such case for all the paths. Patch #6: the previous patches unblock page cache THP split, so this patch add page cache THP split support. This patch (of 4): A minor cleanup to the indent. Link: https://lkml.kernel.org/r/20211020210755.23964-1-shy828301@gmail.com Link: https://lkml.kernel.org/r/20211020210755.23964-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: introduce pmd_install() helperQi Zheng
Patch series "Do some code cleanups related to mm", v3. This patch (of 2): Currently we have three times the same few lines repeated in the code. Deduplicate them by newly introduced pmd_install() helper. Link: https://lkml.kernel.org/r/20210901102722.47686-1-zhengqi.arch@bytedance.com Link: https://lkml.kernel.org/r/20210901102722.47686-2-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Mika Penttila <mika.penttila@nextfour.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: move more expensive part of XA setup out of mapping checkJens Axboe
The fast path here is not needing any writeback, yet we spend time setting up the xarray lookup data upfront. Move the part that actually needs to iterate the address space mapping into a separate helper, saving ~30% of the time here. Link: https://lkml.kernel.org/r/49f67983-b802-8929-edab-d807f745c9ca@kernel.dk Signed-off-by: Jens Axboe <axboe@kernel.dk> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/filemap.c: remove bogus VM_BUG_ONMatthew Wilcox (Oracle)
It is not safe to check page->index without holding the page lock. It can be changed if the page is moved between the swap cache and the page cache for a shmem file, for example. There is a VM_BUG_ON below which checks page->index is correct after taking the page lock. Link: https://lkml.kernel.org/r/20210818144932.940640-1-willy@infradead.org Fixes: 5c211ba29deb ("mm: add and use find_lock_entries") Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reported-by: <syzbot+c87be4f669d920c76330@syzkaller.appspotmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: don't read i_size of inode unless we need itJens Axboe
We always go through i_size_read(), and we rarely end up needing it. Push the read to down where we need to check it, which avoids it for most cases. It looks like we can even remove this check entirely, which might be worth pursuing. But at least this takes it out of the hot path. Link: https://lkml.kernel.org/r/6b67981f-57d4-c80e-bc07-6020aa601381@kernel.dk Signed-off-by: Jens Axboe <axboe@kernel.dk> Acked-by: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Pavel Begunkov <asml.silence@gmail.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: stop filemap_read() from grabbing a superfluous pageDavid Howells
Under some circumstances, filemap_read() will allocate sufficient pages to read to the end of the file, call readahead/readpages on them and copy the data over - and then it will allocate another page at the EOF and call readpage on that and then ignore it. This is unnecessary and a waste of time and resources. filemap_read() *does* check for this, but only after it has already done the allocation and I/O. Fix this by checking before calling filemap_get_pages() also. Link: https://lkml.kernel.org/r/163472463105.3126792.7056099385135786492.stgit@warthog.procyon.org.uk Link: https://lore.kernel.org/r/160588481358.3465195.16552616179674485179.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/163456863216.2614702.6384850026368833133.stgit@warthog.procyon.org.uk/ Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-02Merge tag 'gfs2-v5.15-rc5-mmap-fault' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2 Pull gfs2 mmap + page fault deadlocks fixes from Andreas Gruenbacher: "Functions gfs2_file_read_iter and gfs2_file_write_iter are both accessing the user buffer to write to or read from while holding the inode glock. In the most basic deadlock scenario, that buffer will not be resident and it will be mapped to the same file. Accessing the buffer will trigger a page fault, and gfs2 will deadlock trying to take the same inode glock again while trying to handle that fault. Fix that and similar, more complex scenarios by disabling page faults while accessing user buffers. To make this work, introduce a small amount of new infrastructure and fix some bugs that didn't trigger so far, with page faults enabled" * tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2: gfs2: Fix mmap + page fault deadlocks for direct I/O iov_iter: Introduce nofault flag to disable page faults gup: Introduce FOLL_NOFAULT flag to disable page faults iomap: Add done_before argument to iomap_dio_rw iomap: Support partial direct I/O on user copy failures iomap: Fix iomap_dio_rw return value for user copies gfs2: Fix mmap + page fault deadlocks for buffered I/O gfs2: Eliminate ip->i_gh gfs2: Move the inode glock locking to gfs2_file_buffered_write gfs2: Introduce flag for glock holder auto-demotion gfs2: Clean up function may_grant gfs2: Add wrapper for iomap_file_buffered_write iov_iter: Introduce fault_in_iov_iter_writeable iov_iter: Turn iov_iter_fault_in_readable into fault_in_iov_iter_readable gup: Turn fault_in_pages_{readable,writeable} into fault_in_{readable,writeable} powerpc/kvm: Fix kvm_use_magic_page iov_iter: Fix iov_iter_get_pages{,_alloc} page fault return value
2021-11-01Merge tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-blockLinus Torvalds
Pull block updates from Jens Axboe: - mq-deadline accounting improvements (Bart) - blk-wbt timer fix (Andrea) - Untangle the block layer includes (Christoph) - Rework the poll support to be bio based, which will enable adding support for polling for bio based drivers (Christoph) - Block layer core support for multi-actuator drives (Damien) - blk-crypto improvements (Eric) - Batched tag allocation support (me) - Request completion batching support (me) - Plugging improvements (me) - Shared tag set improvements (John) - Concurrent queue quiesce support (Ming) - Cache bdev in ->private_data for block devices (Pavel) - bdev dio improvements (Pavel) - Block device invalidation and block size improvements (Xie) - Various cleanups, fixes, and improvements (Christoph, Jackie, Masahira, Tejun, Yu, Pavel, Zheng, me) * tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block: (174 commits) blk-mq-debugfs: Show active requests per queue for shared tags block: improve readability of blk_mq_end_request_batch() virtio-blk: Use blk_validate_block_size() to validate block size loop: Use blk_validate_block_size() to validate block size nbd: Use blk_validate_block_size() to validate block size block: Add a helper to validate the block size block: re-flow blk_mq_rq_ctx_init() block: prefetch request to be initialized block: pass in blk_mq_tags to blk_mq_rq_ctx_init() block: add rq_flags to struct blk_mq_alloc_data block: add async version of bio_set_polled block: kill DIO_MULTI_BIO block: kill unused polling bits in __blkdev_direct_IO() block: avoid extra iter advance with async iocb block: Add independent access ranges support blk-mq: don't issue request directly in case that current is to be blocked sbitmap: silence data race warning blk-cgroup: synchronize blkg creation against policy deactivation block: refactor bio_iov_bvec_set() block: add single bio async direct IO helper ...
2021-10-18iov_iter: Turn iov_iter_fault_in_readable into fault_in_iov_iter_readableAndreas Gruenbacher
Turn iov_iter_fault_in_readable into a function that returns the number of bytes not faulted in, similar to copy_to_user, instead of returning a non-zero value when any of the requested pages couldn't be faulted in. This supports the existing users that require all pages to be faulted in as well as new users that are happy if any pages can be faulted in. Rename iov_iter_fault_in_readable to fault_in_iov_iter_readable to make sure this change doesn't silently break things. Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>