summaryrefslogtreecommitdiff
path: root/mm/internal.h
AgeCommit message (Collapse)Author
2021-07-08mmap: make mlock_future_check() globalMike Rapoport
Patch series "mm: introduce memfd_secret system call to create "secret" memory areas", v20. This is an implementation of "secret" mappings backed by a file descriptor. The file descriptor backing secret memory mappings is created using a dedicated memfd_secret system call The desired protection mode for the memory is configured using flags parameter of the system call. The mmap() of the file descriptor created with memfd_secret() will create a "secret" memory mapping. The pages in that mapping will be marked as not present in the direct map and will be present only in the page table of the owning mm. Although normally Linux userspace mappings are protected from other users, such secret mappings are useful for environments where a hostile tenant is trying to trick the kernel into giving them access to other tenants mappings. It's designed to provide the following protections: * Enhanced protection (in conjunction with all the other in-kernel attack prevention systems) against ROP attacks. Seceretmem makes "simple" ROP insufficient to perform exfiltration, which increases the required complexity of the attack. Along with other protections like the kernel stack size limit and address space layout randomization which make finding gadgets is really hard, absence of any in-kernel primitive for accessing secret memory means the one gadget ROP attack can't work. Since the only way to access secret memory is to reconstruct the missing mapping entry, the attacker has to recover the physical page and insert a PTE pointing to it in the kernel and then retrieve the contents. That takes at least three gadgets which is a level of difficulty beyond most standard attacks. * Prevent cross-process secret userspace memory exposures. Once the secret memory is allocated, the user can't accidentally pass it into the kernel to be transmitted somewhere. The secreremem pages cannot be accessed via the direct map and they are disallowed in GUP. * Harden against exploited kernel flaws. In order to access secretmem, a kernel-side attack would need to either walk the page tables and create new ones, or spawn a new privileged uiserspace process to perform secrets exfiltration using ptrace. In the future the secret mappings may be used as a mean to protect guest memory in a virtual machine host. For demonstration of secret memory usage we've created a userspace library https://git.kernel.org/pub/scm/linux/kernel/git/jejb/secret-memory-preloader.git that does two things: the first is act as a preloader for openssl to redirect all the OPENSSL_malloc calls to secret memory meaning any secret keys get automatically protected this way and the other thing it does is expose the API to the user who needs it. We anticipate that a lot of the use cases would be like the openssl one: many toolkits that deal with secret keys already have special handling for the memory to try to give them greater protection, so this would simply be pluggable into the toolkits without any need for user application modification. Hiding secret memory mappings behind an anonymous file allows usage of the page cache for tracking pages allocated for the "secret" mappings as well as using address_space_operations for e.g. page migration callbacks. The anonymous file may be also used implicitly, like hugetlb files, to implement mmap(MAP_SECRET) and use the secret memory areas with "native" mm ABIs in the future. Removing of the pages from the direct map may cause its fragmentation on architectures that use large pages to map the physical memory which affects the system performance. However, the original Kconfig text for CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can improve the kernel's performance a tiny bit ..." (commit 00d1c5e05736 ("x86: add gbpages switches")) and the recent report [1] showed that "... although 1G mappings are a good default choice, there is no compelling evidence that it must be the only choice". Hence, it is sufficient to have secretmem disabled by default with the ability of a system administrator to enable it at boot time. In addition, there is also a long term goal to improve management of the direct map. [1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux.intel.com/ This patch (of 7): It will be used by the upcoming secret memory implementation. Link: https://lkml.kernel.org/r/20210518072034.31572-1-rppt@kernel.org Link: https://lkml.kernel.org/r/20210518072034.31572-2-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm/page_alloc: move prototype for find_suitable_fallbackMel Gorman
make W=1 generates the following warning in mmap_lock.c for allnoconfig mm/page_alloc.c:2670:5: warning: no previous prototype for `find_suitable_fallback' [-Wmissing-prototypes] int find_suitable_fallback(struct free_area *area, unsigned int order, ^~~~~~~~~~~~~~~~~~~~~~ find_suitable_fallback is only shared outside of page_alloc.c for CONFIG_COMPACTION but to suppress the warning, move the protype outside of CONFIG_COMPACTION. It is not worth the effort at this time to find a clever way of allowing compaction.c to share the code or avoid the use entirely as the function is called on relatively slow paths. Link: https://lkml.kernel.org/r/20210520084809.8576-14-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm/madvise: introduce MADV_POPULATE_(READ|WRITE) to prefault page tablesDavid Hildenbrand
I. Background: Sparse Memory Mappings When we manage sparse memory mappings dynamically in user space - also sometimes involving MAP_NORESERVE - we want to dynamically populate/ discard memory inside such a sparse memory region. Example users are hypervisors (especially implementing memory ballooning or similar technologies like virtio-mem) and memory allocators. In addition, we want to fail in a nice way (instead of generating SIGBUS) if populating does not succeed because we are out of backend memory (which can happen easily with file-based mappings, especially tmpfs and hugetlbfs). While MADV_DONTNEED, MADV_REMOVE and FALLOC_FL_PUNCH_HOLE allow for reliably discarding memory for most mapping types, there is no generic approach to populate page tables and preallocate memory. Although mmap() supports MAP_POPULATE, it is not applicable to the concept of sparse memory mappings, where we want to populate/discard dynamically and avoid expensive/problematic remappings. In addition, we never actually report errors during the final populate phase - it is best-effort only. fallocate() can be used to preallocate file-based memory and fail in a safe way. However, it cannot really be used for any private mappings on anonymous files via memfd due to COW semantics. In addition, fallocate() does not actually populate page tables, so we still always get pagefaults on first access - which is sometimes undesired (i.e., real-time workloads) and requires real prefaulting of page tables, not just a preallocation of backend storage. There might be interesting use cases for sparse memory regions along with mlockall(MCL_ONFAULT) which fallocate() cannot satisfy as it does not prefault page tables. II. On preallcoation/prefaulting from user space Because we don't have a proper interface, what applications (like QEMU and databases) end up doing is touching (i.e., reading+writing one byte to not overwrite existing data) all individual pages. However, that approach 1) Can result in wear on storage backing, because we end up reading/writing each page; this is especially a problem for dax/pmem. 2) Can result in mmap_sem contention when prefaulting via multiple threads. 3) Requires expensive signal handling, especially to catch SIGBUS in case of hugetlbfs/shmem/file-backed memory. For example, this is problematic in hypervisors like QEMU where SIGBUS handlers might already be used by other subsystems concurrently to e.g, handle hardware errors. "Simply" doing preallocation concurrently from other thread is not that easy. III. On MADV_WILLNEED Extending MADV_WILLNEED is not an option because 1. It would change the semantics: "Expect access in the near future." and "might be a good idea to read some pages" vs. "Definitely populate/ preallocate all memory and definitely fail on errors.". 2. Existing users (like virtio-balloon in QEMU when deflating the balloon) don't want populate/prealloc semantics. They treat this rather as a hint to give a little performance boost without too much overhead - and don't expect that a lot of memory might get consumed or a lot of time might be spent. IV. MADV_POPULATE_READ and MADV_POPULATE_WRITE Let's introduce MADV_POPULATE_READ and MADV_POPULATE_WRITE, inspired by MAP_POPULATE, with the following semantics: 1. MADV_POPULATE_READ can be used to prefault page tables just like manually reading each individual page. This will not break any COW mappings. The shared zero page might get mapped and no backend storage might get preallocated -- allocation might be deferred to write-fault time. Especially shared file mappings require an explicit fallocate() upfront to actually preallocate backend memory (blocks in the file system) in case the file might have holes. 2. If MADV_POPULATE_READ succeeds, all page tables have been populated (prefaulted) readable once. 3. MADV_POPULATE_WRITE can be used to preallocate backend memory and prefault page tables just like manually writing (or reading+writing) each individual page. This will break any COW mappings -- e.g., the shared zeropage is never populated. 4. If MADV_POPULATE_WRITE succeeds, all page tables have been populated (prefaulted) writable once. 5. MADV_POPULATE_READ and MADV_POPULATE_WRITE cannot be applied to special mappings marked with VM_PFNMAP and VM_IO. Also, proper access permissions (e.g., PROT_READ, PROT_WRITE) are required. If any such mapping is encountered, madvise() fails with -EINVAL. 6. If MADV_POPULATE_READ or MADV_POPULATE_WRITE fails, some page tables might have been populated. 7. MADV_POPULATE_READ and MADV_POPULATE_WRITE will return -EHWPOISON when encountering a HW poisoned page in the range. 8. Similar to MAP_POPULATE, MADV_POPULATE_READ and MADV_POPULATE_WRITE cannot protect from the OOM (Out Of Memory) handler killing the process. While the use case for MADV_POPULATE_WRITE is fairly obvious (i.e., preallocate memory and prefault page tables for VMs), one issue is that whenever we prefault pages writable, the pages have to be marked dirty, because the CPU could dirty them any time. while not a real problem for hugetlbfs or dax/pmem, it can be a problem for shared file mappings: each page will be marked dirty and has to be written back later when evicting. MADV_POPULATE_READ allows for optimizing this scenario: Pre-read a whole mapping from backend storage without marking it dirty, such that eviction won't have to write it back. As discussed above, shared file mappings might require an explciit fallocate() upfront to achieve preallcoation+prepopulation. Although sparse memory mappings are the primary use case, this will also be useful for other preallocate/prefault use cases where MAP_POPULATE is not desired or the semantics of MAP_POPULATE are not sufficient: as one example, QEMU users can trigger preallocation/prefaulting of guest RAM after the mapping was created -- and don't want errors to be silently suppressed. Looking at the history, MADV_POPULATE was already proposed in 2013 [1], however, the main motivation back than was performance improvements -- which should also still be the case. V. Single-threaded performance comparison I did a short experiment, prefaulting page tables on completely *empty mappings/files* and repeated the experiment 10 times. The results correspond to the shortest execution time. In general, the performance benefit for huge pages is negligible with small mappings. V.1: Private mappings POPULATE_READ and POPULATE_WRITE is fastest. Note that Reading/POPULATE_READ will populate the shared zeropage where applicable -- which result in short population times. The fastest way to allocate backend storage (here: swap or huge pages) and prefault page tables is POPULATE_WRITE. V.2: Shared mappings fallocate() is fastest, however, doesn't prefault page tables. POPULATE_WRITE is faster than simple writes and read/writes. POPULATE_READ is faster than simple reads. Without a fd, the fastest way to allocate backend storage and prefault page tables is POPULATE_WRITE. With an fd, the fastest way is usually FALLOCATE+POPULATE_READ or FALLOCATE+POPULATE_WRITE respectively; one exception are actual files: FALLOCATE+Read is slightly faster than FALLOCATE+POPULATE_READ. The fastest way to allocate backend storage prefault page tables is FALLOCATE+POPULATE_WRITE -- except when dealing with actual files; then, FALLOCATE+POPULATE_READ is fastest and won't directly mark all pages as dirty. v.3: Detailed results ================================================== 2 MiB MAP_PRIVATE: ************************************************** Anon 4 KiB : Read : 0.119 ms Anon 4 KiB : Write : 0.222 ms Anon 4 KiB : Read/Write : 0.380 ms Anon 4 KiB : POPULATE_READ : 0.060 ms Anon 4 KiB : POPULATE_WRITE : 0.158 ms Memfd 4 KiB : Read : 0.034 ms Memfd 4 KiB : Write : 0.310 ms Memfd 4 KiB : Read/Write : 0.362 ms Memfd 4 KiB : POPULATE_READ : 0.039 ms Memfd 4 KiB : POPULATE_WRITE : 0.229 ms Memfd 2 MiB : Read : 0.030 ms Memfd 2 MiB : Write : 0.030 ms Memfd 2 MiB : Read/Write : 0.030 ms Memfd 2 MiB : POPULATE_READ : 0.030 ms Memfd 2 MiB : POPULATE_WRITE : 0.030 ms tmpfs : Read : 0.033 ms tmpfs : Write : 0.313 ms tmpfs : Read/Write : 0.406 ms tmpfs : POPULATE_READ : 0.039 ms tmpfs : POPULATE_WRITE : 0.285 ms file : Read : 0.033 ms file : Write : 0.351 ms file : Read/Write : 0.408 ms file : POPULATE_READ : 0.039 ms file : POPULATE_WRITE : 0.290 ms hugetlbfs : Read : 0.030 ms hugetlbfs : Write : 0.030 ms hugetlbfs : Read/Write : 0.030 ms hugetlbfs : POPULATE_READ : 0.030 ms hugetlbfs : POPULATE_WRITE : 0.030 ms ************************************************** 4096 MiB MAP_PRIVATE: ************************************************** Anon 4 KiB : Read : 237.940 ms Anon 4 KiB : Write : 708.409 ms Anon 4 KiB : Read/Write : 1054.041 ms Anon 4 KiB : POPULATE_READ : 124.310 ms Anon 4 KiB : POPULATE_WRITE : 572.582 ms Memfd 4 KiB : Read : 136.928 ms Memfd 4 KiB : Write : 963.898 ms Memfd 4 KiB : Read/Write : 1106.561 ms Memfd 4 KiB : POPULATE_READ : 78.450 ms Memfd 4 KiB : POPULATE_WRITE : 805.881 ms Memfd 2 MiB : Read : 357.116 ms Memfd 2 MiB : Write : 357.210 ms Memfd 2 MiB : Read/Write : 357.606 ms Memfd 2 MiB : POPULATE_READ : 356.094 ms Memfd 2 MiB : POPULATE_WRITE : 356.937 ms tmpfs : Read : 137.536 ms tmpfs : Write : 954.362 ms tmpfs : Read/Write : 1105.954 ms tmpfs : POPULATE_READ : 80.289 ms tmpfs : POPULATE_WRITE : 822.826 ms file : Read : 137.874 ms file : Write : 987.025 ms file : Read/Write : 1107.439 ms file : POPULATE_READ : 80.413 ms file : POPULATE_WRITE : 857.622 ms hugetlbfs : Read : 355.607 ms hugetlbfs : Write : 355.729 ms hugetlbfs : Read/Write : 356.127 ms hugetlbfs : POPULATE_READ : 354.585 ms hugetlbfs : POPULATE_WRITE : 355.138 ms ************************************************** 2 MiB MAP_SHARED: ************************************************** Anon 4 KiB : Read : 0.394 ms Anon 4 KiB : Write : 0.348 ms Anon 4 KiB : Read/Write : 0.400 ms Anon 4 KiB : POPULATE_READ : 0.326 ms Anon 4 KiB : POPULATE_WRITE : 0.273 ms Anon 2 MiB : Read : 0.030 ms Anon 2 MiB : Write : 0.030 ms Anon 2 MiB : Read/Write : 0.030 ms Anon 2 MiB : POPULATE_READ : 0.030 ms Anon 2 MiB : POPULATE_WRITE : 0.030 ms Memfd 4 KiB : Read : 0.412 ms Memfd 4 KiB : Write : 0.372 ms Memfd 4 KiB : Read/Write : 0.419 ms Memfd 4 KiB : POPULATE_READ : 0.343 ms Memfd 4 KiB : POPULATE_WRITE : 0.288 ms Memfd 4 KiB : FALLOCATE : 0.137 ms Memfd 4 KiB : FALLOCATE+Read : 0.446 ms Memfd 4 KiB : FALLOCATE+Write : 0.330 ms Memfd 4 KiB : FALLOCATE+Read/Write : 0.454 ms Memfd 4 KiB : FALLOCATE+POPULATE_READ : 0.379 ms Memfd 4 KiB : FALLOCATE+POPULATE_WRITE : 0.268 ms Memfd 2 MiB : Read : 0.030 ms Memfd 2 MiB : Write : 0.030 ms Memfd 2 MiB : Read/Write : 0.030 ms Memfd 2 MiB : POPULATE_READ : 0.030 ms Memfd 2 MiB : POPULATE_WRITE : 0.030 ms Memfd 2 MiB : FALLOCATE : 0.030 ms Memfd 2 MiB : FALLOCATE+Read : 0.031 ms Memfd 2 MiB : FALLOCATE+Write : 0.031 ms Memfd 2 MiB : FALLOCATE+Read/Write : 0.031 ms Memfd 2 MiB : FALLOCATE+POPULATE_READ : 0.030 ms Memfd 2 MiB : FALLOCATE+POPULATE_WRITE : 0.030 ms tmpfs : Read : 0.416 ms tmpfs : Write : 0.369 ms tmpfs : Read/Write : 0.425 ms tmpfs : POPULATE_READ : 0.346 ms tmpfs : POPULATE_WRITE : 0.295 ms tmpfs : FALLOCATE : 0.139 ms tmpfs : FALLOCATE+Read : 0.447 ms tmpfs : FALLOCATE+Write : 0.333 ms tmpfs : FALLOCATE+Read/Write : 0.454 ms tmpfs : FALLOCATE+POPULATE_READ : 0.380 ms tmpfs : FALLOCATE+POPULATE_WRITE : 0.272 ms file : Read : 0.191 ms file : Write : 0.511 ms file : Read/Write : 0.524 ms file : POPULATE_READ : 0.196 ms file : POPULATE_WRITE : 0.434 ms file : FALLOCATE : 0.004 ms file : FALLOCATE+Read : 0.197 ms file : FALLOCATE+Write : 0.554 ms file : FALLOCATE+Read/Write : 0.480 ms file : FALLOCATE+POPULATE_READ : 0.201 ms file : FALLOCATE+POPULATE_WRITE : 0.381 ms hugetlbfs : Read : 0.030 ms hugetlbfs : Write : 0.030 ms hugetlbfs : Read/Write : 0.030 ms hugetlbfs : POPULATE_READ : 0.030 ms hugetlbfs : POPULATE_WRITE : 0.030 ms hugetlbfs : FALLOCATE : 0.030 ms hugetlbfs : FALLOCATE+Read : 0.031 ms hugetlbfs : FALLOCATE+Write : 0.031 ms hugetlbfs : FALLOCATE+Read/Write : 0.030 ms hugetlbfs : FALLOCATE+POPULATE_READ : 0.030 ms hugetlbfs : FALLOCATE+POPULATE_WRITE : 0.030 ms ************************************************** 4096 MiB MAP_SHARED: ************************************************** Anon 4 KiB : Read : 1053.090 ms Anon 4 KiB : Write : 913.642 ms Anon 4 KiB : Read/Write : 1060.350 ms Anon 4 KiB : POPULATE_READ : 893.691 ms Anon 4 KiB : POPULATE_WRITE : 782.885 ms Anon 2 MiB : Read : 358.553 ms Anon 2 MiB : Write : 358.419 ms Anon 2 MiB : Read/Write : 357.992 ms Anon 2 MiB : POPULATE_READ : 357.533 ms Anon 2 MiB : POPULATE_WRITE : 357.808 ms Memfd 4 KiB : Read : 1078.144 ms Memfd 4 KiB : Write : 942.036 ms Memfd 4 KiB : Read/Write : 1100.391 ms Memfd 4 KiB : POPULATE_READ : 925.829 ms Memfd 4 KiB : POPULATE_WRITE : 804.394 ms Memfd 4 KiB : FALLOCATE : 304.632 ms Memfd 4 KiB : FALLOCATE+Read : 1163.359 ms Memfd 4 KiB : FALLOCATE+Write : 933.186 ms Memfd 4 KiB : FALLOCATE+Read/Write : 1187.304 ms Memfd 4 KiB : FALLOCATE+POPULATE_READ : 1013.660 ms Memfd 4 KiB : FALLOCATE+POPULATE_WRITE : 794.560 ms Memfd 2 MiB : Read : 358.131 ms Memfd 2 MiB : Write : 358.099 ms Memfd 2 MiB : Read/Write : 358.250 ms Memfd 2 MiB : POPULATE_READ : 357.563 ms Memfd 2 MiB : POPULATE_WRITE : 357.334 ms Memfd 2 MiB : FALLOCATE : 356.735 ms Memfd 2 MiB : FALLOCATE+Read : 358.152 ms Memfd 2 MiB : FALLOCATE+Write : 358.331 ms Memfd 2 MiB : FALLOCATE+Read/Write : 358.018 ms Memfd 2 MiB : FALLOCATE+POPULATE_READ : 357.286 ms Memfd 2 MiB : FALLOCATE+POPULATE_WRITE : 357.523 ms tmpfs : Read : 1087.265 ms tmpfs : Write : 950.840 ms tmpfs : Read/Write : 1107.567 ms tmpfs : POPULATE_READ : 922.605 ms tmpfs : POPULATE_WRITE : 810.094 ms tmpfs : FALLOCATE : 306.320 ms tmpfs : FALLOCATE+Read : 1169.796 ms tmpfs : FALLOCATE+Write : 933.730 ms tmpfs : FALLOCATE+Read/Write : 1191.610 ms tmpfs : FALLOCATE+POPULATE_READ : 1020.474 ms tmpfs : FALLOCATE+POPULATE_WRITE : 798.945 ms file : Read : 654.101 ms file : Write : 1259.142 ms file : Read/Write : 1289.509 ms file : POPULATE_READ : 661.642 ms file : POPULATE_WRITE : 1106.816 ms file : FALLOCATE : 1.864 ms file : FALLOCATE+Read : 656.328 ms file : FALLOCATE+Write : 1153.300 ms file : FALLOCATE+Read/Write : 1180.613 ms file : FALLOCATE+POPULATE_READ : 668.347 ms file : FALLOCATE+POPULATE_WRITE : 996.143 ms hugetlbfs : Read : 357.245 ms hugetlbfs : Write : 357.413 ms hugetlbfs : Read/Write : 357.120 ms hugetlbfs : POPULATE_READ : 356.321 ms hugetlbfs : POPULATE_WRITE : 356.693 ms hugetlbfs : FALLOCATE : 355.927 ms hugetlbfs : FALLOCATE+Read : 357.074 ms hugetlbfs : FALLOCATE+Write : 357.120 ms hugetlbfs : FALLOCATE+Read/Write : 356.983 ms hugetlbfs : FALLOCATE+POPULATE_READ : 356.413 ms hugetlbfs : FALLOCATE+POPULATE_WRITE : 356.266 ms ************************************************** [1] https://lkml.org/lkml/2013/6/27/698 [akpm@linux-foundation.org: coding style fixes] Link: https://lkml.kernel.org/r/20210419135443.12822-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@surriel.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Helge Deller <deller@gmx.de> Cc: Chris Zankel <chris@zankel.net> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rolf Eike Beer <eike-kernel@sf-tec.de> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: make variable names for populate_vma_page_range() consistentDavid Hildenbrand
Patch series "mm/madvise: introduce MADV_POPULATE_(READ|WRITE) to prefault page tables", v2. Excessive details on MADV_POPULATE_(READ|WRITE) can be found in patch #2. This patch (of 5): Let's make the variable names in the function declaration match the variable names used in the definition. Link: https://lkml.kernel.org/r/20210419135443.12822-1-david@redhat.com Link: https://lkml.kernel.org/r/20210419135443.12822-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Peter Xu <peterx@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Chris Zankel <chris@zankel.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Helge Deller <deller@gmx.de> Cc: Hugh Dickins <hughd@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Jann Horn <jannh@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Rik van Riel <riel@surriel.com> Cc: Rolf Eike Beer <eike-kernel@sf-tec.de> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: thp: refactor NUMA fault handlingYang Shi
When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: memory: make numa_migrate_prep() non-staticYang Shi
The numa_migrate_prep() will be used by huge NUMA fault as well in the following patch, make it non-static. Link: https://lkml.kernel.org/r/20210518200801.7413-3-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29mm/page_alloc: allow high-order pages to be stored on the per-cpu listsMel Gorman
The per-cpu page allocator (PCP) only stores order-0 pages. This means that all THP and "cheap" high-order allocations including SLUB contends on the zone->lock. This patch extends the PCP allocator to store THP and "cheap" high-order pages. Note that struct per_cpu_pages increases in size to 256 bytes (4 cache lines) on x86-64. Note that this is not necessarily a universal performance win because of how it is implemented. High-order pages can cause pcp->high to be exceeded prematurely for lower-orders so for example, a large number of THP pages being freed could release order-0 pages from the PCP lists. Hence, much depends on the allocation/free pattern as observed by a single CPU to determine if caching helps or hurts a particular workload. That said, basic performance testing passed. The following is a netperf UDP_STREAM test which hits the relevant patches as some of the network allocations are high-order. netperf-udp 5.13.0-rc2 5.13.0-rc2 mm-pcpburst-v3r4 mm-pcphighorder-v1r7 Hmean send-64 261.46 ( 0.00%) 266.30 * 1.85%* Hmean send-128 516.35 ( 0.00%) 536.78 * 3.96%* Hmean send-256 1014.13 ( 0.00%) 1034.63 * 2.02%* Hmean send-1024 3907.65 ( 0.00%) 4046.11 * 3.54%* Hmean send-2048 7492.93 ( 0.00%) 7754.85 * 3.50%* Hmean send-3312 11410.04 ( 0.00%) 11772.32 * 3.18%* Hmean send-4096 13521.95 ( 0.00%) 13912.34 * 2.89%* Hmean send-8192 21660.50 ( 0.00%) 22730.72 * 4.94%* Hmean send-16384 31902.32 ( 0.00%) 32637.50 * 2.30%* Functionally, a patch like this is necessary to make bulk allocation of high-order pages work with similar performance to order-0 bulk allocations. The bulk allocator is not updated in this series as it would have to be determined by bulk allocation users how they want to track the order of pages allocated with the bulk allocator. Link: https://lkml.kernel.org/r/20210611135753.GC30378@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29mm/page_alloc: adjust pcp->high after CPU hotplug eventsMel Gorman
The PCP high watermark is based on the number of online CPUs so the watermarks must be adjusted during CPU hotplug. At the time of hot-remove, the number of online CPUs is already adjusted but during hot-add, a delta needs to be applied to update PCP to the correct value. After this patch is applied, the high watermarks are adjusted correctly. # grep high: /proc/zoneinfo | tail -1 high: 649 # echo 0 > /sys/devices/system/cpu/cpu4/online # grep high: /proc/zoneinfo | tail -1 high: 664 # echo 1 > /sys/devices/system/cpu/cpu4/online # grep high: /proc/zoneinfo | tail -1 high: 649 Link: https://lkml.kernel.org/r/20210525080119.5455-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29mm: memcg/slab: create a new set of kmalloc-cg-<n> cachesWaiman Long
There are currently two problems in the way the objcg pointer array (memcg_data) in the page structure is being allocated and freed. On its allocation, it is possible that the allocated objcg pointer array comes from the same slab that requires memory accounting. If this happens, the slab will never become empty again as there is at least one object left (the obj_cgroup array) in the slab. When it is freed, the objcg pointer array object may be the last one in its slab and hence causes kfree() to be called again. With the right workload, the slab cache may be set up in a way that allows the recursive kfree() calling loop to nest deep enough to cause a kernel stack overflow and panic the system. One way to solve this problem is to split the kmalloc-<n> caches (KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n> (KMALLOC_NORMAL) caches for unaccounted objects only and a new set of kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All the other caches can still allow a mix of accounted and unaccounted objects. With this change, all the objcg pointer array objects will come from KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So both the recursive kfree() problem and non-freeable slab problem are gone. Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have mixed accounted and unaccounted objects, this will slightly reduce the number of objcg pointer arrays that need to be allocated and save a bit of memory. On the other hand, creating a new set of kmalloc caches does have the effect of reducing cache utilization. So it is properly a wash. The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches() will include the newly added caches without change. [vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem] Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com [akpm@linux-foundation.org: un-fat-finger v5 delta creation] [longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches] Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> [longman@redhat.com: fix for CONFIG_ZONE_DMA=n] Suggested-by: Roman Gushchin <guro@fb.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16mm/thp: fix vma_address() if virtual address below file offsetHugh Dickins
Running certain tests with a DEBUG_VM kernel would crash within hours, on the total_mapcount BUG() in split_huge_page_to_list(), while trying to free up some memory by punching a hole in a shmem huge page: split's try_to_unmap() was unable to find all the mappings of the page (which, on a !DEBUG_VM kernel, would then keep the huge page pinned in memory). When that BUG() was changed to a WARN(), it would later crash on the VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma) in mm/internal.h:vma_address(), used by rmap_walk_file() for try_to_unmap(). vma_address() is usually correct, but there's a wraparound case when the vm_start address is unusually low, but vm_pgoff not so low: vma_address() chooses max(start, vma->vm_start), but that decides on the wrong address, because start has become almost ULONG_MAX. Rewrite vma_address() to be more careful about vm_pgoff; move the VM_BUG_ON_VMA() out of it, returning -EFAULT for errors, so that it can be safely used from page_mapped_in_vma() and page_address_in_vma() too. Add vma_address_end() to apply similar care to end address calculation, in page_vma_mapped_walk() and page_mkclean_one() and try_to_unmap_one(); though it raises a question of whether callers would do better to supply pvmw->end to page_vma_mapped_walk() - I chose not, for a smaller patch. An irritation is that their apparent generality breaks down on KSM pages, which cannot be located by the page->index that page_to_pgoff() uses: as commit 4b0ece6fa016 ("mm: migrate: fix remove_migration_pte() for ksm pages") once discovered. I dithered over the best thing to do about that, and have ended up with a VM_BUG_ON_PAGE(PageKsm) in both vma_address() and vma_address_end(); though the only place in danger of using it on them was try_to_unmap_one(). Sidenote: vma_address() and vma_address_end() now use compound_nr() on a head page, instead of thp_size(): to make the right calculation on a hugetlbfs page, whether or not THPs are configured. try_to_unmap() is used on hugetlbfs pages, but perhaps the wrong calculation never mattered. Link: https://lkml.kernel.org/r/caf1c1a3-7cfb-7f8f-1beb-ba816e932825@google.com Fixes: a8fa41ad2f6f ("mm, rmap: check all VMAs that PTE-mapped THP can be part of") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-22Revert "mm/gup: check page posion status for coredump."Michal Hocko
While reviewing [1] I came across commit d3378e86d182 ("mm/gup: check page posion status for coredump.") and noticed that this patch is broken in two ways. First it doesn't really prevent hwpoison pages from being dumped because hwpoison pages can be marked asynchornously at any time after the check. Secondly, and more importantly, the patch introduces a ref count leak because get_dump_page takes a reference on the page which is not released. It also seems that the patch was merged incorrectly because there were follow up changes not included as well as discussions on how to address the underlying problem [2] Therefore revert the original patch. Link: http://lkml.kernel.org/r/20210429122519.15183-4-david@redhat.com [1] Link: http://lkml.kernel.org/r/57ac524c-b49a-99ec-c1e4-ef5027bfb61b@redhat.com [2] Link: https://lkml.kernel.org/r/20210505135407.31590-1-mhocko@kernel.org Fixes: d3378e86d182 ("mm/gup: check page posion status for coredump.") Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Aili Yao <yaoaili@kingsoft.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-07mm: fix typos in commentsIngo Molnar
Fix ~94 single-word typos in locking code comments, plus a few very obvious grammar mistakes. Link: https://lkml.kernel.org/r/20210322212624.GA1963421@gmail.com Link: https://lore.kernel.org/r/20210322205203.GB1959563@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Cc: Bhaskar Chowdhury <unixbhaskar@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm,compaction: let isolate_migratepages_{range,block} return error codesOscar Salvador
Currently, isolate_migratepages_{range,block} and their callers use a pfn == 0 vs pfn != 0 scheme to let the caller know whether there was any error during isolation. This does not work as soon as we need to start reporting different error codes and make sure we pass them down the chain, so they are properly interpreted by functions like e.g: alloc_contig_range. Let us rework isolate_migratepages_{range,block} so we can report error codes. Since isolate_migratepages_block will stop returning the next pfn to be scanned, we reuse the cc->migrate_pfn field to keep track of that. Link: https://lkml.kernel.org/r/20210419075413.1064-3-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30mm/page_alloc: combine __alloc_pages and __alloc_pages_nodemaskMatthew Wilcox (Oracle)
There are only two callers of __alloc_pages() so prune the thicket of alloc_page variants by combining the two functions together. Current callers of __alloc_pages() simply add an extra 'NULL' parameter and current callers of __alloc_pages_nodemask() call __alloc_pages() instead. Link: https://lkml.kernel.org/r/20210225150642.2582252-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30mm/vmalloc: remove unmap_kernel_rangeNicholas Piggin
This is a shim around vunmap_range, get rid of it. Move the main API comment from the _noflush variant to the normal variant, and make _noflush internal to mm/. [npiggin@gmail.com: fix nommu builds and a comment bug per sfr] Link: https://lkml.kernel.org/r/1617292598.m6g0knx24s.astroid@bobo.none [akpm@linux-foundation.org: move vunmap_range_noflush() stub inside !CONFIG_MMU, not !CONFIG_NUMA] [npiggin@gmail.com: fix nommu builds] Link: https://lkml.kernel.org/r/1617292497.o1uhq5ipxp.astroid@bobo.none Link: https://lkml.kernel.org/r/20210322021806.892164-5-npiggin@gmail.com Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Cédric Le Goater <clg@kaod.org> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30mm/vmalloc: remove map_kernel_rangeNicholas Piggin
Patch series "mm/vmalloc: cleanup after hugepage series", v2. Christoph pointed out some overdue cleanups required after the huge vmalloc series, and I had another failure error message improvement as well. This patch (of 5): This is a shim around vmap_pages_range, get rid of it. Move the main API comment from the _noflush variant to the normal variant, and make _noflush internal to mm/. Link: https://lkml.kernel.org/r/20210322021806.892164-1-npiggin@gmail.com Link: https://lkml.kernel.org/r/20210322021806.892164-2-npiggin@gmail.com Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Cédric Le Goater <clg@kaod.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-27Merge tag 'netfs-lib-20210426' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull network filesystem helper library updates from David Howells: "Here's a set of patches for 5.13 to begin the process of overhauling the local caching API for network filesystems. This set consists of two parts: (1) Add a helper library to handle the new VM readahead interface. This is intended to be used unconditionally by the filesystem (whether or not caching is enabled) and provides a common framework for doing caching, transparent huge pages and, in the future, possibly fscrypt and read bandwidth maximisation. It also allows the netfs and the cache to align, expand and slice up a read request from the VM in various ways; the netfs need only provide a function to read a stretch of data to the pagecache and the helper takes care of the rest. (2) Add an alternative fscache/cachfiles I/O API that uses the kiocb facility to do async DIO to transfer data to/from the netfs's pages, rather than using readpage with wait queue snooping on one side and vfs_write() on the other. It also uses less memory, since it doesn't do buffered I/O on the backing file. Note that this uses SEEK_HOLE/SEEK_DATA to locate the data available to be read from the cache. Whilst this is an improvement from the bmap interface, it still has a problem with regard to a modern extent-based filesystem inserting or removing bridging blocks of zeros. Fixing that requires a much greater overhaul. This is a step towards overhauling the fscache API. The change is opt-in on the part of the network filesystem. A netfs should not try to mix the old and the new API because of conflicting ways of handling pages and the PG_fscache page flag and because it would be mixing DIO with buffered I/O. Further, the helper library can't be used with the old API. This does not change any of the fscache cookie handling APIs or the way invalidation is done at this time. In the near term, I intend to deprecate and remove the old I/O API (fscache_allocate_page{,s}(), fscache_read_or_alloc_page{,s}(), fscache_write_page() and fscache_uncache_page()) and eventually replace most of fscache/cachefiles with something simpler and easier to follow. This patchset contains the following parts: - Some helper patches, including provision of an ITER_XARRAY iov iterator and a function to do readahead expansion. - Patches to add the netfs helper library. - A patch to add the fscache/cachefiles kiocb API. - A pair of patches to fix some review issues in the ITER_XARRAY and read helpers as spotted by Al and Willy. Jeff Layton has patches to add support in Ceph for this that he intends for this merge window. I have a set of patches to support AFS that I will post a separate pull request for. With this, AFS without a cache passes all expected xfstests; with a cache, there's an extra failure, but that's also there before these patches. Fixing that probably requires a greater overhaul. Ceph also passes the expected tests. I also have patches in a separate branch to tidy up the handling of PG_fscache/PG_private_2 and their contribution to page refcounting in the core kernel here, but I haven't included them in this set and will route them separately" Link: https://lore.kernel.org/lkml/3779937.1619478404@warthog.procyon.org.uk/ * tag 'netfs-lib-20210426' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: netfs: Miscellaneous fixes iov_iter: Four fixes for ITER_XARRAY fscache, cachefiles: Add alternate API to use kiocb for read/write to cache netfs: Add a tracepoint to log failures that would be otherwise unseen netfs: Define an interface to talk to a cache netfs: Add write_begin helper netfs: Gather stats netfs: Add tracepoints netfs: Provide readahead and readpage netfs helpers netfs, mm: Add set/end/wait_on_page_fscache() aliases netfs, mm: Move PG_fscache helper funcs to linux/netfs.h netfs: Documentation for helper library netfs: Make a netfs helper module mm: Implement readahead_control pageset expansion mm/readahead: Handle ractl nr_pages being modified fs: Document file_ra_state mm/filemap: Pass the file_ra_state in the ractl mm: Add set/end/wait functions for PG_private_2 iov_iter: Add ITER_XARRAY
2021-04-23mm/filemap: Pass the file_ra_state in the ractlMatthew Wilcox (Oracle)
For readahead_expand(), we need to modify the file ra_state, so pass it down by adding it to the ractl. We have to do this because it's not always the same as f_ra in the struct file that is already being passed. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Jeff Layton <jlayton@kernel.org> Tested-by: Dave Wysochanski <dwysocha@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> Link: https://lore.kernel.org/r/20210407201857.3582797-2-willy@infradead.org/ Link: https://lore.kernel.org/r/161789067431.6155.8063840447229665720.stgit@warthog.procyon.org.uk/ # v6
2021-04-09mm/gup: check page posion status for coredump.Aili Yao
When we do coredump for user process signal, this may be an SIGBUS signal with BUS_MCEERR_AR or BUS_MCEERR_AO code, which means this signal is resulted from ECC memory fail like SRAR or SRAO, we expect the memory recovery work is finished correctly, then the get_dump_page() will not return the error page as its process pte is set invalid by memory_failure(). But memory_failure() may fail, and the process's related pte may not be correctly set invalid, for current code, we will return the poison page, get it dumped, and then lead to system panic as its in kernel code. So check the poison status in get_dump_page(), and if TRUE, return NULL. There maybe other scenario that is also better to check the posion status and not to panic, so make a wrapper for this check, Thanks to David's suggestion(<david@redhat.com>). [akpm@linux-foundation.org: s/0/false/] [yaoaili@kingsoft.com: is_page_poisoned() arg cannot be null, per Matthew] Link: https://lkml.kernel.org/r/20210322115233.05e4e82a@alex-virtual-machine Link: https://lkml.kernel.org/r/20210319104437.6f30e80d@alex-virtual-machine Signed-off-by: Aili Yao <yaoaili@kingsoft.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Aili Yao <yaoaili@kingsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-03-13mm: introduce page_needs_cow_for_dma() for deciding whether cowPeter Xu
We've got quite a few places (pte, pmd, pud) that explicitly checked against whether we should break the cow right now during fork(). It's easier to provide a helper, especially before we work the same thing on hugetlbfs. Since we'll reference is_cow_mapping() in mm.h, move it there too. Actually it suites mm.h more since internal.h is mm/ only, but mm.h is exported to the whole kernel. With that we should expect another patch to use is_cow_mapping() whenever we can across the kernel since we do use it quite a lot but it's always done with raw code against VM_* flags. Link: https://lkml.kernel.org/r/20210217233547.93892-4-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@ziepe.ca> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: David Airlie <airlied@linux.ie> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Gal Pressman <galpress@amazon.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Roland Scheidegger <sroland@vmware.com> Cc: VMware Graphics <linux-graphics-maintainer@vmware.com> Cc: Wei Zhang <wzam@amazon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26mm: add and use find_lock_entriesMatthew Wilcox (Oracle)
We have three functions (shmem_undo_range(), truncate_inode_pages_range() and invalidate_mapping_pages()) which want exactly this function, so add it to filemap.c. Before this patch, shmem_undo_range() would split any compound page which overlaps either end of the range being punched in both the first and second loops through the address space. After this patch, that functionality is left for the second loop, which is arguably more appropriate since the first loop is supposed to run through all the pages quickly, and splitting a page can sleep. [willy@infradead.org: add assertion] Link: https://lkml.kernel.org/r/20201124041507.28996-3-willy@infradead.org Link: https://lkml.kernel.org/r/20201112212641.27837-10-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <dchinner@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26mm: add FGP_ENTRYMatthew Wilcox (Oracle)
The functionality of find_lock_entry() and find_get_entry() can be provided by pagecache_get_page(), which lets us delete find_lock_entry() and make find_get_entry() static. Link: https://lkml.kernel.org/r/20201112212641.27837-5-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Dave Chinner <dchinner@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm, page_alloc: disable pcplists during memory offlineVlastimil Babka
Memory offlining relies on page isolation to guarantee a forward progress because pages cannot be reused while they are isolated. But the page isolation itself doesn't prevent from races while freed pages are stored on pcp lists and thus can be reused. This can be worked around by repeated draining of pcplists, as done by commit 968318261221 ("mm/memory_hotplug: drain per-cpu pages again during memory offline"). David and Michal would prefer that this race was closed in a way that callers of page isolation who need stronger guarantees don't need to repeatedly drain. David suggested disabling pcplists usage completely during page isolation, instead of repeatedly draining them. To achieve this without adding special cases in alloc/free fastpath, we can use the same approach as boot pagesets - when pcp->high is 0, any pcplist addition will be immediately flushed. The race can thus be closed by setting pcp->high to 0 and draining pcplists once, before calling start_isolate_page_range(). The draining will serialize after processes that already disabled interrupts and read the old value of pcp->high in free_unref_page_commit(), and processes that have not yet disabled interrupts, will observe pcp->high == 0 when they are rescheduled, and skip pcplists. This guarantees no stray pages on pcplists in zones where isolation happens. This patch thus adds zone_pcp_disable() and zone_pcp_enable() functions that page isolation users can call before start_isolate_page_range() and after unisolating (or offlining) the isolated pages. Also, drain_all_pages() is optimized to only execute on cpus where pcplists are not empty. The check can however race with a free to pcplist that has not yet increased the pcp->count from 0 to 1. Thus make the drain optionally skip the racy check and drain on all cpus, and use this option in zone_pcp_disable(). As we have to avoid external updates to high and batch while pcplists are disabled, we take pcp_batch_high_lock in zone_pcp_disable() and release it in zone_pcp_enable(). This also synchronizes multiple users of zone_pcp_disable()/enable(). Currently the only user of this functionality is offline_pages(). [vbabka@suse.cz: add comment, per David] Link: https://lkml.kernel.org/r/527480ef-ed72-e1c1-52a0-1c5b0113df45@suse.cz Link: https://lkml.kernel.org/r/20201111092812.11329-8-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: move free_unref_page to mm/internal.hMatthew Wilcox (Oracle)
Code outside mm/ should not be calling free_unref_page(). Also move free_unref_page_list(). Link: https://lkml.kernel.org/r/20201125034655.27687-2-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16mm: rename page_order() to buddy_order()Matthew Wilcox (Oracle)
The current page_order() can only be called on pages in the buddy allocator. For compound pages, you have to use compound_order(). This is confusing and led to a bug, so rename page_order() to buddy_order(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Link: https://lkml.kernel.org/r/20201001152259.14932-2-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16mm/readahead: pass a file_ra_state into force_page_cache_raDavid Howells
The file_ra_state being passed into page_cache_sync_readahead() was being ignored in favour of using the one embedded in the struct file. The only caller for which this makes a difference is the fsverity code if the file has been marked as POSIX_FADV_RANDOM, but it's confusing and worth fixing. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Eric Biggers <ebiggers@google.com> Link: https://lkml.kernel.org/r/20200903140844.14194-10-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16mm/filemap: fold ra_submit into do_sync_mmap_readaheadDavid Howells
Fold ra_submit() into its last remaining user and pass the readahead_control struct to both do_page_cache_ra() and page_cache_sync_ra(). Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Eric Biggers <ebiggers@google.com> Link: https://lkml.kernel.org/r/20200903140844.14194-9-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16mm/readahead: pass readahead_control to force_page_cache_raDavid Howells
Reimplement force_page_cache_readahead() as a wrapper around force_page_cache_ra(). Pass the existing readahead_control from page_cache_sync_readahead(). Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Eric Biggers <ebiggers@google.com> Link: https://lkml.kernel.org/r/20200903140844.14194-7-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16mm/readahead: make do_page_cache_ra take a readahead_controlMatthew Wilcox (Oracle)
Rename __do_page_cache_readahead() to do_page_cache_ra() and call it directly from ondemand_readahead() instead of indirecting via ra_submit(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: David Howells <dhowells@redhat.com> Cc: Eric Biggers <ebiggers@google.com> Link: https://lkml.kernel.org/r/20200903140844.14194-5-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13i915: use find_lock_page instead of find_lock_entryMatthew Wilcox (Oracle)
i915 does not want to see value entries. Switch it to use find_lock_page() instead, and remove the export of find_lock_entry(). Move find_lock_entry() and find_get_entry() to mm/internal.h to discourage any future use. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Matthew Auld <matthew.auld@intel.com> Cc: William Kucharski <william.kucharski@oracle.com> Link: https://lkml.kernel.org/r/20200910183318.20139-6-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14mm: replace hpage_nr_pages with thp_nr_pagesMatthew Wilcox (Oracle)
The thp prefix is more frequently used than hpage and we should be consistent between the various functions. [akpm@linux-foundation.org: fix mm/migrate.c] Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14mm: add thp_sizeMatthew Wilcox (Oracle)
This function returns the number of bytes in a THP. It is like page_size(), but compiles to just PAGE_SIZE if CONFIG_TRANSPARENT_HUGEPAGE is disabled. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20200629151959.15779-5-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/mempolicy: use a standard migration target allocation callbackJoonsoo Kim
There is a well-defined migration target allocation callback. Use it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/1594622517-20681-7-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/migrate: introduce a standard migration target allocation functionJoonsoo Kim
There are some similar functions for migration target allocation. Since there is no fundamental difference, it's better to keep just one rather than keeping all variants. This patch implements base migration target allocation function. In the following patches, variants will be converted to use this function. Changes should be mechanical, but, unfortunately, there are some differences. First, some callers' nodemask is assgined to NULL since NULL nodemask will be considered as all available nodes, that is, &node_states[N_MEMORY]. Second, for hugetlb page allocation, gfp_mask is redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if user provided gfp_mask has it. This is because future caller of this function requires to set this node constaint. Lastly, if provided nodeid is NUMA_NO_NODE, nodeid is set up to the node where migration source lives. It helps to remove simple wrappers for setting up the nodeid. Note that PageHighmem() call in previous function is changed to open-code "is_highmem_idx()" since it provides more readability. [akpm@linux-foundation.org: tweak patch title, per Vlastimil] [akpm@linux-foundation.org: fix typo in comment] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/1594622517-20681-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm: proactive compactionNitin Gupta
For some applications, we need to allocate almost all memory as hugepages. However, on a running system, higher-order allocations can fail if the memory is fragmented. Linux kernel currently does on-demand compaction as we request more hugepages, but this style of compaction incurs very high latency. Experiments with one-time full memory compaction (followed by hugepage allocations) show that kernel is able to restore a highly fragmented memory state to a fairly compacted memory state within <1 sec for a 32G system. Such data suggests that a more proactive compaction can help us allocate a large fraction of memory as hugepages keeping allocation latencies low. For a more proactive compaction, the approach taken here is to define a new sysctl called 'vm.compaction_proactiveness' which dictates bounds for external fragmentation which kcompactd tries to maintain. The tunable takes a value in range [0, 100], with a default of 20. Note that a previous version of this patch [1] was found to introduce too many tunables (per-order extfrag{low, high}), but this one reduces them to just one sysctl. Also, the new tunable is an opaque value instead of asking for specific bounds of "external fragmentation", which would have been difficult to estimate. The internal interpretation of this opaque value allows for future fine-tuning. Currently, we use a simple translation from this tunable to [low, high] "fragmentation score" thresholds (low=100-proactiveness, high=low+10%). The score for a node is defined as weighted mean of per-zone external fragmentation. A zone's present_pages determines its weight. To periodically check per-node score, we reuse per-node kcompactd threads, which are woken up every 500 milliseconds to check the same. If a node's score exceeds its high threshold (as derived from user-provided proactiveness value), proactive compaction is started until its score reaches its low threshold value. By default, proactiveness is set to 20, which implies threshold values of low=80 and high=90. This patch is largely based on ideas from Michal Hocko [2]. See also the LWN article [3]. Performance data ================ System: x64_64, 1T RAM, 80 CPU threads. Kernel: 5.6.0-rc3 + this patch echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/enabled echo madvise | sudo tee /sys/kernel/mm/transparent_hugepage/defrag Before starting the driver, the system was fragmented from a userspace program that allocates all memory and then for each 2M aligned section, frees 3/4 of base pages using munmap. The workload is mainly anonymous userspace pages, which are easy to move around. I intentionally avoided unmovable pages in this test to see how much latency we incur when hugepage allocations hit direct compaction. 1. Kernel hugepage allocation latencies With the system in such a fragmented state, a kernel driver then allocates as many hugepages as possible and measures allocation latency: (all latency values are in microseconds) - With vanilla 5.6.0-rc3 percentile latency –––––––––– ––––––– 5 7894 10 9496 25 12561 30 15295 40 18244 50 21229 60 27556 75 30147 80 31047 90 32859 95 33799 Total 2M hugepages allocated = 383859 (749G worth of hugepages out of 762G total free => 98% of free memory could be allocated as hugepages) - With 5.6.0-rc3 + this patch, with proactiveness=20 sysctl -w vm.compaction_proactiveness=20 percentile latency –––––––––– ––––––– 5 2 10 2 25 3 30 3 40 3 50 4 60 4 75 4 80 4 90 5 95 429 Total 2M hugepages allocated = 384105 (750G worth of hugepages out of 762G total free => 98% of free memory could be allocated as hugepages) 2. JAVA heap allocation In this test, we first fragment memory using the same method as for (1). Then, we start a Java process with a heap size set to 700G and request the heap to be allocated with THP hugepages. We also set THP to madvise to allow hugepage backing of this heap. /usr/bin/time java -Xms700G -Xmx700G -XX:+UseTransparentHugePages -XX:+AlwaysPreTouch The above command allocates 700G of Java heap using hugepages. - With vanilla 5.6.0-rc3 17.39user 1666.48system 27:37.89elapsed - With 5.6.0-rc3 + this patch, with proactiveness=20 8.35user 194.58system 3:19.62elapsed Elapsed time remains around 3:15, as proactiveness is further increased. Note that proactive compaction happens throughout the runtime of these workloads. The situation of one-time compaction, sufficient to supply hugepages for following allocation stream, can probably happen for more extreme proactiveness values, like 80 or 90. In the above Java workload, proactiveness is set to 20. The test starts with a node's score of 80 or higher, depending on the delay between the fragmentation step and starting the benchmark, which gives more-or-less time for the initial round of compaction. As t he benchmark consumes hugepages, node's score quickly rises above the high threshold (90) and proactive compaction starts again, which brings down the score to the low threshold level (80). Repeat. bpftrace also confirms proactive compaction running 20+ times during the runtime of this Java benchmark. kcompactd threads consume 100% of one of the CPUs while it tries to bring a node's score within thresholds. Backoff behavior ================ Above workloads produce a memory state which is easy to compact. However, if memory is filled with unmovable pages, proactive compaction should essentially back off. To test this aspect: - Created a kernel driver that allocates almost all memory as hugepages followed by freeing first 3/4 of each hugepage. - Set proactiveness=40 - Note that proactive_compact_node() is deferred maximum number of times with HPAGE_FRAG_CHECK_INTERVAL_MSEC of wait between each check (=> ~30 seconds between retries). [1] https://patchwork.kernel.org/patch/11098289/ [2] https://lore.kernel.org/linux-mm/20161230131412.GI13301@dhcp22.suse.cz/ [3] https://lwn.net/Articles/817905/ Signed-off-by: Nitin Gupta <nigupta@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Oleksandr Natalenko <oleksandr@redhat.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Reviewed-by: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Nitin Gupta <ngupta@nitingupta.dev> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Link: http://lkml.kernel.org/r/20200616204527.19185-1-nigupta@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09mmap locking API: convert mmap_sem commentsMichel Lespinasse
Convert comments that reference mmap_sem to reference mmap_lock instead. [akpm@linux-foundation.org: fix up linux-next leftovers] [akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil] [akpm@linux-foundation.org: more linux-next fixups, per Michel] Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09mmap locking API: use coccinelle to convert mmap_sem rwsem call sitesMichel Lespinasse
This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead. The change is generated using coccinelle with the following rule: // spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir . @@ expression mm; @@ ( -init_rwsem +mmap_init_lock | -down_write +mmap_write_lock | -down_write_killable +mmap_write_lock_killable | -down_write_trylock +mmap_write_trylock | -up_write +mmap_write_unlock | -downgrade_write +mmap_write_downgrade | -down_read +mmap_read_lock | -down_read_killable +mmap_read_lock_killable | -down_read_trylock +mmap_read_trylock | -up_read +mmap_read_unlock ) -(&mm->mmap_sem) +(mm) Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04mm: fix a typo in comment "strucure"->"structure"Ethon Paul
There is a typo in comment, fix it. Signed-off-by: Ethon Paul <ethp@qq.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200411064723.15855-1-ethp@qq.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm/vmscan.c: change prototype for shrink_page_listManinder Singh
commit 3c710c1ad11b ("mm, vmscan extract shrink_page_list reclaim counters into a struct") changed data type for the function, so changing return type for funciton and its caller. Signed-off-by: Vaneet Narang <v.narang@samsung.com> Signed-off-by: Maninder Singh <maninder1.s@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Amit Sahrawat <a.sahrawat@samsung.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/1588168259-25604-1-git-send-email-maninder1.s@samsung.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm/page_alloc: integrate classzone_idx and high_zoneidxJoonsoo Kim
classzone_idx is just different name for high_zoneidx now. So, integrate them and add some comment to struct alloc_context in order to reduce future confusion about the meaning of this variable. The accessor, ac_classzone_idx() is also removed since it isn't needed after integration. In addition to integration, this patch also renames high_zoneidx to highest_zoneidx since it represents more precise meaning. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Baoquan He <bhe@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Ye Xiaolong <xiaolong.ye@intel.com> Link: http://lkml.kernel.org/r/1587095923-7515-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03mm/page_alloc: use ac->high_zoneidx for classzone_idxJoonsoo Kim
Patch series "integrate classzone_idx and high_zoneidx", v5. This patchset is followup of the problem reported and discussed two years ago [1, 2]. The problem this patchset solves is related to the classzone_idx on the NUMA system. It causes a problem when the lowmem reserve protection exists for some zones on a node that do not exist on other nodes. This problem was reported two years ago, and, at that time, the solution got general agreements [2]. But it was not upstreamed. [1]: http://lkml.kernel.org/r/20180102063528.GG30397@yexl-desktop [2]: http://lkml.kernel.org/r/1525408246-14768-1-git-send-email-iamjoonsoo.kim@lge.com This patch (of 2): Currently, we use classzone_idx to calculate lowmem reserve proetection for an allocation request. This classzone_idx causes a problem on NUMA systems when the lowmem reserve protection exists for some zones on a node that do not exist on other nodes. Before further explanation, I should first clarify how to compute the classzone_idx and the high_zoneidx. - ac->high_zoneidx is computed via the arcane gfp_zone(gfp_mask) and represents the index of the highest zone the allocation can use - classzone_idx was supposed to be the index of the highest zone on the local node that the allocation can use, that is actually available in the system Think about following example. Node 0 has 4 populated zone, DMA/DMA32/NORMAL/MOVABLE. Node 1 has 1 populated zone, NORMAL. Some zones, such as MOVABLE, doesn't exist on node 1 and this makes following difference. Assume that there is an allocation request whose gfp_zone(gfp_mask) is the zone, MOVABLE. Then, it's high_zoneidx is 3. If this allocation is initiated on node 0, it's classzone_idx is 3 since actually available/usable zone on local (node 0) is MOVABLE. If this allocation is initiated on node 1, it's classzone_idx is 2 since actually available/usable zone on local (node 1) is NORMAL. You can see that classzone_idx of the allocation request are different according to their starting node, even if their high_zoneidx is the same. Think more about these two allocation requests. If they are processed on local, there is no problem. However, if allocation is initiated on node 1 are processed on remote, in this example, at the NORMAL zone on node 0, due to memory shortage, problem occurs. Their different classzone_idx leads to different lowmem reserve and then different min watermark. See the following example. root@ubuntu:/sys/devices/system/memory# cat /proc/zoneinfo Node 0, zone DMA per-node stats ... pages free 3965 min 5 low 8 high 11 spanned 4095 present 3998 managed 3977 protection: (0, 2961, 4928, 5440) ... Node 0, zone DMA32 pages free 757955 min 1129 low 1887 high 2645 spanned 1044480 present 782303 managed 758116 protection: (0, 0, 1967, 2479) ... Node 0, zone Normal pages free 459806 min 750 low 1253 high 1756 spanned 524288 present 524288 managed 503620 protection: (0, 0, 0, 4096) ... Node 0, zone Movable pages free 130759 min 195 low 326 high 457 spanned 1966079 present 131072 managed 131072 protection: (0, 0, 0, 0) ... Node 1, zone DMA pages free 0 min 0 low 0 high 0 spanned 0 present 0 managed 0 protection: (0, 0, 1006, 1006) Node 1, zone DMA32 pages free 0 min 0 low 0 high 0 spanned 0 present 0 managed 0 protection: (0, 0, 1006, 1006) Node 1, zone Normal per-node stats ... pages free 233277 min 383 low 640 high 897 spanned 262144 present 262144 managed 257744 protection: (0, 0, 0, 0) ... Node 1, zone Movable pages free 0 min 0 low 0 high 0 spanned 262144 present 0 managed 0 protection: (0, 0, 0, 0) - static min watermark for the NORMAL zone on node 0 is 750. - lowmem reserve for the request with classzone idx 3 at the NORMAL on node 0 is 4096. - lowmem reserve for the request with classzone idx 2 at the NORMAL on node 0 is 0. So, overall min watermark is: allocation initiated on node 0 (classzone_idx 3): 750 + 4096 = 4846 allocation initiated on node 1 (classzone_idx 2): 750 + 0 = 750 Allocation initiated on node 1 will have some precedence than allocation initiated on node 0 because min watermark of the former allocation is lower than the other. So, allocation initiated on node 1 could succeed on node 0 when allocation initiated on node 0 could not, and, this could cause too many numa_miss allocation. Then, performance could be downgraded. Recently, there was a regression report about this problem on CMA patches since CMA memory are placed in ZONE_MOVABLE by those patches. I checked that problem is disappeared with this fix that uses high_zoneidx for classzone_idx. http://lkml.kernel.org/r/20180102063528.GG30397@yexl-desktop Using high_zoneidx for classzone_idx is more consistent way than previous approach because system's memory layout doesn't affect anything to it. With this patch, both classzone_idx on above example will be 3 so will have the same min watermark. allocation initiated on node 0: 750 + 4096 = 4846 allocation initiated on node 1: 750 + 4096 = 4846 One could wonder if there is a side effect that allocation initiated on node 1 will use higher bar when allocation is handled on local since classzone_idx could be higher than before. It will not happen because the zone without managed page doesn't contributes lowmem_reserve at all. Reported-by: Ye Xiaolong <xiaolong.ye@intel.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Ye Xiaolong <xiaolong.ye@intel.com> Reviewed-by: Baoquan He <bhe@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Link: http://lkml.kernel.org/r/1587095923-7515-1-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1587095923-7515-2-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02mm: return void from various readahead functionsMatthew Wilcox (Oracle)
ondemand_readahead has two callers, neither of which use the return value. That means that both ra_submit and __do_page_cache_readahead() can return void, and we don't need to worry that a present page in the readahead window causes us to return a smaller nr_pages than we ought to have. Similarly, no caller uses the return value from force_page_cache_readahead(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Cc: Chao Yu <yuchao0@huawei.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Gao Xiang <gaoxiang25@huawei.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com> Cc: Miklos Szeredi <mszeredi@redhat.com> Link: http://lkml.kernel.org/r/20200414150233.24495-3-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02mm: move readahead prototypes from mm.hMatthew Wilcox (Oracle)
Patch series "Change readahead API", v11. This series adds a readahead address_space operation to replace the readpages operation. The key difference is that pages are added to the page cache as they are allocated (and then looked up by the filesystem) instead of passing them on a list to the readpages operation and having the filesystem add them to the page cache. It's a net reduction in code for each implementation, more efficient than walking a list, and solves the direct-write vs buffered-read problem reported by yu kuai at http://lkml.kernel.org/r/20200116063601.39201-1-yukuai3@huawei.com The only unconverted filesystems are those which use fscache. Their conversion is pending Dave Howells' rewrite which will make the conversion substantially easier. This should be completed by the end of the year. I want to thank the reviewers/testers; Dave Chinner, John Hubbard, Eric Biggers, Johannes Thumshirn, Dave Sterba, Zi Yan, Christoph Hellwig and Miklos Szeredi have done a marvellous job of providing constructive criticism. These patches pass an xfstests run on ext4, xfs & btrfs with no regressions that I can tell (some of the tests seem a little flaky before and remain flaky afterwards). This patch (of 25): The readahead code is part of the page cache so should be found in the pagemap.h file. force_page_cache_readahead is only used within mm, so move it to mm/internal.h instead. Remove the parameter names where they add no value, and rename the ones which were actively misleading. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Cc: Chao Yu <yuchao0@huawei.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Gao Xiang <gaoxiang25@huawei.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Miklos Szeredi <mszeredi@redhat.com> Link: http://lkml.kernel.org/r/20200414150233.24495-1-willy@infradead.org Link: http://lkml.kernel.org/r/20200414150233.24495-2-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07mm: add function __putback_isolated_pageAlexander Duyck
There are cases where we would benefit from avoiding having to go through the allocation and free cycle to return an isolated page. Examples for this might include page poisoning in which we isolate a page and then put it back in the free list without ever having actually allocated it. This will enable us to also avoid notifiers for the future free page reporting which will need to avoid retriggering page reporting when returning pages that have been reported on. Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitesh Narayan Lal <nitesh@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Wang <wei.w.wang@intel.com> Cc: Yang Zhang <yang.zhang.wz@gmail.com> Cc: wei qi <weiqi4@huawei.com> Link: http://lkml.kernel.org/r/20200211224624.29318.89287.stgit@localhost.localdomain Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm,compaction,cma: add alloc_contig flag to compact_controlRik van Riel
Patch series "fix THP migration for CMA allocations", v2. Transparent huge pages are allocated with __GFP_MOVABLE, and can end up in CMA memory blocks. Transparent huge pages also have most of the infrastructure in place to allow migration. However, a few pieces were missing, causing THP migration to fail when attempting to use CMA to allocate 1GB hugepages. With these patches in place, THP migration from CMA blocks seems to work, both for anonymous THPs and for tmpfs/shmem THPs. This patch (of 2): Add information to struct compact_control to indicate that the allocator would really like to clear out this specific part of memory, used by for example CMA. Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Cc: Joonsoo Kim <js1304@gmail.com> Link: http://lkml.kernel.org/r/20200227213238.1298752-1-riel@surriel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm, pagealloc: micro-optimisation: save two branches on hot page allocation pathMateusz Nosek
This patch makes ALLOC_KSWAPD equal to __GFP_KSWAPD_RECLAIM (cast to int). Thanks to that code like: if (gfp_mask & __GFP_KSWAPD_RECLAIM) alloc_flags |= ALLOC_KSWAPD; can be changed to: alloc_flags |= (__force int) (gfp_mask &__GFP_KSWAPD_RECLAIM); Thanks to this one branch less is generated in the assembly. In case of ALLOC_KSWAPD flag two branches are saved, first one in code that always executes in the beginning of page allocation and the second one in loop in page allocator slowpath. Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Link: http://lkml.kernel.org/r/20200304162118.14784-1-mateusznosek0@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: allow VM_FAULT_RETRY for multiple timesPeter Xu
The idea comes from a discussion between Linus and Andrea [1]. Before this patch we only allow a page fault to retry once. We achieved this by clearing the FAULT_FLAG_ALLOW_RETRY flag when doing handle_mm_fault() the second time. This was majorly used to avoid unexpected starvation of the system by looping over forever to handle the page fault on a single page. However that should hardly happen, and after all for each code path to return a VM_FAULT_RETRY we'll first wait for a condition (during which time we should possibly yield the cpu) to happen before VM_FAULT_RETRY is really returned. This patch removes the restriction by keeping the FAULT_FLAG_ALLOW_RETRY flag when we receive VM_FAULT_RETRY. It means that the page fault handler now can retry the page fault for multiple times if necessary without the need to generate another page fault event. Meanwhile we still keep the FAULT_FLAG_TRIED flag so page fault handler can still identify whether a page fault is the first attempt or not. Then we'll have these combinations of fault flags (only considering ALLOW_RETRY flag and TRIED flag): - ALLOW_RETRY and !TRIED: this means the page fault allows to retry, and this is the first try - ALLOW_RETRY and TRIED: this means the page fault allows to retry, and this is not the first try - !ALLOW_RETRY and !TRIED: this means the page fault does not allow to retry at all - !ALLOW_RETRY and TRIED: this is forbidden and should never be used In existing code we have multiple places that has taken special care of the first condition above by checking against (fault_flags & FAULT_FLAG_ALLOW_RETRY). This patch introduces a simple helper to detect the first retry of a page fault by checking against both (fault_flags & FAULT_FLAG_ALLOW_RETRY) and !(fault_flag & FAULT_FLAG_TRIED) because now even the 2nd try will have the ALLOW_RETRY set, then use that helper in all existing special paths. One example is in __lock_page_or_retry(), now we'll drop the mmap_sem only in the first attempt of page fault and we'll keep it in follow up retries, so old locking behavior will be retained. This will be a nice enhancement for current code [2] at the same time a supporting material for the future userfaultfd-writeprotect work, since in that work there will always be an explicit userfault writeprotect retry for protected pages, and if that cannot resolve the page fault (e.g., when userfaultfd-writeprotect is used in conjunction with swapped pages) then we'll possibly need a 3rd retry of the page fault. It might also benefit other potential users who will have similar requirement like userfault write-protection. GUP code is not touched yet and will be covered in follow up patch. Please read the thread below for more information. [1] https://lore.kernel.org/lkml/20171102193644.GB22686@redhat.com/ [2] https://lore.kernel.org/lkml/20181230154648.GB9832@redhat.com/ Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220160246.9790-1-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: swap: make page_evictable() inlineYang Shi
When backporting commit 9c4e6b1a7027 ("mm, mlock, vmscan: no more skipping pagevecs") to our 4.9 kernel, our test bench noticed around 10% down with a couple of vm-scalability's test cases (lru-file-readonce, lru-file-readtwice and lru-file-mmap-read). I didn't see that much down on my VM (32c-64g-2nodes). It might be caused by the test configuration, which is 32c-256g with NUMA disabled and the tests were run in root memcg, so the tests actually stress only one inactive and active lru. It sounds not very usual in mordern production environment. That commit did two major changes: 1. Call page_evictable() 2. Use smp_mb to force the PG_lru set visible It looks they contribute the most overhead. The page_evictable() is a function which does function prologue and epilogue, and that was used by page reclaim path only. However, lru add is a very hot path, so it sounds better to make it inline. However, it calls page_mapping() which is not inlined either, but the disassemble shows it doesn't do push and pop operations and it sounds not very straightforward to inline it. Other than this, it sounds smp_mb() is not necessary for x86 since SetPageLRU is atomic which enforces memory barrier already, replace it with smp_mb__after_atomic() in the following patch. With the two fixes applied, the tests can get back around 5% on that test bench and get back normal on my VM. Since the test bench configuration is not that usual and I also saw around 6% up on the latest upstream, so it sounds good enough IMHO. The below is test data (lru-file-readtwice throughput) against the v5.6-rc4: mainline w/ inline fix 150MB 154MB With this patch the throughput gets 2.67% up. The data with using smp_mb__after_atomic() is showed in the following patch. Shakeel Butt did the below test: On a real machine with limiting the 'dd' on a single node and reading 100 GiB sparse file (less than a single node). Just ran a single instance to not cause the lru lock contention. The cmdline used is "dd if=file-100GiB of=/dev/null bs=4k". Ran the cmd 10 times with drop_caches in between and measured the time it took. Without patch: 56.64143 +- 0.672 sec With patches: 56.10 +- 0.21 sec [akpm@linux-foundation.org: move page_evictable() to internal.h] Fixes: 9c4e6b1a7027 ("mm, mlock, vmscan: no more skipping pagevecs") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/1584500541-46817-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01mm, pcpu: make zone pcp updates and reset internal to the mmMel Gorman
Memory hotplug needs to be able to reset and reinit the pcpu allocator batch and high limits but this action is internal to the VM. Move the declaration to internal.h Link: http://lkml.kernel.org/r/20191021094808.28824-4-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Borislav Petkov <bp@alien8.de> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Qian Cai <cai@lca.pw> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01mm/mmap.c: rb_parent is not necessary in __vma_link_list()Wei Yang
Now we use rb_parent to get next, while this is not necessary. When prev is NULL, this means vma should be the first element in the list. Then next should be current first one (mm->mmap), no matter whether we have parent or not. After removing it, the code shows the beauty of symmetry. Link: http://lkml.kernel.org/r/20190813032656.16625-1-richardw.yang@linux.intel.com Signed-off-by: Wei Yang <richardw.yang@linux.intel.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>