summaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
AgeCommit message (Collapse)Author
2023-12-29mm: memcg: fix split queue list crash when large folio migrationBaolin Wang
When running autonuma with enabling multi-size THP, I encountered the following kernel crash issue: [ 134.290216] list_del corruption. prev->next should be fffff9ad42e1c490, but was dead000000000100. (prev=fffff9ad42399890) [ 134.290877] kernel BUG at lib/list_debug.c:62! [ 134.291052] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 134.291210] CPU: 56 PID: 8037 Comm: numa01 Kdump: loaded Tainted: G E 6.7.0-rc4+ #20 [ 134.291649] RIP: 0010:__list_del_entry_valid_or_report+0x97/0xb0 ...... [ 134.294252] Call Trace: [ 134.294362] <TASK> [ 134.294440] ? die+0x33/0x90 [ 134.294561] ? do_trap+0xe0/0x110 ...... [ 134.295681] ? __list_del_entry_valid_or_report+0x97/0xb0 [ 134.295842] folio_undo_large_rmappable+0x99/0x100 [ 134.296003] destroy_large_folio+0x68/0x70 [ 134.296172] migrate_folio_move+0x12e/0x260 [ 134.296264] ? __pfx_remove_migration_pte+0x10/0x10 [ 134.296389] migrate_pages_batch+0x495/0x6b0 [ 134.296523] migrate_pages+0x1d0/0x500 [ 134.296646] ? __pfx_alloc_misplaced_dst_folio+0x10/0x10 [ 134.296799] migrate_misplaced_folio+0x12d/0x2b0 [ 134.296953] do_numa_page+0x1f4/0x570 [ 134.297121] __handle_mm_fault+0x2b0/0x6c0 [ 134.297254] handle_mm_fault+0x107/0x270 [ 134.300897] do_user_addr_fault+0x167/0x680 [ 134.304561] exc_page_fault+0x65/0x140 [ 134.307919] asm_exc_page_fault+0x22/0x30 The reason for the crash is that, the commit 85ce2c517ade ("memcontrol: only transfer the memcg data for migration") removed the charging and uncharging operations of the migration folios and cleared the memcg data of the old folio. During the subsequent release process of the old large folio in destroy_large_folio(), if the large folio needs to be removed from the split queue, an incorrect split queue can be obtained (which is pgdat->deferred_split_queue) because the old folio's memcg is NULL now. This can lead to list operations being performed under the wrong split queue lock protection, resulting in a list crash as above. After the migration, the old folio is going to be freed, so we can remove it from the split queue in mem_cgroup_migrate() a bit earlier before clearing the memcg data to avoid getting incorrect split queue. [akpm@linux-foundation.org: fix comment, per Zi Yan] Link: https://lkml.kernel.org/r/61273e5e9b490682388377c20f52d19de4a80460.1703054559.git.baolin.wang@linux.alibaba.com Fixes: 85ce2c517ade ("memcontrol: only transfer the memcg data for migration") Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-20mm: memcg: restore subtree stats flushingYosry Ahmed
Stats flushing for memcg currently follows the following rules: - Always flush the entire memcg hierarchy (i.e. flush the root). - Only one flusher is allowed at a time. If someone else tries to flush concurrently, they skip and return immediately. - A periodic flusher flushes all the stats every 2 seconds. The reason this approach is followed is because all flushes are serialized by a global rstat spinlock. On the memcg side, flushing is invoked from userspace reads as well as in-kernel flushers (e.g. reclaim, refault, etc). This approach aims to avoid serializing all flushers on the global lock, which can cause a significant performance hit under high concurrency. This approach has the following problems: - Occasionally a userspace read of the stats of a non-root cgroup will be too expensive as it has to flush the entire hierarchy [1]. - Sometimes the stats accuracy are compromised if there is an ongoing flush, and we skip and return before the subtree of interest is actually flushed, yielding stale stats (by up to 2s due to periodic flushing). This is more visible when reading stats from userspace, but can also affect in-kernel flushers. The latter problem is particulary a concern when userspace reads stats after an event occurs, but gets stats from before the event. Examples: - When memory usage / pressure spikes, a userspace OOM handler may look at the stats of different memcgs to select a victim based on various heuristics (e.g. how much private memory will be freed by killing this). Reading stale stats from before the usage spike in this case may cause a wrongful OOM kill. - A proactive reclaimer may read the stats after writing to memory.reclaim to measure the success of the reclaim operation. Stale stats from before reclaim may give a false negative. - Reading the stats of a parent and a child memcg may be inconsistent (child larger than parent), if the flush doesn't happen when the parent is read, but happens when the child is read. As for in-kernel flushers, they will occasionally get stale stats. No regressions are currently known from this, but if there are regressions, they would be very difficult to debug and link to the source of the problem. This patch aims to fix these problems by restoring subtree flushing, and removing the unified/coalesced flushing logic that skips flushing if there is an ongoing flush. This change would introduce a significant regression with global stats flushing thresholds. With per-memcg stats flushing thresholds, this seems to perform really well. The thresholds protect the underlying lock from unnecessary contention. This patch was tested in two ways to ensure the latency of flushing is up to par, on a machine with 384 cpus: - A synthetic test with 5000 concurrent workers in 500 cgroups doing allocations and reclaim, as well as 1000 readers for memory.stat (variation of [2]). No regressions were noticed in the total runtime. Note that significant regressions in this test are observed with global stats thresholds, but not with per-memcg thresholds. - A synthetic stress test for concurrently reading memcg stats while memory allocation/freeing workers are running in the background, provided by Wei Xu [3]. With 250k threads reading the stats every 100ms in 50k cgroups, 99.9% of reads take <= 50us. Less than 0.01% of reads take more than 1ms, and no reads take more than 100ms. [1] https://lore.kernel.org/lkml/CABWYdi0c6__rh-K7dcM_pkf9BJdTRtAU08M43KO9ME4-dsgfoQ@mail.gmail.com/ [2] https://lore.kernel.org/lkml/CAJD7tka13M-zVZTyQJYL1iUAYvuQ1fcHbCjcOBZcz6POYTV-4g@mail.gmail.com/ [3] https://lore.kernel.org/lkml/CAAPL-u9D2b=iF5Lf_cRnKxUfkiEe0AMDTu6yhrUAzX0b6a6rDg@mail.gmail.com/ [akpm@linux-foundation.org: fix mm/zswap.c] [yosryahmed@google.com: remove stats flushing mutex] Link: https://lkml.kernel.org/r/CAJD7tkZgP3m-VVPn+fF_YuvXeQYK=tZZjJHj=dzD=CcSSpp2qg@mail.gmail.com Link: https://lkml.kernel.org/r/20231129032154.3710765-6-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Tested-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Chris Li <chrisl@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: Ivan Babrou <ivan@cloudflare.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutny <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Wei Xu <weixugc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-20mm: memcg: make stats flushing threshold per-memcgYosry Ahmed
A global counter for the magnitude of memcg stats update is maintained on the memcg side to avoid invoking rstat flushes when the pending updates are not significant. This avoids unnecessary flushes, which are not very cheap even if there isn't a lot of stats to flush. It also avoids unnecessary lock contention on the underlying global rstat lock. Make this threshold per-memcg. The scheme is followed where percpu (now also per-memcg) counters are incremented in the update path, and only propagated to per-memcg atomics when they exceed a certain threshold. This provides two benefits: (a) On large machines with a lot of memcgs, the global threshold can be reached relatively fast, so guarding the underlying lock becomes less effective. Making the threshold per-memcg avoids this. (b) Having a global threshold makes it hard to do subtree flushes, as we cannot reset the global counter except for a full flush. Per-memcg counters removes this as a blocker from doing subtree flushes, which helps avoid unnecessary work when the stats of a small subtree are needed. Nothing is free, of course. This comes at a cost: (a) A new per-cpu counter per memcg, consuming NR_CPUS * NR_MEMCGS * 4 bytes. The extra memory usage is insigificant. (b) More work on the update side, although in the common case it will only be percpu counter updates. The amount of work scales with the number of ancestors (i.e. tree depth). This is not a new concept, adding a cgroup to the rstat tree involves a parent loop, so is charging. Testing results below show no significant regressions. (c) The error margin in the stats for the system as a whole increases from NR_CPUS * MEMCG_CHARGE_BATCH to NR_CPUS * MEMCG_CHARGE_BATCH * NR_MEMCGS. This is probably fine because we have a similar per-memcg error in charges coming from percpu stocks, and we have a periodic flusher that makes sure we always flush all the stats every 2s anyway. This patch was tested to make sure no significant regressions are introduced on the update path as follows. The following benchmarks were ran in a cgroup that is 2 levels deep (/sys/fs/cgroup/a/b/): (1) Running 22 instances of netperf on a 44 cpu machine with hyperthreading disabled. All instances are run in a level 2 cgroup, as well as netserver: # netserver -6 # netperf -6 -H ::1 -l 60 -t TCP_SENDFILE -- -m 10K Averaging 20 runs, the numbers are as follows: Base: 40198.0 mbps Patched: 38629.7 mbps (-3.9%) The regression is minimal, especially for 22 instances in the same cgroup sharing all ancestors (so updating the same atomics). (2) will-it-scale page_fault tests. These tests (specifically per_process_ops in page_fault3 test) detected a 25.9% regression before for a change in the stats update path [1]. These are the numbers from 10 runs (+ is good) on a machine with 256 cpus: LABEL | MEAN | MEDIAN | STDDEV | ------------------------------+-------------+-------------+------------- page_fault1_per_process_ops | | | | (A) base | 270249.164 | 265437.000 | 13451.836 | (B) patched | 261368.709 | 255725.000 | 13394.767 | | -3.29% | -3.66% | | page_fault1_per_thread_ops | | | | (A) base | 242111.345 | 239737.000 | 10026.031 | (B) patched | 237057.109 | 235305.000 | 9769.687 | | -2.09% | -1.85% | | page_fault1_scalability | | | (A) base | 0.034387 | 0.035168 | 0.0018283 | (B) patched | 0.033988 | 0.034573 | 0.0018056 | | -1.16% | -1.69% | | page_fault2_per_process_ops | | | (A) base | 203561.836 | 203301.000 | 2550.764 | (B) patched | 197195.945 | 197746.000 | 2264.263 | | -3.13% | -2.73% | | page_fault2_per_thread_ops | | | (A) base | 171046.473 | 170776.000 | 1509.679 | (B) patched | 166626.327 | 166406.000 | 768.753 | | -2.58% | -2.56% | | page_fault2_scalability | | | (A) base | 0.054026 | 0.053821 | 0.00062121 | (B) patched | 0.053329 | 0.05306 | 0.00048394 | | -1.29% | -1.41% | | page_fault3_per_process_ops | | | (A) base | 1295807.782 | 1297550.000 | 5907.585 | (B) patched | 1275579.873 | 1273359.000 | 8759.160 | | -1.56% | -1.86% | | page_fault3_per_thread_ops | | | (A) base | 391234.164 | 390860.000 | 1760.720 | (B) patched | 377231.273 | 376369.000 | 1874.971 | | -3.58% | -3.71% | | page_fault3_scalability | | | (A) base | 0.60369 | 0.60072 | 0.0083029 | (B) patched | 0.61733 | 0.61544 | 0.009855 | | +2.26% | +2.45% | | All regressions seem to be minimal, and within the normal variance for the benchmark. The fix for [1] assumes that 3% is noise -- and there were no further practical complaints), so hopefully this means that such variations in these microbenchmarks do not reflect on practical workloads. (3) I also ran stress-ng in a nested cgroup and did not observe any obvious regressions. [1]https://lore.kernel.org/all/20190520063534.GB19312@shao2-debian/ Link: https://lkml.kernel.org/r/20231129032154.3710765-4-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Tested-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Chris Li <chrisl@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: Ivan Babrou <ivan@cloudflare.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutny <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Wei Xu <weixugc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-20mm: memcg: move vmstats structs definition above flushing codeYosry Ahmed
The following patch will make use of those structs in the flushing code, so move their definitions (and a few other dependencies) a little bit up to reduce the diff noise in the following patch. No functional change intended. Link: https://lkml.kernel.org/r/20231129032154.3710765-3-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Tested-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Chris Li <chrisl@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: Ivan Babrou <ivan@cloudflare.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutny <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Wei Xu <weixugc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-20mm: memcg: change flush_next_time to flush_last_timeYosry Ahmed
Patch series "mm: memcg: subtree stats flushing and thresholds", v4. This series attempts to address shortages in today's approach for memcg stats flushing, namely occasionally stale or expensive stat reads. The series does so by changing the threshold that we use to decide whether to trigger a flush to be per memcg instead of global (patch 3), and then changing flushing to be per memcg (i.e. subtree flushes) instead of global (patch 5). This patch (of 5): flush_next_time is an inaccurate name. It's not the next time that periodic flushing will happen, it's rather the next time that ratelimited flushing can happen if the periodic flusher is late. Simplify its semantics by just storing the timestamp of the last flush instead, flush_last_time. Move the 2*FLUSH_TIME addition to mem_cgroup_flush_stats_ratelimited(), and add a comment explaining it. This way, all the ratelimiting semantics live in one place. No functional change intended. Link: https://lkml.kernel.org/r/20231129032154.3710765-1-yosryahmed@google.com Link: https://lkml.kernel.org/r/20231129032154.3710765-2-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Tested-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Chris Li <chrisl@kernel.org> (Google) Tested-by: Bagas Sanjaya <bagasdotme@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ivan Babrou <ivan@cloudflare.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutny <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Wei Xu <weixugc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12mm: memcg: add per-memcg zswap writeback statDomenico Cerasuolo
Since zswap now writes back pages from memcg-specific LRUs, we now need a new stat to show writebacks count for each memcg. [nphamcs@gmail.com: rename ZSWP_WB to ZSWPWB] Link: https://lkml.kernel.org/r/20231205193307.2432803-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20231130194023.4102148-5-nphamcs@gmail.com Suggested-by: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Signed-off-by: Nhat Pham <nphamcs@gmail.com> Tested-by: Bagas Sanjaya <bagasdotme@gmail.com> Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Cc: Chris Li <chrisl@kernel.org> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Seth Jennings <sjenning@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vitaly Wool <vitaly.wool@konsulko.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12zswap: make shrinking memcg-awareDomenico Cerasuolo
Currently, we only have a single global LRU for zswap. This makes it impossible to perform worload-specific shrinking - an memcg cannot determine which pages in the pool it owns, and often ends up writing pages from other memcgs. This issue has been previously observed in practice and mitigated by simply disabling memcg-initiated shrinking: https://lore.kernel.org/all/20230530232435.3097106-1-nphamcs@gmail.com/T/#u This patch fully resolves the issue by replacing the global zswap LRU with memcg- and NUMA-specific LRUs, and modify the reclaim logic: a) When a store attempt hits an memcg limit, it now triggers a synchronous reclaim attempt that, if successful, allows the new hotter page to be accepted by zswap. b) If the store attempt instead hits the global zswap limit, it will trigger an asynchronous reclaim attempt, in which an memcg is selected for reclaim in a round-robin-like fashion. [nphamcs@gmail.com: use correct function for the onlineness check, use mem_cgroup_iter_break()] Link: https://lkml.kernel.org/r/20231205195419.2563217-1-nphamcs@gmail.com [nphamcs@gmail.com: drop the pool's reference at the end of the writeback step] Link: https://lkml.kernel.org/r/20231206030627.4155634-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20231130194023.4102148-4-nphamcs@gmail.com Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Co-developed-by: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Nhat Pham <nphamcs@gmail.com> Tested-by: Bagas Sanjaya <bagasdotme@gmail.com> Cc: Chris Li <chrisl@kernel.org> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Seth Jennings <sjenning@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vitaly Wool <vitaly.wool@konsulko.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-10mm: memcg: add reminder comment for the memcg v2 eventsDmitry Rokosov
To maintain the correct state, it is important to ensure that events for the memory cgroup v2 are aligned with the sample cgroup codes. Link: https://lkml.kernel.org/r/20231123071945.25811-4-ddrokosov@salutedevices.com Signed-off-by: Dmitry Rokosov <ddrokosov@salutedevices.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-06mm: kmem: properly initialize local objcg variable in current_obj_cgroup()Roman Gushchin
Erhard reported that the 6.7-rc1 kernel panics on boot if being built with clang-16. The problem was not reproducible with gcc. [ 5.975049] general protection fault, probably for non-canonical address 0xf555515555555557: 0000 [#1] SMP KASAN PTI [ 5.976422] KASAN: maybe wild-memory-access in range [0xaaaaaaaaaaaaaab8-0xaaaaaaaaaaaaaabf] [ 5.977475] CPU: 3 PID: 1 Comm: systemd Not tainted 6.7.0-rc1-Zen3 #77 [ 5.977860] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 5.977860] RIP: 0010:obj_cgroup_charge_pages+0x27/0x2d5 [ 5.977860] Code: 90 90 90 55 41 57 41 56 41 55 41 54 53 89 d5 41 89 f6 49 89 ff 48 b8 00 00 00 00 00 fc ff df 49 83 c7 10 4d3 [ 5.977860] RSP: 0018:ffffc9000001fb18 EFLAGS: 00010a02 [ 5.977860] RAX: dffffc0000000000 RBX: aaaaaaaaaaaaaaaa RCX: ffff8883eb9a8b08 [ 5.977860] RDX: 0000000000000005 RSI: 0000000000400cc0 RDI: aaaaaaaaaaaaaaaa [ 5.977860] RBP: 0000000000000005 R08: 3333333333333333 R09: 0000000000000000 [ 5.977860] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8883eb9a8b18 [ 5.977860] R13: 1555555555555557 R14: 0000000000400cc0 R15: aaaaaaaaaaaaaaba [ 5.977860] FS: 00007f2976438b40(0000) GS:ffff8883eb980000(0000) knlGS:0000000000000000 [ 5.977860] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5.977860] CR2: 00007f29769e0060 CR3: 0000000107222003 CR4: 0000000000370eb0 [ 5.977860] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 5.977860] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 5.977860] Call Trace: [ 5.977860] <TASK> [ 5.977860] ? __die_body+0x16/0x75 [ 5.977860] ? die_addr+0x4a/0x70 [ 5.977860] ? exc_general_protection+0x1c9/0x2d0 [ 5.977860] ? cgroup_mkdir+0x455/0x9fb [ 5.977860] ? __x64_sys_mkdir+0x69/0x80 [ 5.977860] ? asm_exc_general_protection+0x26/0x30 [ 5.977860] ? obj_cgroup_charge_pages+0x27/0x2d5 [ 5.977860] obj_cgroup_charge+0x114/0x1ab [ 5.977860] pcpu_alloc+0x1a6/0xa65 [ 5.977860] ? mem_cgroup_css_alloc+0x1eb/0x1140 [ 5.977860] ? cgroup_apply_control_enable+0x26b/0x7c0 [ 5.977860] mem_cgroup_css_alloc+0x23f/0x1140 [ 5.977860] cgroup_apply_control_enable+0x26b/0x7c0 [ 5.977860] ? cgroup_kn_set_ugid+0x2d/0x1a0 [ 5.977860] cgroup_mkdir+0x455/0x9fb [ 5.977860] ? __cfi_cgroup_mkdir+0x10/0x10 [ 5.977860] kernfs_iop_mkdir+0x130/0x170 [ 5.977860] vfs_mkdir+0x405/0x530 [ 5.977860] do_mkdirat+0x188/0x1f0 [ 5.977860] __x64_sys_mkdir+0x69/0x80 [ 5.977860] do_syscall_64+0x7d/0x100 [ 5.977860] ? do_syscall_64+0x89/0x100 [ 5.977860] ? do_syscall_64+0x89/0x100 [ 5.977860] ? do_syscall_64+0x89/0x100 [ 5.977860] ? do_syscall_64+0x89/0x100 [ 5.977860] entry_SYSCALL_64_after_hwframe+0x4b/0x53 [ 5.977860] RIP: 0033:0x7f297671defb [ 5.977860] Code: 8b 05 39 7f 0d 00 bb ff ff ff ff 64 c7 00 16 00 00 00 e9 61 ff ff ff e8 23 0c 02 00 0f 1f 00 f3 0f 1e fa b88 [ 5.977860] RSP: 002b:00007ffee6242bb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000053 [ 5.977860] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f297671defb [ 5.977860] RDX: 0000000000000000 RSI: 00000000000001ed RDI: 000055c6b449f0e0 [ 5.977860] RBP: 00007ffee6242bf0 R08: 000000000000000e R09: 0000000000000000 [ 5.977860] R10: 0000000000000000 R11: 0000000000000246 R12: 000055c6b445db80 [ 5.977860] R13: 00000000000003a0 R14: 00007f2976a68651 R15: 00000000000003a0 [ 5.977860] </TASK> [ 5.977860] Modules linked in: [ 6.014095] ---[ end trace 0000000000000000 ]--- [ 6.014701] RIP: 0010:obj_cgroup_charge_pages+0x27/0x2d5 [ 6.015348] Code: 90 90 90 55 41 57 41 56 41 55 41 54 53 89 d5 41 89 f6 49 89 ff 48 b8 00 00 00 00 00 fc ff df 49 83 c7 10 4d3 [ 6.017575] RSP: 0018:ffffc9000001fb18 EFLAGS: 00010a02 [ 6.018255] RAX: dffffc0000000000 RBX: aaaaaaaaaaaaaaaa RCX: ffff8883eb9a8b08 [ 6.019120] RDX: 0000000000000005 RSI: 0000000000400cc0 RDI: aaaaaaaaaaaaaaaa [ 6.019983] RBP: 0000000000000005 R08: 3333333333333333 R09: 0000000000000000 [ 6.020849] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8883eb9a8b18 [ 6.021747] R13: 1555555555555557 R14: 0000000000400cc0 R15: aaaaaaaaaaaaaaba [ 6.022609] FS: 00007f2976438b40(0000) GS:ffff8883eb980000(0000) knlGS:0000000000000000 [ 6.023593] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6.024296] CR2: 00007f29769e0060 CR3: 0000000107222003 CR4: 0000000000370eb0 [ 6.025279] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 6.026139] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 6.027000] Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b Actually the problem is caused by uninitialized local variable in current_obj_cgroup(). If the root memory cgroup is set as an active memory cgroup for a charging scope (as in the trace, where systemd tries to create the first non-root cgroup, so the parent cgroup is the root cgroup), the "for" loop is skipped and uninitialized objcg is returned, causing a panic down the accounting stack. The fix is trivial: initialize the objcg variable to NULL unconditionally before the "for" loop. [vbabka@suse.cz: remove redundant assignment] Link: https://lkml.kernel.org/r/4bd106d5-c3e3-6731-9a74-cff81e2392de@suse.cz Link: https://lkml.kernel.org/r/20231116025109.3775055-1-roman.gushchin@linux.dev Fixes: e86828e5446d ("mm: kmem: scoped objcg protection") Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Erhard Furtner <erhard_f@mailbox.org> Closes: https://github.com/ClangBuiltLinux/linux/issues/1959 Tested-by: Erhard Furtner <erhard_f@mailbox.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-06mm/slab: move pre/post-alloc hooks from slab.h to slub.cVlastimil Babka
We don't share the hooks between two slab implementations anymore so they can be moved away from the header. As part of the move, also move should_failslab() from slab_common.c as the pre_alloc hook uses it. This means slab.h can stop including fault-inject.h and kmemleak.h. Fix up some files that were depending on the includes transitively. Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: David Rientjes <rientjes@google.com> Tested-by: David Rientjes <rientjes@google.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2023-12-05mm/memcontrol: remove CONFIG_SLAB #ifdef guardsVlastimil Babka
With SLAB removed, these are never true anymore so we can clean up. Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Tested-by: David Rientjes <rientjes@google.com> Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2023-11-28eventfd: simplify eventfd_signal()Christian Brauner
Ever since the eventfd type was introduced back in 2007 in commit e1ad7468c77d ("signal/timer/event: eventfd core") the eventfd_signal() function only ever passed 1 as a value for @n. There's no point in keeping that additional argument. Link: https://lore.kernel.org/r/20231122-vfs-eventfd-signal-v2-2-bd549b14ce0c@kernel.org Acked-by: Xu Yilun <yilun.xu@intel.com> Acked-by: Andrew Donnellan <ajd@linux.ibm.com> # ocxl Acked-by: Eric Farman <farman@linux.ibm.com> # s390 Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-11-15mm: kmem: drop __GFP_NOFAIL when allocating objcg vectorsRoman Gushchin
Objcg vectors attached to slab pages to store slab object ownership information are allocated using gfp flags for the original slab allocation. Depending on slab page order and the size of slab objects, objcg vector can take several pages. If the original allocation was done with the __GFP_NOFAIL flag, it triggered a warning in the page allocation code. Indeed, order > 1 pages should not been allocated with the __GFP_NOFAIL flag. Fix this by simply dropping the __GFP_NOFAIL flag when allocating the objcg vector. It effectively allows to skip the accounting of a single slab object under a heavy memory pressure. An alternative would be to implement the mechanism to fallback to order-0 allocations for accounting metadata, which is also not perfect because it will increase performance penalty and memory footprint of the kernel memory accounting under memory pressure. Link: https://lkml.kernel.org/r/ZUp8ZFGxwmCx4ZFr@P9FQF9L96D.corp.robot.car Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev> Reported-by: Christoph Lameter <cl@linux.com> Closes: https://lkml.kernel.org/r/6b42243e-f197-600a-5d22-56bd728a5ad8@gentwo.org Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mm: fix multiple typos in multiple filesMuhammad Muzammil
Link: https://lkml.kernel.org/r/20231023124405.36981-1-m.muzzammilashraf@gmail.com Signed-off-by: Muhammad Muzammil <m.muzzammilashraf@gmail.com> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muhammad Muzammil <m.muzzammilashraf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mm: kmem: reimplement get_obj_cgroup_from_current()Roman Gushchin
Reimplement get_obj_cgroup_from_current() using current_obj_cgroup(). get_obj_cgroup_from_current() and current_obj_cgroup() share 80% of the code, so the new implementation is almost trivial. get_obj_cgroup_from_current() is a convenient function used by the bpf subsystem, so there is no reason to get rid of it completely. Link: https://lkml.kernel.org/r/20231019225346.1822282-7-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mm: kmem: scoped objcg protectionRoman Gushchin
Switch to a scope-based protection of the objcg pointer on slab/kmem allocation paths. Instead of using the get_() semantics in the pre-allocation hook and put the reference afterwards, let's rely on the fact that objcg is pinned by the scope. It's possible because: 1) if the objcg is received from the current task struct, the task is keeping a reference to the objcg. 2) if the objcg is received from an active memcg (remote charging), the memcg is pinned by the scope and has a reference to the corresponding objcg. Link: https://lkml.kernel.org/r/20231019225346.1822282-5-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Acked-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mm: kmem: make memcg keep a reference to the original objcgRoman Gushchin
Keep a reference to the original objcg object for the entire life of a memcg structure. This allows to simplify the synchronization on the kernel memory allocation paths: pinning a (live) memcg will also pin the corresponding objcg. The memory overhead of this change is minimal because object cgroups usually outlive their corresponding memory cgroups even without this change, so it's only an additional pointer per memcg. Link: https://lkml.kernel.org/r/20231019225346.1822282-4-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Acked-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mm: kmem: add direct objcg pointer to task_structRoman Gushchin
To charge a freshly allocated kernel object to a memory cgroup, the kernel needs to obtain an objcg pointer. Currently it does it indirectly by obtaining the memcg pointer first and then calling to __get_obj_cgroup_from_memcg(). Usually tasks spend their entire life belonging to the same object cgroup. So it makes sense to save the objcg pointer on task_struct directly, so it can be obtained faster. It requires some work on fork, exit and cgroup migrate paths, but these paths are way colder. To avoid any costly synchronization the following rules are applied: 1) A task sets it's objcg pointer itself. 2) If a task is being migrated to another cgroup, the least significant bit of the objcg pointer is set atomically. 3) On the allocation path the objcg pointer is obtained locklessly using the READ_ONCE() macro and the least significant bit is checked. If it's set, the following procedure is used to update it locklessly: - task->objcg is zeroed using cmpxcg - new objcg pointer is obtained - task->objcg is updated using try_cmpxchg - operation is repeated if try_cmpxcg fails It guarantees that no updates will be lost if task migration is racing against objcg pointer update. It also allows to keep both read and write paths fully lockless. Because the task is keeping a reference to the objcg, it can't go away while the task is alive. This commit doesn't change the way the remote memcg charging works. Link: https://lkml.kernel.org/r/20231019225346.1822282-3-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mm: kmem: optimize get_obj_cgroup_from_current()Roman Gushchin
Patch series "mm: improve performance of accounted kernel memory allocations", v5. This patchset improves the performance of accounted kernel memory allocations by ~30% as measured by a micro-benchmark [1]. The benchmark is very straightforward: 1M of 64 bytes-large kmalloc() allocations. Below are results with the disabled kernel memory accounting, the original state and with this patchset applied. | | Kmem disabled | Original | Patched | Delta | |-------------+---------------+----------+---------+--------| | User cgroup | 29764 | 84548 | 59078 | -30.0% | | Root cgroup | 29742 | 48342 | 31501 | -34.8% | As we can see, the patchset removes the majority of the overhead when there is no actual accounting (a task belongs to the root memory cgroup) and almost halves the accounting overhead otherwise. The main idea is to get rid of unnecessary memcg to objcg conversions and switch to a scope-based protection of objcgs, which eliminates extra operations with objcg reference counters under a rcu read lock. More details are provided in individual commit descriptions. This patch (of 5): Manually inline memcg_kmem_bypass() and active_memcg() to speed up get_obj_cgroup_from_current() by avoiding duplicate in_task() checks and active_memcg() readings. Also add a likely() macro to __get_obj_cgroup_from_memcg(): obj_cgroup_tryget() should succeed at almost all times except a very unlikely race with the memcg deletion path. Link: https://lkml.kernel.org/r/20231019225346.1822282-1-roman.gushchin@linux.dev Link: https://lkml.kernel.org/r/20231019225346.1822282-2-roman.gushchin@linux.dev Signed-off-by: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18hugetlb: memcg: account hugetlb-backed memory in memory controllerNhat Pham
Currently, hugetlb memory usage is not acounted for in the memory controller, which could lead to memory overprotection for cgroups with hugetlb-backed memory. This has been observed in our production system. For instance, here is one of our usecases: suppose there are two 32G containers. The machine is booted with hugetlb_cma=6G, and each container may or may not use up to 3 gigantic page, depending on the workload within it. The rest is anon, cache, slab, etc. We can set the hugetlb cgroup limit of each cgroup to 3G to enforce hugetlb fairness. But it is very difficult to configure memory.max to keep overall consumption, including anon, cache, slab etc. fair. What we have had to resort to is to constantly poll hugetlb usage and readjust memory.max. Similar procedure is done to other memory limits (memory.low for e.g). However, this is rather cumbersome and buggy. Furthermore, when there is a delay in memory limits correction, (for e.g when hugetlb usage changes within consecutive runs of the userspace agent), the system could be in an over/underprotected state. This patch rectifies this issue by charging the memcg when the hugetlb folio is utilized, and uncharging when the folio is freed (analogous to the hugetlb controller). Note that we do not charge when the folio is allocated to the hugetlb pool, because at this point it is not owned by any memcg. Some caveats to consider: * This feature is only available on cgroup v2. * There is no hugetlb pool management involved in the memory controller. As stated above, hugetlb folios are only charged towards the memory controller when it is used. Host overcommit management has to consider it when configuring hard limits. * Failure to charge towards the memcg results in SIGBUS. This could happen even if the hugetlb pool still has pages (but the cgroup limit is hit and reclaim attempt fails). * When this feature is enabled, hugetlb pages contribute to memory reclaim protection. low, min limits tuning must take into account hugetlb memory. * Hugetlb pages utilized while this option is not selected will not be tracked by the memory controller (even if cgroup v2 is remounted later on). Link: https://lkml.kernel.org/r/20231006184629.155543-4-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Frank van der Linden <fvdl@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Tejun heo <tj@kernel.org> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18memcontrol: only transfer the memcg data for migrationNhat Pham
For most migration use cases, only transfer the memcg data from the old folio to the new folio, and clear the old folio's memcg data. No charging and uncharging will be done. This shaves off some work on the migration path, and avoids the temporary double charging of a folio during its migration. The only exception is replace_page_cache_folio(), which will use the old mem_cgroup_migrate() (now renamed to mem_cgroup_replace_folio). In that context, the isolation of the old page isn't quite as thorough as with migration, so we cannot use our new implementation directly. This patch is the result of the following discussion on the new hugetlb memcg accounting behavior: https://lore.kernel.org/lkml/20231003171329.GB314430@monkey/ Link: https://lkml.kernel.org/r/20231006184629.155543-3-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Frank van der Linden <fvdl@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Tejun heo <tj@kernel.org> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18memcontrol: add helpers for hugetlb memcg accountingNhat Pham
Patch series "hugetlb memcg accounting", v4. Currently, hugetlb memory usage is not acounted for in the memory controller, which could lead to memory overprotection for cgroups with hugetlb-backed memory. This has been observed in our production system. For instance, here is one of our usecases: suppose there are two 32G containers. The machine is booted with hugetlb_cma=6G, and each container may or may not use up to 3 gigantic page, depending on the workload within it. The rest is anon, cache, slab, etc. We can set the hugetlb cgroup limit of each cgroup to 3G to enforce hugetlb fairness. But it is very difficult to configure memory.max to keep overall consumption, including anon, cache, slab etcetera fair. What we have had to resort to is to constantly poll hugetlb usage and readjust memory.max. Similar procedure is done to other memory limits (memory.low for e.g). However, this is rather cumbersome and buggy. Furthermore, when there is a delay in memory limits correction, (for e.g when hugetlb usage changes within consecutive runs of the userspace agent), the system could be in an over/underprotected state. This patch series rectifies this issue by charging the memcg when the hugetlb folio is allocated, and uncharging when the folio is freed. In addition, a new selftest is added to demonstrate and verify this new behavior. This patch (of 4): This patch exposes charge committing and cancelling as parts of the memory controller interface. These functionalities are useful when the try_charge() and commit_charge() stages have to be separated by other actions in between (which can fail). One such example is the new hugetlb accounting behavior in the following patch. The patch also adds a helper function to obtain a reference to the current task's memcg. Link: https://lkml.kernel.org/r/20231006184629.155543-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20231006184629.155543-2-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Frank van der Linden <fvdl@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Tejun heo <tj@kernel.org> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18mm: memcg: normalize the value passed into memcg_rstat_updated()Yosry Ahmed
memcg_rstat_updated() uses the value of the state update to keep track of the magnitude of pending updates, so that we only do a stats flush when it's worth the work. Most values passed into memcg_rstat_updated() are in pages, however, a few of them are actually in bytes or KBs. To put this into perspective, a 512 byte slab allocation today would look the same as allocating 512 pages. This may result in premature flushes, which means unnecessary work and latency. Normalize all the state values passed into memcg_rstat_updated() to pages. Round up non-zero sub-page to 1 page, because memcg_rstat_updated() ignores 0 page updates. Link: https://lkml.kernel.org/r/20230922175741.635002-3-yosryahmed@google.com Fixes: 5b3be698a872 ("memcg: better bounds on the memcg stats updates") Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutný <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18mm: memcg: refactor page state unit helpersYosry Ahmed
Patch series "mm: memcg: fix tracking of pending stats updates values", v2. While working on adjacent code [1], I realized that the values passed into memcg_rstat_updated() to keep track of the magnitude of pending updates is consistent. It is mostly in pages, but sometimes it can be in bytes or KBs. Fix that. Patch 1 reworks memcg_page_state_unit() so that we can reuse it in patch 2 to check and normalize the units of state updates. [1]https://lore.kernel.org/lkml/20230921081057.3440885-1-yosryahmed@google.com/ This patch (of 2): memcg_page_state_unit() is currently used to identify the unit of a memcg state item so that all stats in memory.stat are in bytes. However, it lies about the units of WORKINGSET_* stats. These stats actually represent pages, but we present them to userspace as a scalar number of events. In retrospect, maybe those stats should have been memcg "events" rather than memcg "state". In preparation for using memcg_page_state_unit() for other purposes that need to know the truthful units of different stat items, break it down into two helpers: - memcg_page_state_unit() retuns the actual unit of the item. - memcg_page_state_output_unit() returns the unit used for output. Use the latter instead of the former in memcg_page_state_output() and lruvec_page_state_output(). While we are at it, let's show cgroup v1 some love and add memcg_page_state_local_output() for consistency. No functional change intended. Link: https://lkml.kernel.org/r/20230922175741.635002-1-yosryahmed@google.com Link: https://lkml.kernel.org/r/20230922175741.635002-2-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutný <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-06memcg: remove unused do_memsw_account in memcg1_stat_formatLiu Shixin
Since commit b25806dcd3d5("mm: memcontrol: deprecate swapaccounting=0 mode") do_memsw_account() is synonymous with !cgroup_subsys_on_dfl(memory_cgrp_subsys), It always equals true in memcg1_stat_format(). Remove the unused code. Link: https://lkml.kernel.org/r/20230915105845.3199656-3-liushixin2@huawei.com Signed-off-by: Liu Shixin <liushixin2@huawei.com> Suggested-by: Michal Koutný <mkoutny@suse.com> Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Tejun heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-06memcg: expose swapcache stat for memcg v1Liu Shixin
Patch series "Expose swapcache stat for memcg v1", v2. Since commit b6038942480e ("mm: memcg: add swapcache stat for memcg v2") adds swapcache stat for the cgroup v2, it seems there is no reason to hide it in memcg v1. Conversely, with swapcached it is more accurate to evaluate the available memory for memcg. Link: https://lkml.kernel.org/r/20230915105845.3199656-1-liushixin2@huawei.com Link: https://lkml.kernel.org/r/20230915105845.3199656-2-liushixin2@huawei.com Signed-off-by: Liu Shixin <liushixin2@huawei.com> Suggested-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Michal Koutný <mkoutny@suse.com> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm: memcg: add THP swap out info for anonymous reclaimXin Hao
At present, we support per-memcg reclaim strategy, however we do not know the number of transparent huge pages being reclaimed, as we know the transparent huge pages need to be splited before reclaim them, and they will bring some performance bottleneck effect. for example, when two memcg (A & B) are doing reclaim for anonymous pages at same time, and 'A' memcg is reclaiming a large number of transparent huge pages, we can better analyze that the performance bottleneck will be caused by 'A' memcg. therefore, in order to better analyze such problems, there add THP swap out info for per-memcg. [akpm@linux-foundation.orgL fix swap_writepage_fs(), per Johannes] Link: https://lkml.kernel.org/r/20230913213343.GB48476@cmpxchg.org Link: https://lkml.kernel.org/r/20230913164938.16918-1-vernhao@tencent.com Signed-off-by: Xin Hao <vernhao@tencent.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-29mm, memcg: reconsider kmem.limit_in_bytes deprecationMichal Hocko
This reverts commits 86327e8eb94c ("memcg: drop kmem.limit_in_bytes") and partially reverts 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes") which have incrementally removed support for the kernel memory accounting hard limit. Unfortunately it has turned out that there is still userspace depending on the existence of memory.kmem.limit_in_bytes [1]. The underlying functionality is not really required but the non-existent file just confuses the userspace which fails in the result. The patch to fix this on the userspace side has been submitted but it is hard to predict how it will propagate through the maze of 3rd party consumers of the software. Now, reverting alone 86327e8eb94c is not an option because there is another set of userspace which cannot cope with ENOTSUPP returned when writing to the file. Therefore we have to go and revisit 58056f77502f as well. There are two ways to go ahead. Either we give up on the deprecation and fully revert 58056f77502f as well or we can keep kmem.limit_in_bytes but make the write a noop and warn about the fact. This should work for both known breaking workloads which depend on the existence but do not depend on the hard limit enforcement. Note to backporters to stable trees. a8c49af3be5f ("memcg: add per-memcg total kernel memory stat") introduced in 4.18 has added memcg_account_kmem so the accounting is not done by obj_cgroup_charge_pages directly for v1 anymore. Prior kernels need to add it explicitly (thanks to Johannes for pointing this out). [akpm@linux-foundation.org: fix build - remove unused local] Link: http://lkml.kernel.org/r/20230920081101.GA12096@linuxonhyperv3.guj3yctzbm1etfxqx2vob5hsef.xx.internal.cloudapp.net [1] Link: https://lkml.kernel.org/r/ZRE5VJozPZt9bRPy@dhcp22.suse.cz Fixes: 86327e8eb94c ("memcg: drop kmem.limit_in_bytes") Fixes: 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes") Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Tejun heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-19mm: memcontrol: fix GFP_NOFS recursion in memory.high enforcementJohannes Weiner
Breno and Josef report a deadlock scenario from cgroup reclaim re-entering the filesystem: [ 361.546690] ====================================================== [ 361.559210] WARNING: possible circular locking dependency detected [ 361.571703] 6.5.0-0_fbk700_debug_rc0_kbuilder_13159_gbf787a128001 #1 Tainted: G S E [ 361.589704] ------------------------------------------------------ [ 361.602277] find/9315 is trying to acquire lock: [ 361.611625] ffff88837ba140c0 (&delayed_node->mutex){+.+.}-{4:4}, at: __btrfs_release_delayed_node+0x68/0x4f0 [ 361.631437] [ 361.631437] but task is already holding lock: [ 361.643243] ffff8881765b8678 (btrfs-tree-01){++++}-{4:4}, at: btrfs_tree_read_lock+0x1e/0x40 [ 362.904457] mutex_lock_nested+0x1c/0x30 [ 362.912414] __btrfs_release_delayed_node+0x68/0x4f0 [ 362.922460] btrfs_evict_inode+0x301/0x770 [ 362.982726] evict+0x17c/0x380 [ 362.988944] prune_icache_sb+0x100/0x1d0 [ 363.005559] super_cache_scan+0x1f8/0x260 [ 363.013695] do_shrink_slab+0x2a2/0x540 [ 363.021489] shrink_slab_memcg+0x237/0x3d0 [ 363.050606] shrink_slab+0xa7/0x240 [ 363.083382] shrink_node_memcgs+0x262/0x3b0 [ 363.091870] shrink_node+0x1a4/0x720 [ 363.099150] shrink_zones+0x1f6/0x5d0 [ 363.148798] do_try_to_free_pages+0x19b/0x5e0 [ 363.157633] try_to_free_mem_cgroup_pages+0x266/0x370 [ 363.190575] reclaim_high+0x16f/0x1f0 [ 363.208409] mem_cgroup_handle_over_high+0x10b/0x270 [ 363.246678] try_charge_memcg+0xaf2/0xc70 [ 363.304151] charge_memcg+0xf0/0x350 [ 363.320070] __mem_cgroup_charge+0x28/0x40 [ 363.328371] __filemap_add_folio+0x870/0xd50 [ 363.371303] filemap_add_folio+0xdd/0x310 [ 363.399696] __filemap_get_folio+0x2fc/0x7d0 [ 363.419086] pagecache_get_page+0xe/0x30 [ 363.427048] alloc_extent_buffer+0x1cd/0x6a0 [ 363.435704] read_tree_block+0x43/0xc0 [ 363.443316] read_block_for_search+0x361/0x510 [ 363.466690] btrfs_search_slot+0xc8c/0x1520 This is caused by the mem_cgroup_handle_over_high() not respecting the gfp_mask of the allocation context. We used to only call this function on resume to userspace, where no locks were held. But c9afe31ec443 ("memcg: synchronously enforce memory.high for large overcharges") added a call from the allocation context without considering the gfp. Link: https://lkml.kernel.org/r/20230914152139.100822-1-hannes@cmpxchg.org Fixes: c9afe31ec443 ("memcg: synchronously enforce memory.high for large overcharges") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Breno Leitao <leitao@debian.org> Reported-by: Josef Bacik <josef@toxicpanda.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Muchun Song <songmuchun@bytedance.com> Cc: <stable@vger.kernel.org> [5.17+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-05memcontrol: ensure memcg acquired by id is properly set upJohannes Weiner
In the eviction recency check, we attempt to retrieve the memcg to which the folio belonged when it was evicted, by the memcg id stored in the shadow entry. However, there is a chance that the retrieved memcg is not the original memcg that has been killed, but a new one which happens to have the same id. This is a somewhat unfortunate, but acceptable and rare inaccuracy in the heuristics. However, if we retrieve this new memcg between its allocation and when it is properly attached to the memcg hierarchy, we could run into the following NULL pointer exception during the memcg hierarchy traversal done in mem_cgroup_get_nr_swap_pages(): [ 155757.793456] BUG: kernel NULL pointer dereference, address: 00000000000000c0 [ 155757.807568] #PF: supervisor read access in kernel mode [ 155757.818024] #PF: error_code(0x0000) - not-present page [ 155757.828482] PGD 401f77067 P4D 401f77067 PUD 401f76067 PMD 0 [ 155757.839985] Oops: 0000 [#1] SMP [ 155757.887870] RIP: 0010:mem_cgroup_get_nr_swap_pages+0x3d/0xb0 [ 155757.899377] Code: 29 19 4a 02 48 39 f9 74 63 48 8b 97 c0 00 00 00 48 8b b7 58 02 00 00 48 2b b7 c0 01 00 00 48 39 f0 48 0f 4d c6 48 39 d1 74 42 <48> 8b b2 c0 00 00 00 48 8b ba 58 02 00 00 48 2b ba c0 01 00 00 48 [ 155757.937125] RSP: 0018:ffffc9002ecdfbc8 EFLAGS: 00010286 [ 155757.947755] RAX: 00000000003a3b1c RBX: 000007ffffffffff RCX: ffff888280183000 [ 155757.962202] RDX: 0000000000000000 RSI: 0007ffffffffffff RDI: ffff888bbc2d1000 [ 155757.976648] RBP: 0000000000000001 R08: 000000000000000b R09: ffff888ad9cedba0 [ 155757.991094] R10: ffffea0039c07900 R11: 0000000000000010 R12: ffff888b23a7b000 [ 155758.005540] R13: 0000000000000000 R14: ffff888bbc2d1000 R15: 000007ffffc71354 [ 155758.019991] FS: 00007f6234c68640(0000) GS:ffff88903f9c0000(0000) knlGS:0000000000000000 [ 155758.036356] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 155758.048023] CR2: 00000000000000c0 CR3: 0000000a83eb8004 CR4: 00000000007706e0 [ 155758.062473] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 155758.076924] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 155758.091376] PKRU: 55555554 [ 155758.096957] Call Trace: [ 155758.102016] <TASK> [ 155758.106502] ? __die+0x78/0xc0 [ 155758.112793] ? page_fault_oops+0x286/0x380 [ 155758.121175] ? exc_page_fault+0x5d/0x110 [ 155758.129209] ? asm_exc_page_fault+0x22/0x30 [ 155758.137763] ? mem_cgroup_get_nr_swap_pages+0x3d/0xb0 [ 155758.148060] workingset_test_recent+0xda/0x1b0 [ 155758.157133] workingset_refault+0xca/0x1e0 [ 155758.165508] filemap_add_folio+0x4d/0x70 [ 155758.173538] page_cache_ra_unbounded+0xed/0x190 [ 155758.182919] page_cache_sync_ra+0xd6/0x1e0 [ 155758.191738] filemap_read+0x68d/0xdf0 [ 155758.199495] ? mlx5e_napi_poll+0x123/0x940 [ 155758.207981] ? __napi_schedule+0x55/0x90 [ 155758.216095] __x64_sys_pread64+0x1d6/0x2c0 [ 155758.224601] do_syscall_64+0x3d/0x80 [ 155758.232058] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 155758.242473] RIP: 0033:0x7f62c29153b5 [ 155758.249938] Code: e8 48 89 75 f0 89 7d f8 48 89 4d e0 e8 b4 e6 f7 ff 41 89 c0 4c 8b 55 e0 48 8b 55 e8 48 8b 75 f0 8b 7d f8 b8 11 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 33 44 89 c7 48 89 45 f8 e8 e7 e6 f7 ff 48 8b [ 155758.288005] RSP: 002b:00007f6234c5ffd0 EFLAGS: 00000293 ORIG_RAX: 0000000000000011 [ 155758.303474] RAX: ffffffffffffffda RBX: 00007f628c4e70c0 RCX: 00007f62c29153b5 [ 155758.318075] RDX: 000000000003c041 RSI: 00007f61d2986000 RDI: 0000000000000076 [ 155758.332678] RBP: 00007f6234c5fff0 R08: 0000000000000000 R09: 0000000064d5230c [ 155758.347452] R10: 000000000027d450 R11: 0000000000000293 R12: 000000000003c041 [ 155758.362044] R13: 00007f61d2986000 R14: 00007f629e11b060 R15: 000000000027d450 [ 155758.376661] </TASK> This patch fixes the issue by moving the memcg's id publication from the alloc stage to online stage, ensuring that any memcg acquired via id must be connected to the memcg tree. Link: https://lkml.kernel.org/r/20230823225430.166925-1-nphamcs@gmail.com Fixes: f78dfc7b77d5 ("workingset: fix confusion around eviction vs refault container") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Co-developed-by: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Muchun Song <songmuchun@bytedance.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-24mm: fix get_mctgt_type() kernel-docMatthew Wilcox (Oracle)
Convert the return values to an ReST list and tidy up the wording while I'm touching it. [akpm@linux-foundation.org: changes suggested by Randy] [willy@infradead.org: another change suggested by Randy] Link: https://lkml.kernel.org/r/ZOUZtZizeQG7PcsM@casper.infradead.org Link: https://lkml.kernel.org/r/20230818200630.2719595-3-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-24memcg: remove duplication detection for mem_cgroup_uncharge_swapLu Jialin
__mem_cgroup_uncharge_swap is only called in mem_cgroup_uncharge_swap, if mem cgroup is disabled, __mem_cgroup_uncharge_swap cannot be called. Therefore, there is no need to judge whether mem_cgroup is disabled or not. Link: https://lkml.kernel.org/r/20230819081302.1217098-1-lujialin4@huawei.com Signed-off-by: Lu Jialin <lujialin4@huawei.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-24mm: memcg: use rstat for non-hierarchical statsYosry Ahmed
Currently, memcg uses rstat to maintain aggregated hierarchical stats. Counters are maintained for hierarchical stats at each memcg. Rstat tracks which cgroups have updates on which cpus to keep those counters fresh on the read-side. Non-hierarchical stats are currently not covered by rstat. Their per-cpu counters are summed up on every read, which is expensive. The original implementation did the same. At some point before rstat, non-hierarchical aggregated counters were introduced by commit a983b5ebee57 ("mm: memcontrol: fix excessive complexity in memory.stat reporting"). However, those counters were updated on the performance critical write-side, which caused regressions, so they were later removed by commit 815744d75152 ("mm: memcontrol: don't batch updates of local VM stats and events"). See [1] for more detailed history. Kernel versions in between a983b5ebee57 & 815744d75152 (a year and a half) enjoyed cheap reads of non-hierarchical stats, specifically on cgroup v1. When moving to more recent kernels, a performance regression for reading non-hierarchical stats is observed. Now that we have rstat, we know exactly which percpu counters have updates for each stat. We can maintain non-hierarchical counters again, making reads much more efficient, without affecting the performance critical write-side. Hence, add non-hierarchical (i.e local) counters for the stats, and extend rstat flushing to keep those up-to-date. A caveat is that we now need a stats flush before reading local/non-hierarchical stats through {memcg/lruvec}_page_state_local() or memcg_events_local(), where we previously only needed a flush to read hierarchical stats. Most contexts reading non-hierarchical stats are already doing a flush, add a flush to the only missing context in count_shadow_nodes(). With this patch, reading memory.stat from 1000 memcgs is 3x faster on a machine with 256 cpus on cgroup v1: # for i in $(seq 1000); do mkdir /sys/fs/cgroup/memory/cg$i; done # time cat /sys/fs/cgroup/memory/cg*/memory.stat > /dev/null real 0m0.125s user 0m0.005s sys 0m0.120s After: real 0m0.032s user 0m0.005s sys 0m0.027s To make sure there are no regressions on cgroup v2, I ran an artificial reclaim/refault stress test [2] that creates (NR_CPUS * 2) cgroups, assigns them limits, runs a worker process in each cgroup that allocates tmpfs memory equal to quadruple the limit (to invoke reclaim continuously), and then reads back the entire file (to invoke refaults). All workers are run in parallel, and zram is used as a swapping backend. Both reclaim and refault have conditional stats flushing. I ran this on a machine with 112 cpus, once on mm-unstable, and once on mm-unstable with this patch reverted. (1) A few runs without this patch: # time ./stress_reclaim_refault.sh real 0m9.949s user 0m0.496s sys 14m44.974s # time ./stress_reclaim_refault.sh real 0m10.049s user 0m0.486s sys 14m55.791s # time ./stress_reclaim_refault.sh real 0m9.984s user 0m0.481s sys 14m53.841s (2) A few runs with this patch: # time ./stress_reclaim_refault.sh real 0m9.885s user 0m0.486s sys 14m48.753s # time ./stress_reclaim_refault.sh real 0m9.903s user 0m0.495s sys 14m48.339s # time ./stress_reclaim_refault.sh real 0m9.861s user 0m0.507s sys 14m49.317s No regressions are observed with this patch. There is actually a very slight improvement. If I have to guess, maybe it's because we avoid the percpu loop in count_shadow_nodes() when calling lruvec_page_state_local(), but I could not prove this using perf, it's probably in the noise. [1] https://lore.kernel.org/lkml/20230725201811.GA1231514@cmpxchg.org/ [2] https://lore.kernel.org/lkml/CAJD7tkb17x=qwoO37uxyYXLEUVp15BQKR+Xfh7Sg9Hx-wTQ_=w@mail.gmail.com/ Link: https://lkml.kernel.org/r/20230803185046.1385770-1-yosryahmed@google.com Link: https://lkml.kernel.org/r/20230726153223.821757-2-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21mm: remove folio_test_transhuge()Matthew Wilcox (Oracle)
This function is misleading; people think it means "Is this a THP", when all it actually does is check whether this is a large folio. Remove it; the one remaining user should have been checking to see whether the folio is PMD sized or not. Link: https://lkml.kernel.org/r/20230816151201.3655946-12-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Yanteng Si <siyanteng@loongson.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21merge mm-hotfixes-stable into mm-stable to pick up depended-upon changesAndrew Morton
2023-08-21mm: remove redundant K() macro definitionZhangPeng
Patch series "cleanup with helper macro K()". Use helper macro K() to improve code readability. No functional modification involved. Remove redundant K() macro definition. This patch (of 7): Since commit eb8589b4f8c1 ("mm: move mem_init_print_info() to mm_init.c"), the K() macro definition has been moved to mm/internal.h. Therefore, the definitions in mm/memcontrol.c, mm/backing-dev.c and mm/oom_kill.c are redundant. Drop redundant definitions. [akpm@linux-foundation.org: oom_kill.c: remove "#undef K", per Kefeng] Link: https://lkml.kernel.org/r/20230804012559.2617515-1-zhangpeng362@huawei.com Link: https://lkml.kernel.org/r/20230804012559.2617515-2-zhangpeng362@huawei.com Signed-off-by: ZhangPeng <zhangpeng362@huawei.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Nanyong Sun <sunnanyong@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21mm/memcg: fix wrong function name above obj_cgroup_charge_zswap()Miaohe Lin
The correct function name is obj_cgroup_may_zswap(). Correct the comment. Link: https://lkml.kernel.org/r/20230803120021.762279-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21mm:vmscan: fix inaccurate reclaim during proactive reclaimEfly Young
Before commit f53af4285d77 ("mm: vmscan: fix extreme overreclaim and swap floods"), proactive reclaim will extreme overreclaim sometimes. But proactive reclaim still inaccurate and some extent overreclaim. Problematic case is easy to construct. Allocate lots of anonymous memory (e.g., 20G) in a memcg, then swapping by writing memory.recalim and there is a certain probability of overreclaim. For example, request 1G by writing memory.reclaim will eventually reclaim 1.7G or other values more than 1G. The reason is that reclaimer may have already reclaimed part of requested memory in one loop, but before adjust sc->nr_to_reclaim in outer loop, call shrink_lruvec() again will still follow the current sc->nr_to_reclaim to work. It will eventually lead to overreclaim. In theory, the amount of reclaimed would be in [request, 2 * request). Reclaimer usually tends to reclaim more than request. But either direct or kswapd reclaim have much smaller nr_to_reclaim targets, so it is less noticeable and not have much impact. Proactive reclaim can usually come in with a larger value, so the error is difficult to ignore. Considering proactive reclaim is usually low frequency, handle the batching into smaller chunks is a better approach. Link: https://lkml.kernel.org/r/20230721014116.3388-1-yangyifei03@kuaishou.com Signed-off-by: Efly Young <yangyifei03@kuaishou.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21memcg: convert get_obj_cgroup_from_page to get_obj_cgroup_from_folioMatthew Wilcox (Oracle)
As the one caller now has a folio, pass it in and use it. Removes three calls to compound_head(). Link: https://lkml.kernel.org/r/20230715042343.434588-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Vitaly Wool <vitaly.wool@konsulko.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-21mm: enable page walking API to lock vmas during the walkSuren Baghdasaryan
walk_page_range() and friends often operate under write-locked mmap_lock. With introduction of vma locks, the vmas have to be locked as well during such walks to prevent concurrent page faults in these areas. Add an additional member to mm_walk_ops to indicate locking requirements for the walk. The change ensures that page walks which prevent concurrent page faults by write-locking mmap_lock, operate correctly after introduction of per-vma locks. With per-vma locks page faults can be handled under vma lock without taking mmap_lock at all, so write locking mmap_lock would not stop them. The change ensures vmas are properly locked during such walks. A sample issue this solves is do_mbind() performing queue_pages_range() to queue pages for migration. Without this change a concurrent page can be faulted into the area and be left out of migration. Link: https://lkml.kernel.org/r/20230804152724.3090321-2-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org> Suggested-by: Jann Horn <jannh@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Michel Lespinasse <michel@lespinasse.org> Cc: Peter Xu <peterx@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18mm/memcg: minor cleanup for mc_handle_present_pte()Miaohe Lin
When pagetable lock is held, the page will always be page_mapped(). So remove unneeded page_mapped() check. Also the page can't be freed from under us in this case. So use get_page() to get extra page reference to simplify the code. No functional change intended. Link: https://lkml.kernel.org/r/20230717113644.3026478-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18mm/memcg: fix obsolete comment above MEM_CGROUP_MAX_RECLAIM_LOOPSMiaohe Lin
Since commit 5660048ccac8 ("mm: move memcg hierarchy reclaim to generic reclaim code"), mem_cgroup_hierarchical_reclaim() is already renamed to mem_cgroup_soft_reclaim(). Update the corresponding comment. Link: https://lkml.kernel.org/r/20230713121432.273381-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18mm/memcg: minor cleanup for MEM_CGROUP_ID_MAXMiaohe Lin
MEM_CGROUP_ID_MAX is only used when CONFIG_MEMCG is configured. So remove unneeded !CONFIG_MEMCG variant. Also it's only used in mem_cgroup_alloc(), so move it from memcontrol.h to memcontrol.c. And further define it as: #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) so if someone changes MEM_CGROUP_ID_SHIFT in the future, then MEM_CGROUP_ID_MAX will be updated accordingly, as suggested by Muchun. Link: https://lkml.kernel.org/r/20230708023304.1184111-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18memcg: drop kmem.limit_in_bytesMichal Hocko
kmem.limit_in_bytes (v1 way to limit kernel memory usage) has been deprecated since 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes") merged in 5.16. We haven't heard about any serious users since then but it seems that the mere presence of the file is causing more harm thatn good. We (SUSE) have had several bug reports from customers where Docker based containers started to fail because a write to kmem.limit_in_bytes has failed. This was unexpected because runc code only expects ENOENT (kmem disabled) or EBUSY (tasks already running within cgroup). So a new error code was unexpected and the whole container startup failed. This has been later addressed by https://github.com/opencontainers/runc/commit/52390d68040637dfc77f9fda6bbe70952423d380 so current Docker runtimes do not suffer from the problem anymore. There are still older version of Docker in use and likely hard to get rid of completely. Address this by wiping out the file completely and effectively get back to pre 4.5 era and CONFIG_MEMCG_KMEM=n configuration. I would recommend backporting to stable trees which have picked up 58056f77502f ("memcg, kmem: further deprecate kmem.limit_in_bytes"). [mhocko@suse.com: restore _KMEM switch case] Link: https://lkml.kernel.org/r/ZKe5wxdbvPi5Cwd7@dhcp22.suse.cz Link: https://lkml.kernel.org/r/20230704115240.14672-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Muchun Song <muchun.song@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-23mm/memcontrol: do not tweak node in mem_cgroup_init()Haifeng Xu
mem_cgroup_init() request for allocations from each possible node, and it's used to be a problem because NODE_DATA is not allocated for offline node. Things have already changed since commit 09f49dca570a9 ("mm: handle uninitialized numa nodes gracefully"), so it's unnecessary to check for !node_online nodes here. How to test? qemu-system-x86_64 \ -kernel vmlinux \ -initrd full.rootfs.cpio.gz \ -append "console=ttyS0,115200 root=/dev/ram0 nokaslr earlyprintk=serial oops=panic panic_on_warn" \ -drive format=qcow2,file=vm_disk.qcow2,media=disk,if=ide \ -enable-kvm \ -cpu host \ -m 8G,slots=2,maxmem=16G \ -smp cores=4,threads=1,sockets=2 \ -object memory-backend-ram,id=mem0,size=4G \ -object memory-backend-ram,id=mem1,size=4G \ -numa node,memdev=mem0,cpus=0-3,nodeid=0 \ -numa node,memdev=mem1,cpus=4-7,nodeid=1 \ -numa node,nodeid=2 \ -net nic,model=virtio,macaddr=52:54:00:12:34:58 \ -net user \ -nographic \ -rtc base=localtime \ -gdb tcp::6000 Guest state when booting: [ 0.048881] NUMA: Node 0 [mem 0x00000000-0x0009ffff] + [mem 0x00100000-0xbfffffff] -> [mem 0x00000000-0xbfffffff] [ 0.050489] NUMA: Node 0 [mem 0x00000000-0xbfffffff] + [mem 0x100000000-0x13fffffff] -> [mem 0x00000000-0x13fffffff] [ 0.052173] NODE_DATA(0) allocated [mem 0x13fffc000-0x13fffffff] [ 0.053164] NODE_DATA(1) allocated [mem 0x23fffa000-0x23fffdfff] [ 0.054187] Zone ranges: [ 0.054587] DMA [mem 0x0000000000001000-0x0000000000ffffff] [ 0.055551] DMA32 [mem 0x0000000001000000-0x00000000ffffffff] [ 0.056515] Normal [mem 0x0000000100000000-0x000000023fffffff] [ 0.057484] Movable zone start for each node [ 0.058149] Early memory node ranges [ 0.058705] node 0: [mem 0x0000000000001000-0x000000000009efff] [ 0.059679] node 0: [mem 0x0000000000100000-0x00000000bffdffff] [ 0.060659] node 0: [mem 0x0000000100000000-0x000000013fffffff] [ 0.061649] node 1: [mem 0x0000000140000000-0x000000023fffffff] [ 0.062638] Initmem setup node 0 [mem 0x0000000000001000-0x000000013fffffff] [ 0.063745] Initmem setup node 1 [mem 0x0000000140000000-0x000000023fffffff] [ 0.064855] DMA zone: 158 reserved pages exceeds freesize 0 [ 0.065746] Initializing node 2 as memoryless [ 0.066437] Initmem setup node 2 as memoryless [ 0.067132] DMA zone: 158 reserved pages exceeds freesize 0 [ 0.068037] On node 0, zone DMA: 1 pages in unavailable ranges [ 0.068265] On node 0, zone DMA: 97 pages in unavailable ranges [ 0.124755] On node 0, zone Normal: 32 pages in unavailable ranges cat /sys/devices/system/node/online 0-1 cat /sys/devices/system/node/possible 0-2 Link: https://lkml.kernel.org/r/20230619130442.2487-1-haifeng.xu@shopee.com Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19mm/memcg: remove return value of mem_cgroup_scan_tasks()ZhangPeng
No user checks the return value of mem_cgroup_scan_tasks(). Make the return value void. Link: https://lkml.kernel.org/r/20230616063030.977586-1-zhangpeng362@huawei.com Signed-off-by: ZhangPeng <zhangpeng362@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nanyong Sun <sunnanyong@huawei.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19mm: kill lock|unlock_page_memcg()Kefeng Wang
Since commit c7c3dec1c9db ("mm: rmap: remove lock_page_memcg()"), no more user, kill lock_page_memcg() and unlock_page_memcg(). Link: https://lkml.kernel.org/r/20230614143612.62575-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19mm: ptep_get() conversionRyan Roberts
Convert all instances of direct pte_t* dereferencing to instead use ptep_get() helper. This means that by default, the accesses change from a C dereference to a READ_ONCE(). This is technically the correct thing to do since where pgtables are modified by HW (for access/dirty) they are volatile and therefore we should always ensure READ_ONCE() semantics. But more importantly, by always using the helper, it can be overridden by the architecture to fully encapsulate the contents of the pte. Arch code is deliberately not converted, as the arch code knows best. It is intended that arch code (arm64) will override the default with its own implementation that can (e.g.) hide certain bits from the core code, or determine young/dirty status by mixing in state from another source. Conversion was done using Coccinelle: ---- // $ make coccicheck \ // COCCI=ptepget.cocci \ // SPFLAGS="--include-headers" \ // MODE=patch virtual patch @ depends on patch @ pte_t *v; @@ - *v + ptep_get(v) ---- Then reviewed and hand-edited to avoid multiple unnecessary calls to ptep_get(), instead opting to store the result of a single call in a variable, where it is correct to do so. This aims to negate any cost of READ_ONCE() and will benefit arch-overrides that may be more complex. Included is a fix for an issue in an earlier version of this patch that was pointed out by kernel test robot. The issue arose because config MMU=n elides definition of the ptep helper functions, including ptep_get(). HUGETLB_PAGE=n configs still define a simple huge_ptep_clear_flush() for linking purposes, which dereferences the ptep. So when both configs are disabled, this caused a build error because ptep_get() is not defined. Fix by continuing to do a direct dereference when MMU=n. This is safe because for this config the arch code cannot be trying to virtualize the ptes because none of the ptep helpers are defined. Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com Reported-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/ Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Dave Airlie <airlied@gmail.com> Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ian Rogers <irogers@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: SeongJae Park <sj@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19mm/various: give up if pte_offset_map[_lock]() failsHugh Dickins
Following the examples of nearby code, various functions can just give up if pte_offset_map() or pte_offset_map_lock() fails. And there's no need for a preliminary pmd_trans_unstable() or other such check, since such cases are now safely handled inside. Link: https://lkml.kernel.org/r/7b9bd85d-1652-cbf2-159d-f503b45e5b@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: SeongJae Park <sj@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zack Rusin <zackr@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-09memcg: use helper macro FLUSH_TIMEMiaohe Lin
Use helper macro FLUSH_TIME to indicate the flush time to improve the readability a bit. No functional change intended. Link: https://lkml.kernel.org/r/20230603072116.1101690-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>