Age | Commit message (Collapse) | Author |
|
anon_vma->degree tracks the combined number of child anon_vmas and VMAs
that use the anon_vma as their ->anon_vma.
anon_vma_clone() then assumes that for any anon_vma attached to
src->anon_vma_chain other than src->anon_vma, it is impossible for it to
be a leaf node of the VMA tree, meaning that for such VMAs ->degree is
elevated by 1 because of a child anon_vma, meaning that if ->degree
equals 1 there are no VMAs that use the anon_vma as their ->anon_vma.
This assumption is wrong because the ->degree optimization leads to leaf
nodes being abandoned on anon_vma_clone() - an existing anon_vma is
reused and no new parent-child relationship is created. So it is
possible to reuse an anon_vma for one VMA while it is still tied to
another VMA.
This is an issue because is_mergeable_anon_vma() and its callers assume
that if two VMAs have the same ->anon_vma, the list of anon_vmas
attached to the VMAs is guaranteed to be the same. When this assumption
is violated, vma_merge() can merge pages into a VMA that is not attached
to the corresponding anon_vma, leading to dangling page->mapping
pointers that will be dereferenced during rmap walks.
Fix it by separately tracking the number of child anon_vmas and the
number of VMAs using the anon_vma as their ->anon_vma.
Fixes: 7a3ef208e662 ("mm: prevent endless growth of anon_vma hierarchy")
Cc: stable@kernel.org
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
|
|
As an optimization for loops sequentially processing hugetlb address
ranges, huge_pmd_unshare would update a passed address if it unshared a
pmd. Updating a loop control variable outside the loop like this is
generally a bad idea. These loops are now using hugetlb_mask_last_page to
optimize scanning when non-present ptes are discovered. The same can be
done when huge_pmd_unshare returns 1 indicating a pmd was unshared.
Remove address update from huge_pmd_unshare. Change the passed argument
type and update all callers. In loops sequentially processing addresses
use hugetlb_mask_last_page to update address if pmd is unshared.
[sfr@canb.auug.org.au: fix an unused variable warning/error]
Link: https://lkml.kernel.org/r/20220622171117.70850960@canb.auug.org.au
Link: https://lkml.kernel.org/r/20220621235620.291305-4-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
Cc: Will Deacon <will@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Device memory that is cache coherent from device and CPU point of view.
This is used on platforms that have an advanced system bus (like CAPI or
CXL). Any page of a process can be migrated to such memory. However, no
one should be allowed to pin such memory so that it can always be evicted.
[hch@lst.de: rebased ontop of the refcount changes, remove is_dev_private_or_coherent_page]
Link: https://lkml.kernel.org/r/20220715150521.18165-4-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit e5251fd43007 ("mm/hugetlb: introduce set_huge_swap_pte_at()
helper") add set_huge_swap_pte_at() to handle swap entries on
architectures that support hugepages consisting of contiguous ptes. And
currently the set_huge_swap_pte_at() is only overridden by arm64.
set_huge_swap_pte_at() provide a sz parameter to help determine the number
of entries to be updated. But in fact, all hugetlb swap entries contain
pfn information, so we can find the corresponding folio through the pfn
recorded in the swap entry, then the folio_size() is the number of entries
that need to be updated.
And considering that users will easily cause bugs by ignoring the
difference between set_huge_swap_pte_at() and set_huge_pte_at(). Let's
handle swap entries in set_huge_pte_at() and remove the
set_huge_swap_pte_at(), then we can call set_huge_pte_at() anywhere, which
simplifies our coding.
Link: https://lkml.kernel.org/r/20220626145717.53572-1-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
According to previous discussion [1], there are so many levels of
indenting to handle the hugetlb case when unmapping or migration. We can
combine folio_test_anon() and huge_pmd_unshare() to save one level of
indenting, by adding a local variable and moving the VM_BUG_ON() a little
forward.
No intended functional changes in this patch.
[1] https://lore.kernel.org/all/0b986dc4-5843-3e2d-c2df-5a2e9f13e6ab@oracle.com/
Link: https://lkml.kernel.org/r/28414b1b96f095e838c1e548074f8e0fc70d78cf.1655724713.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The subpage we calculate is an invalid pointer for device private pages,
because device private pages are mapped via non-present device private
entries, not ordinary present PTEs.
Let's just not compute broken pointers and fixup later. Move the proper
assignment of the correct subpage to the beginning of the function and
assert that we really only have a single page in our folio.
This currently results in a BUG when tying to compute anon_exclusive,
because:
[ 528.727237] BUG: unable to handle page fault for address: ffffea1fffffffc0
[ 528.739585] #PF: supervisor read access in kernel mode
[ 528.745324] #PF: error_code(0x0000) - not-present page
[ 528.751062] PGD 44eaf2067 P4D 44eaf2067 PUD 0
[ 528.756026] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 528.760890] CPU: 120 PID: 18275 Comm: hmm-tests Not tainted 5.19.0-rc3-kfd-alex #257
[ 528.769542] Hardware name: AMD Corporation BardPeak/BardPeak, BIOS RTY1002BDS 09/17/2021
[ 528.778579] RIP: 0010:try_to_migrate_one+0x21a/0x1000
[ 528.784225] Code: f6 48 89 c8 48 2b 05 45 d1 6a 01 48 c1 f8 06 48 29
c3 48 8b 45 a8 48 c1 e3 06 48 01 cb f6 41 18 01 48 89 85 50 ff ff ff 74
0b <4c> 8b 33 49 c1 ee 11 41 83 e6 01 48 8b bd 48 ff ff ff e8 3f 99 02
[ 528.805194] RSP: 0000:ffffc90003cdfaa0 EFLAGS: 00010202
[ 528.811027] RAX: 00007ffff7ff4000 RBX: ffffea1fffffffc0 RCX: ffffeaffffffffc0
[ 528.818995] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffc90003cdfaf8
[ 528.826962] RBP: ffffc90003cdfb70 R08: 0000000000000000 R09: 0000000000000000
[ 528.834930] R10: ffffc90003cdf910 R11: 0000000000000002 R12: ffff888194450540
[ 528.842899] R13: ffff888160d057c0 R14: 0000000000000000 R15: 03ffffffffffffff
[ 528.850865] FS: 00007ffff7fdb740(0000) GS:ffff8883b0600000(0000) knlGS:0000000000000000
[ 528.859891] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 528.866308] CR2: ffffea1fffffffc0 CR3: 00000001562b4003 CR4: 0000000000770ee0
[ 528.874275] PKRU: 55555554
[ 528.877286] Call Trace:
[ 528.880016] <TASK>
[ 528.882356] ? lock_is_held_type+0xdf/0x130
[ 528.887033] rmap_walk_anon+0x167/0x410
[ 528.891316] try_to_migrate+0x90/0xd0
[ 528.895405] ? try_to_unmap_one+0xe10/0xe10
[ 528.900074] ? anon_vma_ctor+0x50/0x50
[ 528.904260] ? put_anon_vma+0x10/0x10
[ 528.908347] ? invalid_mkclean_vma+0x20/0x20
[ 528.913114] migrate_vma_setup+0x5f4/0x750
[ 528.917691] dmirror_devmem_fault+0x8c/0x250 [test_hmm]
[ 528.923532] do_swap_page+0xac0/0xe50
[ 528.927623] ? __lock_acquire+0x4b2/0x1ac0
[ 528.932199] __handle_mm_fault+0x949/0x1440
[ 528.936876] handle_mm_fault+0x13f/0x3e0
[ 528.941256] do_user_addr_fault+0x215/0x740
[ 528.945928] exc_page_fault+0x75/0x280
[ 528.950115] asm_exc_page_fault+0x27/0x30
[ 528.954593] RIP: 0033:0x40366b
...
Link: https://lkml.kernel.org/r/20220623205332.319257-1-david@redhat.com
Fixes: 6c287605fd56 ("mm: remember exclusively mapped anonymous pages with PG_anon_exclusive")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: "Sierra Guiza, Alejandro (Alex)" <alex.sierra@amd.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
so it will be consistent with code mm directory and with
Documentation/admin-guide/mm and won't be confused with virtual machines.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Jonathan Corbet <corbet@lwn.net>
Acked-by: Wu XiangCheng <bobwxc@email.cn>
|
|
The rmap locks(i_mmap_rwsem and anon_vma->root->rwsem) could be contended
under memory pressure if processes keep working on their vmas(e.g., fork,
mmap, munmap). It makes reclaim path stuck. In our real workload traces,
we see kswapd is waiting the lock for 300ms+(worst case, a sec) and it
makes other processes entering direct reclaim, which were also stuck on
the lock.
This patch makes lru aging path try_lock mode like shink_page_list so the
reclaim context will keep working with next lru pages without being stuck.
if it found the rmap lock contended, it rotates the page back to head of
lru in both active/inactive lrus to make them consistent behavior, which
is basic starting point rather than adding more heristic.
Since this patch introduces a new "contended" field as out-param along
with try_lock in-param in rmap_walk_control, it's not immutable any longer
if the try_lock is set so remove const keywords on rmap related functions.
Since rmap walking is already expensive operation, I doubt the const
would help sizable benefit( And we didn't have it until 5.17).
In a heavy app workload in Android, trace shows following statistics. It
almost removes rmap lock contention from reclaim path.
Martin Liu reported:
Before:
max_dur(ms) min_dur(ms) max-min(dur)ms avg_dur(ms) sum_dur(ms) count blocked_function
1632 0 1631 151.542173 31672 209 page_lock_anon_vma_read
601 0 601 145.544681 28817 198 rmap_walk_file
After:
max_dur(ms) min_dur(ms) max-min(dur)ms avg_dur(ms) sum_dur(ms) count blocked_function
NaN NaN NaN NaN NaN 0.0 NaN
0 0 0 0.127645 1 12 rmap_walk_file
[minchan@kernel.org: add comment, per Matthew]
Link: https://lkml.kernel.org/r/YnNqeB5tUf6LZ57b@google.com
Link: https://lkml.kernel.org/r/20220510215423.164547-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: John Dias <joaodias@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Martin Liu <liumartin@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
On some architectures (like ARM64), it can support CONT-PTE/PMD size
hugetlb, which means it can support not only PMD/PUD size hugetlb: 2M and
1G, but also CONT-PTE/PMD size: 64K and 32M if a 4K page size specified.
When unmapping a hugetlb page, we will get the relevant page table entry
by huge_pte_offset() only once to nuke it. This is correct for PMD or PUD
size hugetlb, since they always contain only one pmd entry or pud entry in
the page table.
However this is incorrect for CONT-PTE and CONT-PMD size hugetlb, since
they can contain several continuous pte or pmd entry with same page table
attributes, so we will nuke only one pte or pmd entry for this
CONT-PTE/PMD size hugetlb page.
And now try_to_unmap() is only passed a hugetlb page in the case where the
hugetlb page is poisoned. Which means now we will unmap only one pte
entry for a CONT-PTE or CONT-PMD size poisoned hugetlb page, and we can
still access other subpages of a CONT-PTE or CONT-PMD size poisoned
hugetlb page, which will cause serious issues possibly.
So we should change to use huge_ptep_clear_flush() to nuke the hugetlb
page table to fix this issue, which already considered CONT-PTE and
CONT-PMD size hugetlb.
We've already used set_huge_swap_pte_at() to set a poisoned swap entry for
a poisoned hugetlb page. Meanwhile adding a VM_BUG_ON() to make sure the
passed hugetlb page is poisoned in try_to_unmap().
Link: https://lkml.kernel.org/r/0a2e547238cad5bc153a85c3e9658cb9d55f9cac.1652270205.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/730ea4b6d292f32fb10b7a4e87dad49b0eb30474.1652147571.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
On some architectures (like ARM64), it can support CONT-PTE/PMD size
hugetlb, which means it can support not only PMD/PUD size hugetlb: 2M and
1G, but also CONT-PTE/PMD size: 64K and 32M if a 4K page size specified.
When migrating a hugetlb page, we will get the relevant page table entry
by huge_pte_offset() only once to nuke it and remap it with a migration
pte entry. This is correct for PMD or PUD size hugetlb, since they always
contain only one pmd entry or pud entry in the page table.
However this is incorrect for CONT-PTE and CONT-PMD size hugetlb, since
they can contain several continuous pte or pmd entry with same page table
attributes. So we will nuke or remap only one pte or pmd entry for this
CONT-PTE/PMD size hugetlb page, which is not expected for hugetlb
migration. The problem is we can still continue to modify the subpages'
data of a hugetlb page during migrating a hugetlb page, which can cause a
serious data consistent issue, since we did not nuke the page table entry
and set a migration pte for the subpages of a hugetlb page.
To fix this issue, we should change to use huge_ptep_clear_flush() to nuke
a hugetlb page table, and remap it with set_huge_pte_at() and
set_huge_swap_pte_at() when migrating a hugetlb page, which already
considered the CONT-PTE or CONT-PMD size hugetlb.
[akpm@linux-foundation.org: fix nommu build]
[baolin.wang@linux.alibaba.com: fix build errors for !CONFIG_MMU]
Link: https://lkml.kernel.org/r/a4baca670aca637e7198d9ae4543b8873cb224dc.1652270205.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/ea5abf529f0997b5430961012bfda6166c1efc8c.1652147571.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
File-backed memory is prone to being unmapped at any time. It means all
information in the pte will be dropped, including the uffd-wp flag.
To persist the uffd-wp flag, we'll use the pte markers. This patch
teaches the zap code to understand uffd-wp and know when to keep or drop
the uffd-wp bit.
Add a new flag ZAP_FLAG_DROP_MARKER and set it in zap_details when we
don't want to persist such an information, for example, when destroying
the whole vma, or punching a hole in a shmem file. For the rest cases we
should never drop the uffd-wp bit, or the wr-protect information will get
lost.
The new ZAP_FLAG_DROP_MARKER needs to be put into mm.h rather than
memory.c because it'll be further referenced in hugetlb files later.
Link: https://lkml.kernel.org/r/20220405014847.14295-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Fix spelling/grammar mistakes in comments.
Link: https://lkml.kernel.org/r/20220428061522.666-1-adrianhuang0701@gmail.com
Signed-off-by: Adrian Huang <ahuang12@lenovo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now we will use flush_cache_page() to flush cache for anonymous hugetlb
pages when unmapping or migrating a hugetlb page mapping, but the
flush_cache_page() only handles a PAGE_SIZE range on some architectures
(like arm32, arc and so on), which will cause potential cache issues.
Thus change to use flush_cache_range() to cover the whole size of a
hugetlb page.
Link: https://lkml.kernel.org/r/dc903b378d1e2d26bbbe85409ab9d009631f175c.1651056365.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The cache level flush will always be first when changing an existing
virtual–>physical mapping to a new value, since this allows us to
properly handle systems whose caches are strict and require a
virtual–>physical translation to exist for a virtual address. So we
should move the cache flushing before huge_pmd_unshare().
As Muchun pointed out[1], now the architectures whose supporting hugetlb
PMD sharing have no cache flush issues in practice. But I think we should
still follow the cache/TLB flushing rules when changing a valid virtual
address mapping in case of potential issues in future.
[1] https://lore.kernel.org/all/YmT%2F%2FhuUbFX+KHcy@FVFYT0MHHV2J.usts.net/
Link: https://lkml.kernel.org/r/4f7ae6dfdc838ab71e1655188b657c032ff1f28f.1651056365.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: COW fixes part 3: reliable GUP R/W FOLL_GET of anonymous pages", v2.
This series fixes memory corruptions when a GUP R/W reference (FOLL_WRITE
| FOLL_GET) was taken on an anonymous page and COW logic fails to detect
exclusivity of the page to then replacing the anonymous page by a copy in
the page table: The GUP reference lost synchronicity with the pages mapped
into the page tables. This series focuses on x86, arm64, s390x and
ppc64/book3s -- other architectures are fairly easy to support by
implementing __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
This primarily fixes the O_DIRECT memory corruptions that can happen on
concurrent swapout, whereby we lose DMA reads to a page (modifying the
user page by writing to it).
O_DIRECT currently uses FOLL_GET for short-term (!FOLL_LONGTERM) DMA
from/to a user page. In the long run, we want to convert it to properly
use FOLL_PIN, and John is working on it, but that might take a while and
might not be easy to backport. In the meantime, let's restore what used
to work before we started modifying our COW logic: make R/W FOLL_GET
references reliable as long as there is no fork() after GUP involved.
This is just the natural follow-up of part 2, that will also further
reduce "wrong COW" on the swapin path, for example, when we cannot remove
a page from the swapcache due to concurrent writeback, or if we have two
threads faulting on the same swapped-out page. Fixing O_DIRECT is just a
nice side-product
This issue, including other related COW issues, has been summarized in [3]
under 2):
"
2. Intra Process Memory Corruptions due to Wrong COW (FOLL_GET)
It was discovered that we can create a memory corruption by reading a
file via O_DIRECT to a part (e.g., first 512 bytes) of a page,
concurrently writing to an unrelated part (e.g., last byte) of the same
page, and concurrently write-protecting the page via clear_refs
SOFTDIRTY tracking [6].
For the reproducer, the issue is that O_DIRECT grabs a reference of the
target page (via FOLL_GET) and clear_refs write-protects the relevant
page table entry. On successive write access to the page from the
process itself, we wrongly COW the page when resolving the write fault,
resulting in a loss of synchronicity and consequently a memory corruption.
While some people might think that using clear_refs in this combination
is a corner cases, it turns out to be a more generic problem unfortunately.
For example, it was just recently discovered that we can similarly
create a memory corruption without clear_refs, simply by concurrently
swapping out the buffer pages [7]. Note that we nowadays even use the
swap infrastructure in Linux without an actual swap disk/partition: the
prime example is zram which is enabled as default under Fedora [10].
The root issue is that a write-fault on a page that has additional
references results in a COW and thereby a loss of synchronicity
and consequently a memory corruption if two parties believe they are
referencing the same page.
"
We don't particularly care about R/O FOLL_GET references: they were never
reliable and O_DIRECT doesn't expect to observe modifications from a page
after DMA was started.
Note that:
* this only fixes the issue on x86, arm64, s390x and ppc64/book3s
("enterprise architectures"). Other architectures have to implement
__HAVE_ARCH_PTE_SWP_EXCLUSIVE to achieve the same.
* this does *not * consider any kind of fork() after taking the reference:
fork() after GUP never worked reliably with FOLL_GET.
* Not losing PG_anon_exclusive during swapout was the last remaining
piece. KSM already makes sure that there are no other references on
a page before considering it for sharing. Page migration maintains
PG_anon_exclusive and simply fails when there are additional references
(freezing the refcount fails). Only swapout code dropped the
PG_anon_exclusive flag because it requires more work to remember +
restore it.
With this series in place, most COW issues of [3] are fixed on said
architectures. Other architectures can implement
__HAVE_ARCH_PTE_SWP_EXCLUSIVE fairly easily.
[1] https://lkml.kernel.org/r/20220329160440.193848-1-david@redhat.com
[2] https://lkml.kernel.org/r/20211217113049.23850-1-david@redhat.com
[3] https://lore.kernel.org/r/3ae33b08-d9ef-f846-56fb-645e3b9b4c66@redhat.com
This patch (of 8):
Currently, we clear PG_anon_exclusive in try_to_unmap() and forget about
it. We do this, to keep fork() logic on swap entries easy and efficient:
for example, if we wouldn't clear it when unmapping, we'd have to lookup
the page in the swapcache for each and every swap entry during fork() and
clear PG_anon_exclusive if set.
Instead, we want to store that information directly in the swap pte,
protected by the page table lock, similarly to how we handle
SWP_MIGRATION_READ_EXCLUSIVE for migration entries. However, for actual
swap entries, we don't want to mess with the swap type (e.g., still one
bit) because it overcomplicates swap code.
In try_to_unmap(), we already reject to unmap in case the page might be
pinned, because we must not lose PG_anon_exclusive on pinned pages ever.
Checking if there are other unexpected references reliably *before*
completely unmapping a page is unfortunately not really possible: THP
heavily overcomplicate the situation. Once fully unmapped it's easier --
we, for example, make sure that there are no unexpected references *after*
unmapping a page before starting writeback on that page.
So, we currently might end up unmapping a page and clearing
PG_anon_exclusive if that page has additional references, for example, due
to a FOLL_GET.
do_swap_page() has to re-determine if a page is exclusive, which will
easily fail if there are other references on a page, most prominently GUP
references via FOLL_GET. This can currently result in memory corruptions
when taking a FOLL_GET | FOLL_WRITE reference on a page even when fork()
is never involved: try_to_unmap() will succeed, and when refaulting the
page, it cannot be marked exclusive and will get replaced by a copy in the
page tables on the next write access, resulting in writes via the GUP
reference to the page being lost.
In an ideal world, everybody that uses GUP and wants to modify page
content, such as O_DIRECT, would properly use FOLL_PIN. However, that
conversion will take a while. It's easier to fix what used to work in the
past (FOLL_GET | FOLL_WRITE) remembering PG_anon_exclusive. In addition,
by remembering PG_anon_exclusive we can further reduce unnecessary COW in
some cases, so it's the natural thing to do.
So let's transfer the PG_anon_exclusive information to the swap pte and
store it via an architecture-dependant pte bit; use that information when
restoring the swap pte in do_swap_page() and unuse_pte(). During fork(),
we simply have to clear the pte bit and are done.
Of course, there is one corner case to handle: swap backends that don't
support concurrent page modifications while the page is under writeback.
Special case these, and drop the exclusive marker. Add a comment why that
is just fine (also, reuse_swap_page() would have done the same in the
past).
In the future, we'll hopefully have all architectures support
__HAVE_ARCH_PTE_SWP_EXCLUSIVE, such that we can get rid of the empty stubs
and the define completely. Then, we can also convert
SWP_MIGRATION_READ_EXCLUSIVE. For architectures it's fairly easy to
support: either simply use a yet unused pte bit that can be used for swap
entries, steal one from the arch type bits if they exceed 5, or steal one
from the offset bits.
Note: R/O FOLL_GET references were never really reliable, especially when
taking one on a shared page and then writing to the page (e.g., GUP after
fork()). FOLL_GET, including R/W references, were never really reliable
once fork was involved (e.g., GUP before fork(), GUP during fork()). KSM
steps back in case it stumbles over unexpected references and is,
therefore, fine.
[david@redhat.com: fix SWP_STABLE_WRITES test]
Link: https://lkml.kernel.org/r/ac725bcb-313a-4fff-250a-68ba9a8f85fb@redhat.comLink: https://lkml.kernel.org/r/20220329164329.208407-1-david@redhat.com
Link: https://lkml.kernel.org/r/20220329164329.208407-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's fail right away in case we cannot clear PG_anon_exclusive because
the anon THP may be pinned. Right now, we continue trying to install
migration entries and the caller of try_to_migrate() will realize that the
page is still mapped and has to restore the migration entries. Let's just
fail fast just like for PTE migration entries.
Link: https://lkml.kernel.org/r/20220428083441.37290-14-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as
exclusive, and use that information to make GUP pins reliable and stay
consistent with the page mapped into the page table even if the page table
entry gets write-protected.
With that information at hand, we can extend our COW logic to always reuse
anonymous pages that are exclusive. For anonymous pages that might be
shared, the existing logic applies.
As already documented, PG_anon_exclusive is usually only expressive in
combination with a page table entry. Especially PTE vs. PMD-mapped
anonymous pages require more thought, some examples: due to mremap() we
can easily have a single compound page PTE-mapped into multiple page
tables exclusively in a single process -- multiple page table locks apply.
Further, due to MADV_WIPEONFORK we might not necessarily write-protect
all PTEs, and only some subpages might be pinned. Long story short: once
PTE-mapped, we have to track information about exclusivity per sub-page,
but until then, we can just track it for the compound page in the head
page and not having to update a whole bunch of subpages all of the time
for a simple PMD mapping of a THP.
For simplicity, this commit mostly talks about "anonymous pages", while
it's for THP actually "the part of an anonymous folio referenced via a
page table entry".
To not spill PG_anon_exclusive code all over the mm code-base, we let the
anon rmap code to handle all PG_anon_exclusive logic it can easily handle.
If a writable, present page table entry points at an anonymous (sub)page,
that (sub)page must be PG_anon_exclusive. If GUP wants to take a reliably
pin (FOLL_PIN) on an anonymous page references via a present page table
entry, it must only pin if PG_anon_exclusive is set for the mapped
(sub)page.
This commit doesn't adjust GUP, so this is only implicitly handled for
FOLL_WRITE, follow-up commits will teach GUP to also respect it for
FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully
reliable.
Whenever an anonymous page is to be shared (fork(), KSM), or when
temporarily unmapping an anonymous page (swap, migration), the relevant
PG_anon_exclusive bit has to be cleared to mark the anonymous page
possibly shared. Clearing will fail if there are GUP pins on the page:
* For fork(), this means having to copy the page and not being able to
share it. fork() protects against concurrent GUP using the PT lock and
the src_mm->write_protect_seq.
* For KSM, this means sharing will fail. For swap this means, unmapping
will fail, For migration this means, migration will fail early. All
three cases protect against concurrent GUP using the PT lock and a
proper clear/invalidate+flush of the relevant page table entry.
This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a
pinned page gets mapped R/O and the successive write fault ends up
replacing the page instead of reusing it. It improves the situation for
O_DIRECT/vmsplice/... that still use FOLL_GET instead of FOLL_PIN, if
fork() is *not* involved, however swapout and fork() are still
problematic. Properly using FOLL_PIN instead of FOLL_GET for these GUP
users will fix the issue for them.
I. Details about basic handling
I.1. Fresh anonymous pages
page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the
given page exclusive via __page_set_anon_rmap(exclusive=1). As that is
the mechanism fresh anonymous pages come into life (besides migration code
where we copy the page->mapping), all fresh anonymous pages will start out
as exclusive.
I.2. COW reuse handling of anonymous pages
When a COW handler stumbles over a (sub)page that's marked exclusive, it
simply reuses it. Otherwise, the handler tries harder under page lock to
detect if the (sub)page is exclusive and can be reused. If exclusive,
page_move_anon_rmap() will mark the given (sub)page exclusive.
Note that hugetlb code does not yet check for PageAnonExclusive(), as it
still uses the old COW logic that is prone to the COW security issue
because hugetlb code cannot really tolerate unnecessary/wrong COW as huge
pages are a scarce resource.
I.3. Migration handling
try_to_migrate() has to try marking an exclusive anonymous page shared via
page_try_share_anon_rmap(). If it fails because there are GUP pins on the
page, unmap fails. migrate_vma_collect_pmd() and
__split_huge_pmd_locked() are handled similarly.
Writable migration entries implicitly point at shared anonymous pages.
For readable migration entries that information is stored via a new
"readable-exclusive" migration entry, specific to anonymous pages.
When restoring a migration entry in remove_migration_pte(), information
about exlusivity is detected via the migration entry type, and
RMAP_EXCLUSIVE is set accordingly for
page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information.
I.4. Swapout handling
try_to_unmap() has to try marking the mapped page possibly shared via
page_try_share_anon_rmap(). If it fails because there are GUP pins on the
page, unmap fails. For now, information about exclusivity is lost. In
the future, we might want to remember that information in the swap entry
in some cases, however, it requires more thought, care, and a way to store
that information in swap entries.
I.5. Swapin handling
do_swap_page() will never stumble over exclusive anonymous pages in the
swap cache, as try_to_migrate() prohibits that. do_swap_page() always has
to detect manually if an anonymous page is exclusive and has to set
RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly.
I.6. THP handling
__split_huge_pmd_locked() has to move the information about exclusivity
from the PMD to the PTEs.
a) In case we have a readable-exclusive PMD migration entry, simply
insert readable-exclusive PTE migration entries.
b) In case we have a present PMD entry and we don't want to freeze
("convert to migration entries"), simply forward PG_anon_exclusive to
all sub-pages, no need to temporarily clear the bit.
c) In case we have a present PMD entry and want to freeze, handle it
similar to try_to_migrate(): try marking the page shared first. In
case we fail, we ignore the "freeze" instruction and simply split
ordinarily. try_to_migrate() will properly fail because the THP is
still mapped via PTEs.
When splitting a compound anonymous folio (THP), the information about
exclusivity is implicitly handled via the migration entries: no need to
replicate PG_anon_exclusive manually.
I.7. fork() handling fork() handling is relatively easy, because
PG_anon_exclusive is only expressive for some page table entry types.
a) Present anonymous pages
page_try_dup_anon_rmap() will mark the given subpage shared -- which will
fail if the page is pinned. If it failed, we have to copy (or PTE-map a
PMD to handle it on the PTE level).
Note that device exclusive entries are just a pointer at a PageAnon()
page. fork() will first convert a device exclusive entry to a present
page table and handle it just like present anonymous pages.
b) Device private entry
Device private entries point at PageAnon() pages that cannot be mapped
directly and, therefore, cannot get pinned.
page_try_dup_anon_rmap() will mark the given subpage shared, which cannot
fail because they cannot get pinned.
c) HW poison entries
PG_anon_exclusive will remain untouched and is stale -- the page table
entry is just a placeholder after all.
d) Migration entries
Writable and readable-exclusive entries are converted to readable entries:
possibly shared.
I.8. mprotect() handling
mprotect() only has to properly handle the new readable-exclusive
migration entry:
When write-protecting a migration entry that points at an anonymous page,
remember the information about exclusivity via the "readable-exclusive"
migration entry type.
II. Migration and GUP-fast
Whenever replacing a present page table entry that maps an exclusive
anonymous page by a migration entry, we have to mark the page possibly
shared and synchronize against GUP-fast by a proper clear/invalidate+flush
to make the following scenario impossible:
1. try_to_migrate() places a migration entry after checking for GUP pins
and marks the page possibly shared.
2. GUP-fast pins the page due to lack of synchronization
3. fork() converts the "writable/readable-exclusive" migration entry into a
readable migration entry
4. Migration fails due to the GUP pin (failing to freeze the refcount)
5. Migration entries are restored. PG_anon_exclusive is lost
-> We have a pinned page that is not marked exclusive anymore.
Note that we move information about exclusivity from the page to the
migration entry as it otherwise highly overcomplicates fork() and
PTE-mapping a THP.
III. Swapout and GUP-fast
Whenever replacing a present page table entry that maps an exclusive
anonymous page by a swap entry, we have to mark the page possibly shared
and synchronize against GUP-fast by a proper clear/invalidate+flush to
make the following scenario impossible:
1. try_to_unmap() places a swap entry after checking for GUP pins and
clears exclusivity information on the page.
2. GUP-fast pins the page due to lack of synchronization.
-> We have a pinned page that is not marked exclusive anymore.
If we'd ever store information about exclusivity in the swap entry,
similar to migration handling, the same considerations as in II would
apply. This is future work.
Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
New anonymous pages are always mapped natively: only THP/khugepaged code
maps a new compound anonymous page and passes "true". Otherwise, we're
just dealing with simple, non-compound pages.
Let's give the interface clearer semantics and document these. Remove the
PageTransCompound() sanity check from page_add_new_anon_rmap().
Link: https://lkml.kernel.org/r/20220428083441.37290-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's prepare for passing RMAP_EXCLUSIVE, similarly as we do for
page_add_anon_rmap() now. RMAP_COMPOUND is implicit for hugetlb pages and
ignored.
Link: https://lkml.kernel.org/r/20220428083441.37290-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
... and instead convert page_add_anon_rmap() to accept flags.
Passing flags instead of bools is usually nicer either way, and we want to
more often also pass RMAP_EXCLUSIVE in follow up patches when detecting
that an anonymous page is exclusive: for example, when restoring an
anonymous page from a writable migration entry.
This is a preparation for marking an anonymous page inside
page_add_anon_rmap() as exclusive when RMAP_EXCLUSIVE is passed.
Link: https://lkml.kernel.org/r/20220428083441.37290-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We want to pass the flags to more than one anon rmap function, getting rid
of special "do_page_add_anon_rmap()". So let's pass around a distinct
__bitwise type and refine documentation.
Link: https://lkml.kernel.org/r/20220428083441.37290-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: COW fixes part 2: reliable GUP pins of anonymous pages", v4.
This series is the result of the discussion on the previous approach [2].
More information on the general COW issues can be found there. It is
based on latest linus/master (post v5.17, with relevant core-MM changes
for v5.18-rc1).
This series fixes memory corruptions when a GUP pin (FOLL_PIN) was taken
on an anonymous page and COW logic fails to detect exclusivity of the page
to then replacing the anonymous page by a copy in the page table: The GUP
pin lost synchronicity with the pages mapped into the page tables.
This issue, including other related COW issues, has been summarized in [3]
under 3):
"
3. Intra Process Memory Corruptions due to Wrong COW (FOLL_PIN)
page_maybe_dma_pinned() is used to check if a page may be pinned for
DMA (using FOLL_PIN instead of FOLL_GET). While false positives are
tolerable, false negatives are problematic: pages that are pinned for
DMA must not be added to the swapcache. If it happens, the (now pinned)
page could be faulted back from the swapcache into page tables
read-only. Future write-access would detect the pinning and COW the
page, losing synchronicity. For the interested reader, this is nicely
documented in feb889fb40fa ("mm: don't put pinned pages into the swap
cache").
Peter reports [8] that page_maybe_dma_pinned() as used is racy in some
cases and can result in a violation of the documented semantics: giving
false negatives because of the race.
There are cases where we call it without properly taking a per-process
sequence lock, turning the usage of page_maybe_dma_pinned() racy. While
one case (clear_refs SOFTDIRTY tracking, see below) seems to be easy to
handle, there is especially one rmap case (shrink_page_list) that's hard
to fix: in the rmap world, we're not limited to a single process.
The shrink_page_list() issue is really subtle. If we race with
someone pinning a page, we can trigger the same issue as in the FOLL_GET
case. See the detail section at the end of this mail on a discussion
how bad this can bite us with VFIO or other FOLL_PIN user.
It's harder to reproduce, but I managed to modify the O_DIRECT
reproducer to use io_uring fixed buffers [15] instead, which ends up
using FOLL_PIN | FOLL_WRITE | FOLL_LONGTERM to pin buffer pages and can
similarly trigger a loss of synchronicity and consequently a memory
corruption.
Again, the root issue is that a write-fault on a page that has
additional references results in a COW and thereby a loss of
synchronicity and consequently a memory corruption if two parties
believe they are referencing the same page.
"
This series makes GUP pins (R/O and R/W) on anonymous pages fully
reliable, especially also taking care of concurrent pinning via GUP-fast,
for example, also fully fixing an issue reported regarding NUMA balancing
[4] recently. While doing that, it further reduces "unnecessary COWs",
especially when we don't fork()/KSM and don't swapout, and fixes the COW
security for hugetlb for FOLL_PIN.
In summary, we track via a pageflag (PG_anon_exclusive) whether a mapped
anonymous page is exclusive. Exclusive anonymous pages that are mapped
R/O can directly be mapped R/W by the COW logic in the write fault
handler. Exclusive anonymous pages that want to be shared (fork(), KSM)
first have to be marked shared -- which will fail if there are GUP pins on
the page. GUP is only allowed to take a pin on anonymous pages that are
exclusive. The PT lock is the primary mechanism to synchronize
modifications of PG_anon_exclusive. We synchronize against GUP-fast
either via the src_mm->write_protect_seq (during fork()) or via
clear/invalidate+flush of the relevant page table entry.
Special care has to be taken about swap, migration, and THPs (whereby a
PMD-mapping can be converted to a PTE mapping and we have to track
information for subpages). Besides these, we let the rmap code handle
most magic. For reliable R/O pins of anonymous pages, we need
FAULT_FLAG_UNSHARE logic as part of our previous approach [2], however,
it's now 100% mapcount free and I further simplified it a bit.
#1 is a fix
#3-#10 are mostly rmap preparations for PG_anon_exclusive handling
#11 introduces PG_anon_exclusive
#12 uses PG_anon_exclusive and make R/W pins of anonymous pages
reliable
#13 is a preparation for reliable R/O pins
#14 and #15 is reused/modified GUP-triggered unsharing for R/O GUP pins
make R/O pins of anonymous pages reliable
#16 adds sanity check when (un)pinning anonymous pages
[1] https://lkml.kernel.org/r/20220131162940.210846-1-david@redhat.com
[2] https://lkml.kernel.org/r/20211217113049.23850-1-david@redhat.com
[3] https://lore.kernel.org/r/3ae33b08-d9ef-f846-56fb-645e3b9b4c66@redhat.com
[4] https://bugzilla.kernel.org/show_bug.cgi?id=215616
This patch (of 17):
In case arch_unmap_one() fails, we already did a swap_duplicate(). let's
undo that properly via swap_free().
Link: https://lkml.kernel.org/r/20220428083441.37290-1-david@redhat.com
Link: https://lkml.kernel.org/r/20220428083441.37290-2-david@redhat.com
Fixes: ca827d55ebaa ("mm, swap: Add infrastructure for saving page metadata on swap")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The page_mkclean_one() is supposed to be used with the pfn that has a
associated struct page, but not all the pfns (e.g. DAX) have a struct
page. Introduce a new function pfn_mkclean_range() to cleans the PTEs
(including PMDs) mapped with range of pfns which has no struct page
associated with them. This helper will be used by DAX device in the next
patch to make pfns clean.
Link: https://lkml.kernel.org/r/20220403053957.10770-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Xiyu Yang <xiyuyang19@fudan.edu.cn>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Fix some bugs related to ramp and dax", v7.
Patch 1-2 fix a cache flush bug, because subsequent patches depend on
those on those changes, there are placed in this series. Patch 3-4 are
preparation for fixing a dax bug in patch 5. Patch 6 is code cleanup
since the previous patch removes the usage of follow_invalidate_pte().
This patch (of 6):
The flush_cache_page() only remove a PAGE_SIZE sized range from the cache.
However, it does not cover the full pages in a THP except a head page.
Replace it with flush_cache_range() to fix this issue. At least, no
problems were found due to this. Maybe because the architectures that
have virtual indexed caches is less.
Link: https://lkml.kernel.org/r/20220403053957.10770-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220403053957.10770-2-songmuchun@bytedance.com
Fixes: f27176cfc363 ("mm: convert page_mkclean_one() to use page_vma_mapped_walk()")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Xiyu Yang <xiyuyang19@fudan.edu.cn>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The access to mlock_pvec is protected by disabling preemption via
get_cpu_var() or implicit by having preemption disabled by the caller
(in mlock_page_drain() case). This breaks on PREEMPT_RT since
folio_lruvec_lock_irq() acquires a sleeping lock in this section.
Create struct mlock_pvec which consits of the local_lock_t and the
pagevec. Acquire the local_lock() before accessing the per-CPU pagevec.
Replace mlock_page_drain() with a _local() version which is invoked on
the local CPU and acquires the local_lock_t and a _remote() version
which uses the pagevec from a remote CPU which offline.
Link: https://lkml.kernel.org/r/YjizWi9IY0mpvIfb@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Problem:
=======
Userspace might read the zero-page instead of actual data from a direct IO
read on a block device if the buffers have been called madvise(MADV_FREE)
on earlier (this is discussed below) due to a race between page reclaim on
MADV_FREE and blkdev direct IO read.
- Race condition:
==============
During page reclaim, the MADV_FREE page check in try_to_unmap_one() checks
if the page is not dirty, then discards its rmap PTE(s) (vs. remap back
if the page is dirty).
However, after try_to_unmap_one() returns to shrink_page_list(), it might
keep the page _anyway_ if page_ref_freeze() fails (it expects exactly
_one_ page reference, from the isolation for page reclaim).
Well, blkdev_direct_IO() gets references for all pages, and on READ
operations it only sets them dirty _later_.
So, if MADV_FREE'd pages (i.e., not dirty) are used as buffers for direct
IO read from block devices, and page reclaim happens during
__blkdev_direct_IO[_simple]() exactly AFTER bio_iov_iter_get_pages()
returns, but BEFORE the pages are set dirty, the situation happens.
The direct IO read eventually completes. Now, when userspace reads the
buffers, the PTE is no longer there and the page fault handler
do_anonymous_page() services that with the zero-page, NOT the data!
A synthetic reproducer is provided.
- Page faults:
===========
If page reclaim happens BEFORE bio_iov_iter_get_pages() the issue doesn't
happen, because that faults-in all pages as writeable, so
do_anonymous_page() sets up a new page/rmap/PTE, and that is used by
direct IO. The userspace reads don't fault as the PTE is there (thus
zero-page is not used/setup).
But if page reclaim happens AFTER it / BEFORE setting pages dirty, the PTE
is no longer there; the subsequent page faults can't help:
The data-read from the block device probably won't generate faults due to
DMA (no MMU) but even in the case it wouldn't use DMA, that happens on
different virtual addresses (not user-mapped addresses) because `struct
bio_vec` stores `struct page` to figure addresses out (which are different
from user-mapped addresses) for the read.
Thus userspace reads (to user-mapped addresses) still fault, then
do_anonymous_page() gets another `struct page` that would address/ map to
other memory than the `struct page` used by `struct bio_vec` for the read.
(The original `struct page` is not available, since it wasn't freed, as
page_ref_freeze() failed due to more page refs. And even if it were
available, its data cannot be trusted anymore.)
Solution:
========
One solution is to check for the expected page reference count in
try_to_unmap_one().
There should be one reference from the isolation (that is also checked in
shrink_page_list() with page_ref_freeze()) plus one or more references
from page mapping(s) (put in discard: label). Further references mean
that rmap/PTE cannot be unmapped/nuked.
(Note: there might be more than one reference from mapping due to
fork()/clone() without CLONE_VM, which use the same `struct page` for
references, until the copy-on-write page gets copied.)
So, additional page references (e.g., from direct IO read) now prevent the
rmap/PTE from being unmapped/dropped; similarly to the page is not freed
per shrink_page_list()/page_ref_freeze()).
- Races and Barriers:
==================
The new check in try_to_unmap_one() should be safe in races with
bio_iov_iter_get_pages() in get_user_pages() fast and slow paths, as it's
done under the PTE lock.
The fast path doesn't take the lock, but it checks if the PTE has changed
and if so, it drops the reference and leaves the page for the slow path
(which does take that lock).
The fast path requires synchronization w/ full memory barrier: it writes
the page reference count first then it reads the PTE later, while
try_to_unmap() writes PTE first then it reads page refcount.
And a second barrier is needed, as the page dirty flag should not be read
before the page reference count (as in __remove_mapping()). (This can be
a load memory barrier only; no writes are involved.)
Call stack/comments:
- try_to_unmap_one()
- page_vma_mapped_walk()
- map_pte() # see pte_offset_map_lock():
pte_offset_map()
spin_lock()
- ptep_get_and_clear() # write PTE
- smp_mb() # (new barrier) GUP fast path
- page_ref_count() # (new check) read refcount
- page_vma_mapped_walk_done() # see pte_unmap_unlock():
pte_unmap()
spin_unlock()
- bio_iov_iter_get_pages()
- __bio_iov_iter_get_pages()
- iov_iter_get_pages()
- get_user_pages_fast()
- internal_get_user_pages_fast()
# fast path
- lockless_pages_from_mm()
- gup_{pgd,p4d,pud,pmd,pte}_range()
ptep = pte_offset_map() # not _lock()
pte = ptep_get_lockless(ptep)
page = pte_page(pte)
try_grab_compound_head(page) # inc refcount
# (RMW/barrier
# on success)
if (pte_val(pte) != pte_val(*ptep)) # read PTE
put_compound_head(page) # dec refcount
# go slow path
# slow path
- __gup_longterm_unlocked()
- get_user_pages_unlocked()
- __get_user_pages_locked()
- __get_user_pages()
- follow_{page,p4d,pud,pmd}_mask()
- follow_page_pte()
ptep = pte_offset_map_lock()
pte = *ptep
page = vm_normal_page(pte)
try_grab_page(page) # inc refcount
pte_unmap_unlock()
- Huge Pages:
==========
Regarding transparent hugepages, that logic shouldn't change, as MADV_FREE
(aka lazyfree) pages are PageAnon() && !PageSwapBacked()
(madvise_free_pte_range() -> mark_page_lazyfree() -> lru_lazyfree_fn())
thus should reach shrink_page_list() -> split_huge_page_to_list() before
try_to_unmap[_one](), so it deals with normal pages only.
(And in case unlikely/TTU_SPLIT_HUGE_PMD/split_huge_pmd_address() happens,
which should not or be rare, the page refcount should be greater than
mapcount: the head page is referenced by tail pages. That also prevents
checking the head `page` then incorrectly call page_remove_rmap(subpage)
for a tail page, that isn't even in the shrink_page_list()'s page_list (an
effect of split huge pmd/pmvw), as it might happen today in this unlikely
scenario.)
MADV_FREE'd buffers:
===================
So, back to the "if MADV_FREE pages are used as buffers" note. The case
is arguable, and subject to multiple interpretations.
The madvise(2) manual page on the MADV_FREE advice value says:
1) 'After a successful MADV_FREE ... data will be lost when
the kernel frees the pages.'
2) 'the free operation will be canceled if the caller writes
into the page' / 'subsequent writes ... will succeed and
then [the] kernel cannot free those dirtied pages'
3) 'If there is no subsequent write, the kernel can free the
pages at any time.'
Thoughts, questions, considerations... respectively:
1) Since the kernel didn't actually free the page (page_ref_freeze()
failed), should the data not have been lost? (on userspace read.)
2) Should writes performed by the direct IO read be able to cancel
the free operation?
- Should the direct IO read be considered as 'the caller' too,
as it's been requested by 'the caller'?
- Should the bio technique to dirty pages on return to userspace
(bio_check_pages_dirty() is called/used by __blkdev_direct_IO())
be considered in another/special way here?
3) Should an upcoming write from a previously requested direct IO
read be considered as a subsequent write, so the kernel should
not free the pages? (as it's known at the time of page reclaim.)
And lastly:
Technically, the last point would seem a reasonable consideration and
balance, as the madvise(2) manual page apparently (and fairly) seem to
assume that 'writes' are memory access from the userspace process (not
explicitly considering writes from the kernel or its corner cases; again,
fairly).. plus the kernel fix implementation for the corner case of the
largely 'non-atomic write' encompassed by a direct IO read operation, is
relatively simple; and it helps.
Reproducer:
==========
@ test.c (simplified, but works)
#define _GNU_SOURCE
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
int main() {
int fd, i;
char *buf;
fd = open(DEV, O_RDONLY | O_DIRECT);
buf = mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
buf[i] = 1; // init to non-zero
madvise(buf, BUF_SIZE, MADV_FREE);
read(fd, buf, BUF_SIZE);
for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
printf("%p: 0x%x\n", &buf[i], buf[i]);
return 0;
}
@ block/fops.c (formerly fs/block_dev.c)
+#include <linux/swap.h>
...
... __blkdev_direct_IO[_simple](...)
{
...
+ if (!strcmp(current->comm, "good"))
+ shrink_all_memory(ULONG_MAX);
+
ret = bio_iov_iter_get_pages(...);
+
+ if (!strcmp(current->comm, "bad"))
+ shrink_all_memory(ULONG_MAX);
...
}
@ shell
# NUM_PAGES=4
# PAGE_SIZE=$(getconf PAGE_SIZE)
# yes | dd of=test.img bs=${PAGE_SIZE} count=${NUM_PAGES}
# DEV=$(losetup -f --show test.img)
# gcc -DDEV=\"$DEV\" \
-DBUF_SIZE=$((PAGE_SIZE * NUM_PAGES)) \
-DPAGE_SIZE=${PAGE_SIZE} \
test.c -o test
# od -tx1 $DEV
0000000 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a
*
0040000
# mv test good
# ./good
0x7f7c10418000: 0x79
0x7f7c10419000: 0x79
0x7f7c1041a000: 0x79
0x7f7c1041b000: 0x79
# mv good bad
# ./bad
0x7fa1b8050000: 0x0
0x7fa1b8051000: 0x0
0x7fa1b8052000: 0x0
0x7fa1b8053000: 0x0
Note: the issue is consistent on v5.17-rc3, but it's intermittent with the
support of MADV_FREE on v4.5 (60%-70% error; needs swap). [wrap
do_direct_IO() in do_blockdev_direct_IO() @ fs/direct-io.c].
- v5.17-rc3:
# for i in {1..1000}; do ./good; done \
| cut -d: -f2 | sort | uniq -c
4000 0x79
# mv good bad
# for i in {1..1000}; do ./bad; done \
| cut -d: -f2 | sort | uniq -c
4000 0x0
# free | grep Swap
Swap: 0 0 0
- v4.5:
# for i in {1..1000}; do ./good; done \
| cut -d: -f2 | sort | uniq -c
4000 0x79
# mv good bad
# for i in {1..1000}; do ./bad; done \
| cut -d: -f2 | sort | uniq -c
2702 0x0
1298 0x79
# swapoff -av
swapoff /swap
# for i in {1..1000}; do ./bad; done \
| cut -d: -f2 | sort | uniq -c
4000 0x79
Ceph/TCMalloc:
=============
For documentation purposes, the use case driving the analysis/fix is Ceph
on Ubuntu 18.04, as the TCMalloc library there still uses MADV_FREE to
release unused memory to the system from the mmap'ed page heap (might be
committed back/used again; it's not munmap'ed.) - PageHeap::DecommitSpan()
-> TCMalloc_SystemRelease() -> madvise() - PageHeap::CommitSpan() ->
TCMalloc_SystemCommit() -> do nothing.
Note: TCMalloc switched back to MADV_DONTNEED a few commits after the
release in Ubuntu 18.04 (google-perftools/gperftools 2.5), so the issue
just 'disappeared' on Ceph on later Ubuntu releases but is still present
in the kernel, and can be hit by other use cases.
The observed issue seems to be the old Ceph bug #22464 [1], where checksum
mismatches are observed (and instrumentation with buffer dumps shows
zero-pages read from mmap'ed/MADV_FREE'd page ranges).
The issue in Ceph was reasonably deemed a kernel bug (comment #50) and
mostly worked around with a retry mechanism, but other parts of Ceph could
still hit that (rocksdb). Anyway, it's less likely to be hit again as
TCMalloc switched out of MADV_FREE by default.
(Some kernel versions/reports from the Ceph bug, and relation with
the MADV_FREE introduction/changes; TCMalloc versions not checked.)
- 4.4 good
- 4.5 (madv_free: introduction)
- 4.9 bad
- 4.10 good? maybe a swapless system
- 4.12 (madv_free: no longer free instantly on swapless systems)
- 4.13 bad
[1] https://tracker.ceph.com/issues/22464
Thanks:
======
Several people contributed to analysis/discussions/tests/reproducers in
the first stages when drilling down on ceph/tcmalloc/linux kernel:
- Dan Hill
- Dan Streetman
- Dongdong Tao
- Gavin Guo
- Gerald Yang
- Heitor Alves de Siqueira
- Ioanna Alifieraki
- Jay Vosburgh
- Matthew Ruffell
- Ponnuvel Palaniyappan
Reviews, suggestions, corrections, comments:
- Minchan Kim
- Yu Zhao
- Huang, Ying
- John Hubbard
- Christoph Hellwig
[mfo@canonical.com: v4]
Link: https://lkml.kernel.org/r/20220209202659.183418-1-mfo@canonical.comLink: https://lkml.kernel.org/r/20220131230255.789059-1-mfo@canonical.com
Fixes: 802a3a92ad7a ("mm: reclaim MADV_FREE pages")
Signed-off-by: Mauricio Faria de Oliveira <mfo@canonical.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Dan Hill <daniel.hill@canonical.com>
Cc: Dan Streetman <dan.streetman@canonical.com>
Cc: Dongdong Tao <dongdong.tao@canonical.com>
Cc: Gavin Guo <gavin.guo@canonical.com>
Cc: Gerald Yang <gerald.yang@canonical.com>
Cc: Heitor Alves de Siqueira <halves@canonical.com>
Cc: Ioanna Alifieraki <ioanna-maria.alifieraki@canonical.com>
Cc: Jay Vosburgh <jay.vosburgh@canonical.com>
Cc: Matthew Ruffell <matthew.ruffell@canonical.com>
Cc: Ponnuvel Palaniyappan <ponnuvel.palaniyappan@canonical.com>
Cc: <stable@vger.kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This adds two trace events for base page and HugeTLB page migrations.
These events, closely follow the implementation details like setting and
removing of PTE migration entries, which are essential operations for
migration. The new CREATE_TRACE_POINTS in <mm/rmap.c> covers both
<events/migration.h> and <events/tlb.h> based trace events. Hence drop
redundant CREATE_TRACE_POINTS from other places which could have otherwise
conflicted during build.
Link: https://lkml.kernel.org/r/1643368182-9588-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
NR_FILE_MAPPED accounting in mm/rmap.c (for /proc/meminfo "Mapped" and
/proc/vmstat "nr_mapped" and the memcg's memory.stat "mapped_file") is
slightly flawed for file or shmem huge pages.
It is well thought out, and looks convincing, but there's a racy case when
the careful counting in page_remove_file_rmap() (without page lock) gets
discarded. So that in a workload like two "make -j20" kernel builds under
memory pressure, with cc1 on hugepage text, "Mapped" can easily grow by a
spurious 5MB or more on each iteration, ending up implausibly bigger than
most other numbers in /proc/meminfo. And, hypothetically, might grow to
the point of seriously interfering in mm/vmscan.c's heuristics, which do
take NR_FILE_MAPPED into some consideration.
Fixed by moving the __mod_lruvec_page_state() down to where it will not be
missed before return (and I've grown a bit tired of that oft-repeated
but-not-everywhere comment on the __ness: it gets lost in the move here).
Does page_add_file_rmap() need the same change? I suspect not, because
page lock is held in all relevant cases, and its skipping case looks safe;
but it's much easier to be sure, if we do make the same change.
Link: https://lkml.kernel.org/r/e02e52a1-8550-a57c-ed29-f51191ea2375@google.com
Fixes: dd78fedde4b9 ("rmap: support file thp")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull filesystem folio updates from Matthew Wilcox:
"Primarily this series converts some of the address_space operations to
take a folio instead of a page.
Notably:
- a_ops->is_partially_uptodate() takes a folio instead of a page and
changes the type of the 'from' and 'count' arguments to make it
obvious they're bytes.
- a_ops->invalidatepage() becomes ->invalidate_folio() and has a
similar type change.
- a_ops->launder_page() becomes ->launder_folio()
- a_ops->set_page_dirty() becomes ->dirty_folio() and adds the
address_space as an argument.
There are a couple of other misc changes up front that weren't worth
separating into their own pull request"
* tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache: (53 commits)
fs: Remove aops ->set_page_dirty
fb_defio: Use noop_dirty_folio()
fs: Convert __set_page_dirty_no_writeback to noop_dirty_folio
fs: Convert __set_page_dirty_buffers to block_dirty_folio
nilfs: Convert nilfs_set_page_dirty() to nilfs_dirty_folio()
mm: Convert swap_set_page_dirty() to swap_dirty_folio()
ubifs: Convert ubifs_set_page_dirty to ubifs_dirty_folio
f2fs: Convert f2fs_set_node_page_dirty to f2fs_dirty_node_folio
f2fs: Convert f2fs_set_data_page_dirty to f2fs_dirty_data_folio
f2fs: Convert f2fs_set_meta_page_dirty to f2fs_dirty_meta_folio
afs: Convert afs_dir_set_page_dirty() to afs_dir_dirty_folio()
btrfs: Convert extent_range_redirty_for_io() to use folios
fs: Convert trivial uses of __set_page_dirty_nobuffers to filemap_dirty_folio
btrfs: Convert from set_page_dirty to dirty_folio
fscache: Convert fscache_set_page_dirty() to fscache_dirty_folio()
fs: Add aops->dirty_folio
fs: Remove aops->launder_page
orangefs: Convert launder_page to launder_folio
nfs: Convert from launder_page to launder_folio
fuse: Convert from launder_page to launder_folio
...
|
|
Pull folio updates from Matthew Wilcox:
- Rewrite how munlock works to massively reduce the contention on
i_mmap_rwsem (Hugh Dickins):
https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/
- Sort out the page refcount mess for ZONE_DEVICE pages (Christoph
Hellwig):
https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/
- Convert GUP to use folios and make pincount available for order-1
pages. (Matthew Wilcox)
- Convert a few more truncation functions to use folios (Matthew
Wilcox)
- Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew
Wilcox)
- Convert rmap_walk to use folios (Matthew Wilcox)
- Convert most of shrink_page_list() to use a folio (Matthew Wilcox)
- Add support for creating large folios in readahead (Matthew Wilcox)
* tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits)
mm/damon: minor cleanup for damon_pa_young
selftests/vm/transhuge-stress: Support file-backed PMD folios
mm/filemap: Support VM_HUGEPAGE for file mappings
mm/readahead: Switch to page_cache_ra_order
mm/readahead: Align file mappings for non-DAX
mm/readahead: Add large folio readahead
mm: Support arbitrary THP sizes
mm: Make large folios depend on THP
mm: Fix READ_ONLY_THP warning
mm/filemap: Allow large folios to be added to the page cache
mm: Turn can_split_huge_page() into can_split_folio()
mm/vmscan: Convert pageout() to take a folio
mm/vmscan: Turn page_check_references() into folio_check_references()
mm/vmscan: Account large folios correctly
mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios
mm/vmscan: Free non-shmem folios without splitting them
mm/rmap: Constify the rmap_walk_control argument
mm/rmap: Convert rmap_walk() to take a folio
mm: Turn page_anon_vma() into folio_anon_vma()
mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read()
...
|
|
PageDoubleMap is maintained differently for anon and for shmem+file: the
shmem+file one was never cleared, because a safe place to do so could
not be found; so it would blight future use of the cached hugepage until
evicted.
See https://lore.kernel.org/lkml/1571938066-29031-1-git-send-email-yang.shi@linux.alibaba.com/
But page_add_file_rmap() does provide a safe place to do so (though later
than one might wish): allowing testing to return to an initial state
without a damaging drop_caches.
Link: https://lkml.kernel.org/r/61c5cf99-a962-9a25-597a-53ab1bd8fbc0@google.com
Fixes: 9a73f61bdb8a ("thp, mlock: do not mlock PTE-mapped file huge pages")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Hardware poison is tracked on a per-page basis, not on the head page.
Link: https://lkml.kernel.org/r/20220130013042.1906881-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The rmap walking functions do not modify the rmap_walk_control, and
page_idle_clear_pte_refs() takes advantage of that to move construction
of the rmap_walk_control to compile time. This lets us remove an
unclean cast.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
This ripples all the way through to every calling and called function
from rmap.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Move the prototype from mm.h to mm/internal.h and convert all callers
to pass a folio.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Add back page_lock_anon_vma_read() as a wrapper. This saves a few calls
to compound_head(). If any callers were passing a tail page before,
this would have failed to lock the anon VMA as page->mapping is not
valid for tail pages.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Move the PageTail check earlier so we can avoid even taking the folio
lock on tail pages. Otherwise, this is a straightforward use of
folios throughout.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Convert the callers to pass a folio and the try_to_migrate_one()
worker to use a folio throughout. Fixes an assumption that a
folio must be <= PMD size.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Change all three callers and the worker function try_to_unmap_one().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Convert split_huge_pmd_address() at the same time since it only passes
the folio through, and its two callers already have a folio on hand.
Removes numerous calls to compound_head() and removes an assumption
that a page cannot be larger than a PMD.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Both its callers pass a page which was previously on an LRU list,
so were passing a folio by definition. Use the type system to enforce
that and remove a few calls to compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
folio_mkclean() already passes down a head page, so convert it
back to a folio.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
page_mapped_in_vma() really just wants to walk one page, but as the
code stands, if passed the head page of a compound page, it will
walk every page in the compound page. Extract pfn/nr_pages/pgoff
from the struct page early, so they can be overridden by
page_mapped_in_vma().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Instead of declaring a struct page_vma_mapped_walk directly,
use these helpers to allow us to transition to a PFN approach in the
following patches.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Move compound_pincount from the third page to the second page, which
means it's available for all compound pages. That lets us delete
hpage_pincount_available().
On 32-bit systems, there isn't enough space for both compound_pincount
and compound_nr in the second page (it would collide with page->private,
which is in use for pages in the swap cache), so revert the optimisation
of storing both compound_order and compound_nr on 32-bit systems.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
|
|
Convert all callers; mostly this is just changing the aops to point
at it, but a few implementations need a little more work.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
|
|
4.8 commit 7751b2da6be0 ("vmscan: split file huge pages before paging
them out") inserted a split_huge_page_to_list() into shrink_page_list()
without considering the mlock case: no problem if the page has already
been marked as Mlocked (the !page_evictable check much higher up will
have skipped all this), but it has always been the case that races or
omissions in setting Mlocked can rely on page reclaim to detect this
and correct it before actually reclaiming - and that remains so, but
what a shame if a hugepage is needlessly split before discovering it.
It is surprising that page_check_references() returns PAGEREF_RECLAIM
when VM_LOCKED, but there was a good reason for that: try_to_unmap_one()
is where the condition is detected and corrected; and until now it could
not be done in page_referenced_one(), because that does not always have
the page locked. Now that mlock's requirement for page lock has gone,
copy try_to_unmap_one()'s mlock restoration into page_referenced_one(),
and let page_check_references() return PAGEREF_ACTIVATE in this case.
But page_referenced_one() may find a pte mapping one part of a hugepage:
what hold should a pte mapped in a VM_LOCKED area exert over the entire
huge page? That's debatable. The approach taken here is to treat that
pte mapping in page_referenced_one() as if not VM_LOCKED, and if no
VM_LOCKED pmd mapping is found later in the walk, and lack of reference
permits, then PAGEREF_RECLAIM take it to attempted splitting as before.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Page migration of a VM_LOCKED page tends to fail, because when the old
page is unmapped, it is put on the mlock pagevec with raised refcount,
which then fails the freeze.
At first I thought this would be fixed by a local mlock_page_drain() at
the upper rmap_walk() level - which would have nicely batched all the
munlocks of that page; but tests show that the task can too easily move
to another cpu, leaving pagevec residue behind which fails the migration.
So try_to_migrate_one() drain the local pagevec after page_remove_rmap()
from a VM_LOCKED vma; and do the same in try_to_unmap_one(), whose
TTU_IGNORE_MLOCK users would want the same treatment; and do the same
in remove_migration_pte() - not important when successfully inserting
a new page, but necessary when hoping to retry after failure.
Any new pagevec runs the risk of adding a new way of stranding, and we
might discover other corners where mlock_page_drain() or lru_add_drain()
would now help.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Placing munlock_vma_page() at the end of page_remove_rmap() shifts most
of the munlocking to clear_page_mlock(), since PageMlocked is typically
still set when mapcount has fallen to 0. That is not what we want: we
want /proc/vmstat's unevictable_pgs_cleared to remain as a useful check
on the integrity of of the mlock/munlock protocol - small numbers are
not surprising, but big numbers mean the protocol is not working.
That could be easily fixed by placing munlock_vma_page() at the start of
page_remove_rmap(); but later in the series we shall want to batch the
munlocking, and that too would tend to leave PageMlocked still set at
the point when it is checked.
So delete clear_page_mlock() now: leave it instead to release_pages()
(and __page_cache_release()) to do this backstop clearing of Mlocked,
when page refcount has fallen to 0. If a pinned page occasionally gets
counted as Mlocked and Unevictable until it is unpinned, that's okay.
A slightly regrettable side-effect of this change is that, since
release_pages() and __page_cache_release() may be called at interrupt
time, those places which update NR_MLOCK with interrupts enabled
had better use mod_zone_page_state() than __mod_zone_page_state()
(but holding the lruvec lock always has interrupts disabled).
This change, forcing Mlocked off when refcount 0 instead of earlier
when mapcount 0, is not fundamental: it can be reversed if performance
or something else is found to suffer; but this is the easiest way to
separate the stats - let's not complicate that without good reason.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|