summaryrefslogtreecommitdiff
path: root/mm/secretmem.c
AgeCommit message (Collapse)Author
2021-10-28mm/secretmem: avoid letting secretmem_users drop to zeroKees Cook
Quoting Dmitry: "refcount_inc() needs to be done before fd_install(). After fd_install() finishes, the fd can be used by userspace and we can have secret data in memory before the refcount_inc(). A straightforward misuse where a user will predict the returned fd in another thread before the syscall returns and will use it to store secret data is somewhat dubious because such a user just shoots themself in the foot. But a more interesting misuse would be to close the predicted fd and decrement the refcount before the corresponding refcount_inc, this way one can briefly drop the refcount to zero while there are other users of secretmem." Move fd_install() after refcount_inc(). Link: https://lkml.kernel.org/r/20211021154046.880251-1-keescook@chromium.org Link: https://lore.kernel.org/lkml/CACT4Y+b1sW6-Hkn8HQYw_SsT7X3tp-CJNh2ci0wG3ZnQz9jjig@mail.gmail.com Fixes: 9a436f8ff631 ("PM: hibernate: disable when there are active secretmem users") Signed-off-by: Kees Cook <keescook@chromium.org> Reported-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Jordy Zomer <jordy@pwning.systems> Cc: Mike Rapoport <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-25secretmem: Prevent secretmem_users from wrapping to zeroMatthew Wilcox (Oracle)
Commit 110860541f44 ("mm/secretmem: use refcount_t instead of atomic_t") attempted to fix the problem of secretmem_users wrapping to zero and allowing suspend once again. But it was reverted in commit 87066fdd2e30 ("Revert 'mm/secretmem: use refcount_t instead of atomic_t'") because of the problems it caused - a refcount_t was not semantically the right type to use. Instead prevent secretmem_users from wrapping to zero by forbidding new users if the number of users has wrapped from positive to negative. This stops a long way short of reaching the necessary 4 billion users where it wraps to zero again, so there's no need to be clever with special anti-wrap types or checking the return value from atomic_inc(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Jordy Zomer <jordy@pwning.systems> Cc: Kees Cook <keescook@chromium.org>, Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-24Revert "mm/secretmem: use refcount_t instead of atomic_t"Linus Torvalds
This reverts commit 110860541f443f950c1274f217a1a3e298670a33. Converting the "secretmem_users" counter to a refcount is incorrect, because a refcount is special in zero and can't just be incremented (but a count of users is not, and "no users" is actually perfectly valid and not a sign of a free'd resource). Reported-by: syzbot+75639e6a0331cd61d3e2@syzkaller.appspotmail.com Cc: Jordy Zomer <jordy@pwning.systems> Cc: Kees Cook <keescook@chromium.org>, Cc: Jordy Zomer <jordy@jordyzomer.github.io> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08mm/secretmem: use refcount_t instead of atomic_tJordy Zomer
When a secret memory region is active, memfd_secret disables hibernation. One of the goals is to keep the secret data from being written to persistent-storage. It accomplishes this by maintaining a reference count to `secretmem_users`. Once this reference is held your system can not be hibernated due to the check in `hibernation_available()`. However, because `secretmem_users` is of type `atomic_t`, reference counter overflows are possible. As you can see there's an `atomic_inc` for each `memfd` that is opened in the `memfd_secret` syscall. If a local attacker succeeds to open 2^32 memfd's, the counter will wrap around to 0. This implies that you may hibernate again, even though there are still regions of this secret memory, thereby bypassing the security check. In an attempt to fix this I have used `refcount_t` instead of `atomic_t` which prevents reference counter overflows. Link: https://lkml.kernel.org/r/20210820043339.2151352-1-jordy@pwning.systems Signed-off-by: Jordy Zomer <jordy@pwning.systems> Cc: Kees Cook <keescook@chromium.org>, Cc: Jordy Zomer <jordy@jordyzomer.github.io> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Mike Rapoport <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-23mm/secretmem: wire up ->set_page_dirtyMike Rapoport
Make secretmem up to date with the changes done in commit 0af573780b0b ("mm: require ->set_page_dirty to be explicitly wired up") so that unconditional call to this method won't cause crashes. Link: https://lkml.kernel.org/r/20210716063933.31633-1-rppt@kernel.org Fixes: 0af573780b0b ("mm: require ->set_page_dirty to be explicitly wired up") Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-08PM: hibernate: disable when there are active secretmem usersMike Rapoport
It is unsafe to allow saving of secretmem areas to the hibernation snapshot as they would be visible after the resume and this essentially will defeat the purpose of secret memory mappings. Prevent hibernation whenever there are active secret memory users. Link: https://lkml.kernel.org/r/20210518072034.31572-6-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-08mm: introduce memfd_secret system call to create "secret" memory areasMike Rapoport
Introduce "memfd_secret" system call with the ability to create memory areas visible only in the context of the owning process and not mapped not only to other processes but in the kernel page tables as well. The secretmem feature is off by default and the user must explicitly enable it at the boot time. Once secretmem is enabled, the user will be able to create a file descriptor using the memfd_secret() system call. The memory areas created by mmap() calls from this file descriptor will be unmapped from the kernel direct map and they will be only mapped in the page table of the processes that have access to the file descriptor. Secretmem is designed to provide the following protections: * Enhanced protection (in conjunction with all the other in-kernel attack prevention systems) against ROP attacks. Seceretmem makes "simple" ROP insufficient to perform exfiltration, which increases the required complexity of the attack. Along with other protections like the kernel stack size limit and address space layout randomization which make finding gadgets is really hard, absence of any in-kernel primitive for accessing secret memory means the one gadget ROP attack can't work. Since the only way to access secret memory is to reconstruct the missing mapping entry, the attacker has to recover the physical page and insert a PTE pointing to it in the kernel and then retrieve the contents. That takes at least three gadgets which is a level of difficulty beyond most standard attacks. * Prevent cross-process secret userspace memory exposures. Once the secret memory is allocated, the user can't accidentally pass it into the kernel to be transmitted somewhere. The secreremem pages cannot be accessed via the direct map and they are disallowed in GUP. * Harden against exploited kernel flaws. In order to access secretmem, a kernel-side attack would need to either walk the page tables and create new ones, or spawn a new privileged uiserspace process to perform secrets exfiltration using ptrace. The file descriptor based memory has several advantages over the "traditional" mm interfaces, such as mlock(), mprotect(), madvise(). File descriptor approach allows explicit and controlled sharing of the memory areas, it allows to seal the operations. Besides, file descriptor based memory paves the way for VMMs to remove the secret memory range from the userspace hipervisor process, for instance QEMU. Andy Lutomirski says: "Getting fd-backed memory into a guest will take some possibly major work in the kernel, but getting vma-backed memory into a guest without mapping it in the host user address space seems much, much worse." memfd_secret() is made a dedicated system call rather than an extension to memfd_create() because it's purpose is to allow the user to create more secure memory mappings rather than to simply allow file based access to the memory. Nowadays a new system call cost is negligible while it is way simpler for userspace to deal with a clear-cut system calls than with a multiplexer or an overloaded syscall. Moreover, the initial implementation of memfd_secret() is completely distinct from memfd_create() so there is no much sense in overloading memfd_create() to begin with. If there will be a need for code sharing between these implementation it can be easily achieved without a need to adjust user visible APIs. The secret memory remains accessible in the process context using uaccess primitives, but it is not exposed to the kernel otherwise; secret memory areas are removed from the direct map and functions in the follow_page()/get_user_page() family will refuse to return a page that belongs to the secret memory area. Once there will be a use case that will require exposing secretmem to the kernel it will be an opt-in request in the system call flags so that user would have to decide what data can be exposed to the kernel. Removing of the pages from the direct map may cause its fragmentation on architectures that use large pages to map the physical memory which affects the system performance. However, the original Kconfig text for CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can improve the kernel's performance a tiny bit ..." (commit 00d1c5e05736 ("x86: add gbpages switches")) and the recent report [1] showed that "... although 1G mappings are a good default choice, there is no compelling evidence that it must be the only choice". Hence, it is sufficient to have secretmem disabled by default with the ability of a system administrator to enable it at boot time. Pages in the secretmem regions are unevictable and unmovable to avoid accidental exposure of the sensitive data via swap or during page migration. Since the secretmem mappings are locked in memory they cannot exceed RLIMIT_MEMLOCK. Since these mappings are already locked independently from mlock(), an attempt to mlock()/munlock() secretmem range would fail and mlockall()/munlockall() will ignore secretmem mappings. However, unlike mlock()ed memory, secretmem currently behaves more like long-term GUP: secretmem mappings are unmovable mappings directly consumed by user space. With default limits, there is no excessive use of secretmem and it poses no real problem in combination with ZONE_MOVABLE/CMA, but in the future this should be addressed to allow balanced use of large amounts of secretmem along with ZONE_MOVABLE/CMA. A page that was a part of the secret memory area is cleared when it is freed to ensure the data is not exposed to the next user of that page. The following example demonstrates creation of a secret mapping (error handling is omitted): fd = memfd_secret(0); ftruncate(fd, MAP_SIZE); ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); [1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux.intel.com/ [akpm@linux-foundation.org: suppress Kconfig whine] Link: https://lkml.kernel.org/r/20210518072034.31572-5-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Hagen Paul Pfeifer <hagen@jauu.net> Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>