Age | Commit message (Collapse) | Author |
|
Reduce size of the huge per_cpu_pageset structure in __initdata introduced
into mm1 with the pageset localization patchset. Use one specially
configured pageset per cpu for all zones and nodes during bootup.
- Avoid duplication of pageset initialization code.
- do the adding to the pageset list before potential free_pages_bulk
in free_hot_cold_page (otherwise we would have to hold a page
in a pageset during the period that the boot pagesets are in use).
- remove mistaken __cpuinitdata attribute and revert back to __initdata
for the boot pageset. A boot pageset is not necessary for cpu hotplug.
Tested for UP SMP NUMA on x86_64 (2.6.12-rc6-mm1): UP SMP NUMA Tested on
IA64 (2.6.12-rc5-mm2): NUMA (2.6.12-rc6-mm1 broken for IA64 because of
sparsemem patches)
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The pageset array can potentially acquire a huge amount of memory on large
NUMA systems. F.e. on a system with 512 processors and 256 nodes there
will be 256*512 pagesets. If each pageset only holds 5 pages then we are
talking about 655360 pages.With a 16K page size on IA64 this results in
potentially 10 Gigabytes of memory being trapped in pagesets. The typical
cases are much less for smaller systems but there is still the potential of
memory being trapped in off node pagesets. Off node memory may be rarely
used if local memory is available and so we may potentially have memory in
seldom used pagesets without this patch.
The slab allocator flushes its per cpu caches every 2 seconds. The
following patch flushes the off node pageset caches in the same way by
tying into the slab flush.
The patch also changes /proc/zoneinfo to include the number of pages
currently in each pageset.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch provides more debug info when the system is OOM. It displays
memory stats (basically sysrq-m info) from __alloc_pages() when page
allocation fails and during OOM kill.
Thanks to Dave Jones for coming up with the idea.
Signed-off-by: Janet Morgan <janetmor@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
By making the offset argument of __read_page_state an unsigned long instead of
unsigned, we can avoid forcing the compiler to sign extend a usually constant
argument. This saves 1 instruction on x86-64.
Signed-off-by: Benjamin LaHaise <benjamin.c.lahaise@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
By making the offset argument of __mod_page_state an unsigned long instead
of unsigned, we can avoid forcing the compiler to sign extend a usually
constant argument. This saves 1 instruction on x86-64.
Signed-off-by: Benjamin LaHaise <benjamin.c.lahaise@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
try_to_free_pages accepts a third argument, order, but hasn't used it since
before 2.6.0. The following patch removes the argument and updates all the
calls to try_to_free_pages.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The topdown changes in 2.6.12-rc1 can cause large allocations with large
stack limit to fail, despite there being space available. The
mmap_base-len is only valid when len >= mmap_base. However, nothing in
topdown allocator checks this. It's only (now) caught at higher level,
which will cause allocation to simply fail. The following change restores
the fallback to bottom-up path, which will allow large allocations with
large stack limit to potentially still succeed.
Signed-off-by: Chris Wright <chrisw@osdl.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Ingo recently introduced a great speedup for allocating new mmaps using the
free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and
causes huge performance increases in thread creation.
The downside of this patch is that it does lead to fragmentation in the
mmap-ed areas (visible via /proc/self/maps), such that some applications
that work fine under 2.4 kernels quickly run out of memory on any 2.6
kernel.
The problem is twofold:
1) the free_area_cache is used to continue a search for memory where
the last search ended. Before the change new areas were always
searched from the base address on.
So now new small areas are cluttering holes of all sizes
throughout the whole mmap-able region whereas before small holes
tended to close holes near the base leaving holes far from the base
large and available for larger requests.
2) the free_area_cache also is set to the location of the last
munmap-ed area so in scenarios where we allocate e.g. five regions of
1K each, then free regions 4 2 3 in this order the next request for 1K
will be placed in the position of the old region 3, whereas before we
appended it to the still active region 1, placing it at the location
of the old region 2. Before we had 1 free region of 2K, now we only
get two free regions of 1K -> fragmentation.
The patch addresses thes issues by introducing yet another cache descriptor
cached_hole_size that contains the largest known hole size below the
current free_area_cache. If a new request comes in the size is compared
against the cached_hole_size and if the request can be filled with a hole
below free_area_cache the search is started from the base instead.
The results look promising: Whereas 2.6.12-rc4 fragments quickly and my
(earlier posted) leakme.c test program terminates after 50000+ iterations
with 96 distinct and fragmented maps in /proc/self/maps it performs nicely
(as expected) with thread creation, Ingo's test_str02 with 20000 threads
requires 0.7s system time.
Taking out Ingo's patch (un-patch available per request) by basically
deleting all mentions of free_area_cache from the kernel and starting the
search for new memory always at the respective bases we observe: leakme
terminates successfully with 11 distinctive hardly fragmented areas in
/proc/self/maps but thread creating is gringdingly slow: 30+s(!) system
time for Ingo's test_str02 with 20000 threads.
Now - drumroll ;-) the appended patch works fine with leakme: it ends with
only 7 distinct areas in /proc/self/maps and also thread creation seems
sufficiently fast with 0.71s for 20000 threads.
Signed-off-by: Wolfgang Wander <wwc@rentec.com>
Credit-to: "Richard Purdie" <rpurdie@rpsys.net>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu> (partly)
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch modifies the way pagesets in struct zone are managed.
Each zone has a per-cpu array of pagesets. So any particular CPU has some
memory in each zone structure which belongs to itself. Even if that CPU is
not local to that zone.
So the patch relocates the pagesets for each cpu to the node that is nearest
to the cpu instead of allocating the pagesets in the (possibly remote) target
zone. This means that the operations to manage pages on remote zone can be
done with information available locally.
We play a macro trick so that non-NUMA pmachines avoid the additional
pointer chase on the page allocator fastpath.
AIM7 benchmark on a 32 CPU SGI Altix
w/o patches:
Tasks jobs/min jti jobs/min/task real cpu
1 484.68 100 484.6769 12.01 1.97 Fri Mar 25 11:01:42 2005
100 27140.46 89 271.4046 21.44 148.71 Fri Mar 25 11:02:04 2005
200 30792.02 82 153.9601 37.80 296.72 Fri Mar 25 11:02:42 2005
300 32209.27 81 107.3642 54.21 451.34 Fri Mar 25 11:03:37 2005
400 34962.83 78 87.4071 66.59 588.97 Fri Mar 25 11:04:44 2005
500 31676.92 75 63.3538 91.87 742.71 Fri Mar 25 11:06:16 2005
600 36032.69 73 60.0545 96.91 885.44 Fri Mar 25 11:07:54 2005
700 35540.43 77 50.7720 114.63 1024.28 Fri Mar 25 11:09:49 2005
800 33906.70 74 42.3834 137.32 1181.65 Fri Mar 25 11:12:06 2005
900 34120.67 73 37.9119 153.51 1325.26 Fri Mar 25 11:14:41 2005
1000 34802.37 74 34.8024 167.23 1465.26 Fri Mar 25 11:17:28 2005
with slab API changes and pageset patch:
Tasks jobs/min jti jobs/min/task real cpu
1 485.00 100 485.0000 12.00 1.96 Fri Mar 25 11:46:18 2005
100 28000.96 89 280.0096 20.79 150.45 Fri Mar 25 11:46:39 2005
200 32285.80 79 161.4290 36.05 293.37 Fri Mar 25 11:47:16 2005
300 40424.15 84 134.7472 43.19 438.42 Fri Mar 25 11:47:59 2005
400 39155.01 79 97.8875 59.46 590.05 Fri Mar 25 11:48:59 2005
500 37881.25 82 75.7625 76.82 730.19 Fri Mar 25 11:50:16 2005
600 39083.14 78 65.1386 89.35 872.79 Fri Mar 25 11:51:46 2005
700 38627.83 77 55.1826 105.47 1022.46 Fri Mar 25 11:53:32 2005
800 39631.94 78 49.5399 117.48 1169.94 Fri Mar 25 11:55:30 2005
900 36903.70 79 41.0041 141.94 1310.78 Fri Mar 25 11:57:53 2005
1000 36201.23 77 36.2012 160.77 1458.31 Fri Mar 25 12:00:34 2005
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com>
Signed-off-by: Shai Fultheim <Shai@Scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
A lot of the code in arch/*/mm/hugetlbpage.c is quite similar. This patch
attempts to consolidate a lot of the code across the arch's, putting the
combined version in mm/hugetlb.c. There are a couple of uglyish hacks in
order to covert all the hugepage archs, but the result is a very large
reduction in the total amount of code. It also means things like hugepage
lazy allocation could be implemented in one place, instead of six.
Tested, at least a little, on ppc64, i386 and x86_64.
Notes:
- this patch changes the meaning of set_huge_pte() to be more
analagous to set_pte()
- does SH4 need s special huge_ptep_get_and_clear()??
Acked-by: William Lee Irwin <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
When early zone reclaim is turned on the LRU is scanned more frequently when a
zone is low on memory. This limits when the zone reclaim can be called by
skipping the scan if another thread (either via kswapd or sync reclaim) is
already reclaiming from the zone.
Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
When using the early zone reclaim, it was noticed that allocating new pages
that should be spread across the whole system caused eviction of local pages.
This adds a new GFP flag to prevent early reclaim from happening during
certain allocation attempts. The example that is implemented here is for page
cache pages. We want page cache pages to be spread across the whole system,
and we don't want page cache pages to evict other pages to get local memory.
Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This is the core of the (much simplified) early reclaim. The goal of this
patch is to reclaim some easily-freed pages from a zone before falling back
onto another zone.
One of the major uses of this is NUMA machines. With the default allocator
behavior the allocator would look for memory in another zone, which might be
off-node, before trying to reclaim from the current zone.
This adds a zone tuneable to enable early zone reclaim. It is selected on a
per-zone basis and is turned on/off via syscall.
Adding some extra throttling on the reclaim was also required (patch
4/4). Without the machine would grind to a crawl when doing a "make -j"
kernel build. Even with this patch the System Time is higher on
average, but it seems tolerable. Here are some numbers for kernbench
runs on a 2-node, 4cpu, 8Gig RAM Altix in the "make -j" run:
wall user sys %cpu ctx sw. sleeps
---- ---- --- ---- ------ ------
No patch 1009 1384 847 258 298170 504402
w/patch, no reclaim 880 1376 667 288 254064 396745
w/patch & reclaim 1079 1385 926 252 291625 548873
These numbers are the average of 2 runs of 3 "make -j" runs done right
after system boot. Run-to-run variability for "make -j" is huge, so
these numbers aren't terribly useful except to seee that with reclaim
the benchmark still finishes in a reasonable amount of time.
I also looked at the NUMA hit/miss stats for the "make -j" runs and the
reclaim doesn't make any difference when the machine is thrashing away.
Doing a "make -j8" on a single node that is filled with page cache pages
takes 700 seconds with reclaim turned on and 735 seconds without reclaim
(due to remote memory accesses).
The simple zone_reclaim syscall program is at
http://www.bork.org/~mort/sgi/zone_reclaim.c
Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Here's the next round of these patches. These are totally different in
an attempt to meet the "simpler" request after the last patches. For
reference the earlier threads are:
http://marc.theaimsgroup.com/?l=linux-kernel&m=110839604924587&w=2
http://marc.theaimsgroup.com/?l=linux-mm&m=111461480721249&w=2
This set of patches replaces my other vm- patches that are currently in
-mm. So they're against 2.6.12-rc5-mm1 about half way through the -mm
patchset.
As I said already this patch is a lot simpler. The reclaim is turned on
or off on a per-zone basis using a syscall. I haven't tested the x86
syscall, so it might be wrong. It uses the existing reclaim/pageout
code with the small addition of a may_swap flag to scan_control
(patch 1/4).
I also added __GFP_NORECLAIM (patch 3/4) so that certain allocation
types can be flagged to never cause reclaim. This was a deficiency
that was in all of my earlier patch sets. Previously, doing a big
buffered read would fill one zone with page cache and then start to
reclaim from that same zone, leaving the other zones untouched.
Adding some extra throttling on the reclaim was also required (patch
4/4). Without the machine would grind to a crawl when doing a "make -j"
kernel build. Even with this patch the System Time is higher on
average, but it seems tolerable. Here are some numbers for kernbench
runs on a 2-node, 4cpu, 8Gig RAM Altix in the "make -j" run:
wall user sys %cpu ctx sw. sleeps
---- ---- --- ---- ------ ------
No patch 1009 1384 847 258 298170 504402
w/patch, no reclaim 880 1376 667 288 254064 396745
w/patch & reclaim 1079 1385 926 252 291625 548873
These numbers are the average of 2 runs of 3 "make -j" runs done right
after system boot. Run-to-run variability for "make -j" is huge, so
these numbers aren't terribly useful except to seee that with reclaim
the benchmark still finishes in a reasonable amount of time.
I also looked at the NUMA hit/miss stats for the "make -j" runs and the
reclaim doesn't make any difference when the machine is thrashing away.
Doing a "make -j8" on a single node that is filled with page cache pages
takes 700 seconds with reclaim turned on and 735 seconds without reclaim
(due to remote memory accesses).
The simple zone_reclaim syscall program is at
http://www.bork.org/~mort/sgi/zone_reclaim.c
This patch:
This adds an extra switch to the scan_control struct. It simply lets the
reclaim code know if its allowed to swap pages out.
This was required for a simple per-zone reclaimer. Without this addition
pages would be swapped out as soon as a zone ran out of memory and the early
reclaim kicked in.
Signed-off-by: Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add /proc/zoneinfo file to display information about memory zones. Useful
to analyze VM behaviour.
Signed-off-by: Nikita Danilov <nikita@clusterfs.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This attempts to merge back the split maps. This code is mostly copied
from Chrisw's mlock merging from post 2.6.11 trees. The only difference is
in munmapped_error handling. Also passed prev to willneed/dontneed,
eventhogh they do not handle it now, since I felt it will be cleaner,
instead of handling prev in madvise_vma in some cases and in subfunction in
some cases.
Signed-off-by: Prasanna Meda <pmeda@akamai.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This attempts to avoid splittings when it is not needed, that is when
vm_flags are same as new flags. The idea is from the <2.6.11 mlock_fixup
and others. This will provide base for the next madvise merging patch.
Signed-off-by: Prasanna Meda <pmeda@akamai.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Fix a problem identified by Andrea Arcangeli <andrea@suse.de>
kswapd will set a zone into all_unreclaimable state if it sees that we're not
successfully reclaiming LRU pages. But that fails to notice that we're
successfully reclaiming slab obects, so we can set all_unreclaimable too soon.
So change shrink_slab() to return a success indication if it actually
reclaimed some objects, and don't assume that the zone is all_unreclaimable if
that is true. This means that we won't enter all_unreclaimable state if we
are successfully freeing slab objects but we're not yet actually freeing slab
pages, due to internal fragmentation.
(hm, this has a shortcoming. We could be successfully freeing ZONE_NORMAL
slab objects while being really oom on ZONE_DMA. If that happens then kswapd
might burn a lot of CPU. But given that there might be some slab objects in
ZONE_DMA, perhaps that is appropriate.)
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This is for use with slab users that pass a dynamically allocated slab name in
kmem_cache_create, so that before destroying the slab one can retrieve the name
and free its memory.
Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
fault_in_pages_readable() is being passed an incorrect `end' address, which
can result in writes accidentally faulting in pages which will not be affected
by the write() call.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
try_to_unmap_cluster() does:
for (pte = pte_offset_map(pmd, address);
address < end; pte++, address += PAGE_SIZE) {
...
}
pte_unmap(pte);
It may take a little staring to notice, but pte can actually fall off the
end of the pte page in this iteration, which makes life difficult for
kmap_atomic() and the users not expecting it to BUG(). Of course, we're
somewhat lucky in that arithmetic elsewhere in the function guarantees that
at least one iteration is made, lest this force larger rearrangements to be
made. This issue and patch also apply to non-mm mainline and with trivial
adjustments, at least two related kernels.
Discovered during internal testing at Oracle.
Signed-off-by: William Irwin <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
I came across the following problem while running ltp-aiodio testcases from
ltp-full-20050405 on linux-2.6.12-rc3-mm3. I tried running the tests with
EXT3 as well as JFS filesystems.
One or two fsx-linux testcases were hung after some time. These testcases
were hanging at wait_for_all_aios().
Debugging shows that there were some iocbs which were not getting completed
eventhough the last retry for those returned -EIOCBQUEUED. Also all such
pending iocbs represented READ operation.
Further debugging revealed that all such iocbs hit EOF in the DIO layer.
To be more precise, the "pos" from which they were trying to read was
greater than the "size" of the file. So the generic_file_direct_IO
returned 0.
This happens rarely as there is already a check in
__generic_file_aio_read(), for whether "pos" < "size" before calling direct
IO routine.
>size = i_size_read(inode);
>if (pos < size) {
> retval = generic_file_direct_IO(READ, iocb,
> iov, pos, nr_segs);
But for READ, we are taking the inode->i_sem only in the DIO layer. So it
is possible that some other process can change the size of the file before
we take the i_sem. In such a case ( when "pos" > "size"), the
__generic_file_aio_read() would return -EIOCBQUEUED even though there were
no I/O requests submitted by the DIO layer. This would cause the AIO layer
to expect aio_complete() for THE iocb, which doesnot happen. And thus the
test hangs forever, waiting for an I/O completion, where there are no
requests submitted at all.
The following patch makes __generic_file_aio_read() return 0 (instead of
returning -EIOCBQUEUED), on getting 0 from generic_file_direct_IO(), so
that the AIO layer does the aio_complete().
Testing:
I have tested the patch on a SMP machine(with 2 Pentium 4 (HT)) running
linux-2.6.12-rc3-mm3. I ran the ltp-aiodio testcases and none of the
fsx-linux tests hung. Also the aio-stress tests ran without any problem.
Signed-off-by: Suzuki K P <suzuki@in.ibm.com>
Signed-off-by: Suparna Bhattacharya <suparna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Caused oopses again. Also fix potential mismatch in checking if
change_page_attr was needed.
To do it without races I needed to change mm/vmalloc.c to export a
__remove_vm_area that does not take vmlist lock.
Noticed by Terence Ripperda and based on a patch of his.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
As noted by Chris Wright, we need to do the full range of tests regardless
of whether MAP_FIXED is set or not, so re-organize get_unmapped_area()
slightly to do the sanity checks unconditionally.
|
|
Prevent the topdown allocator from allocating mmap areas all the way
down to address zero.
We still allow a MAP_FIXED mapping of page 0 (needed for various things,
ranging from Wine and DOSEMU to people who want to allow speculative
loads off a NULL pointer).
Tested by Chris Wright.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
There is a bug in do_swap_page(): when swap page happens to be unreadable,
page filled with random data is mapped into user address space. The fix is
to check for PageUptodate and send SIGBUS in case of error.
Signed-Off-By: Kirill Korotaev <dev@sw.ru>
Signed-Off-By: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Acked-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Fix OOPS when swapping on a device that doesn't have an unplug_io_fn defined
(eg, ATA Over Ethernet)
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Linus changed the second argument of __vmalloc from int to unsigned int
breaking the compilation for CONFIG_MMU=n configurations (since he only
changed vmalloc.c but not nommu.c).
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch fixes mm->total_vm and mm->locked_vm acctounting in case when
move_page_tables() fails inside move_vma().
Signed-Off-By: Kirill Korotaev <dev@sw.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch fixes a bug introduced by the "mm counter operations through
macros" patch, which replaced a decrement operation in with an increment
macro in try_to_unmap_one().
Signed-off-by: Björn Steinbrink <B.Steinbrink@gmx.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Export node_online_map and node_possible_map so that kernel modules can use
the nodemask macros, like, for_each_node() and for_each_online_node().
Signed-off-by: Dean Nelson <dcn@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Some KernelDoc descriptions are updated to match the current code.
No code changes.
Signed-off-by: Martin Waitz <tali@admingilde.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
I have recompiled Linux kernel 2.6.11.5 documentation for me and our
university students again. The documentation could be extended for more
sources which are equipped by structured comments for recent 2.6 kernels. I
have tried to proceed with that task. I have done that more times from 2.6.0
time and it gets boring to do same changes again and again. Linux kernel
compiles after changes for i386 and ARM targets. I have added references to
some more files into kernel-api book, I have added some section names as well.
So please, check that changes do not break something and that categories are
not too much skewed.
I have changed kernel-doc to accept "fastcall" and "asmlinkage" words reserved
by kernel convention. Most of the other changes are modifications in the
comments to make kernel-doc happy, accept some parameters description and do
not bail out on errors. Changed <pid> to @pid in the description, moved some
#ifdef before comments to correct function to comments bindings, etc.
You can see result of the modified documentation build at
http://cmp.felk.cvut.cz/~pisa/linux/lkdb-2.6.11.tar.gz
Some more sources are ready to be included into kernel-doc generated
documentation. Sources has been added into kernel-api for now. Some more
section names added and probably some more chaos introduced as result of quick
cleanup work.
Signed-off-by: Pavel Pisa <pisa@cmp.felk.cvut.cz>
Signed-off-by: Martin Waitz <tali@admingilde.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch changes calls to synchronize_kernel(), deprecated in the earlier
"Deprecate synchronize_kernel, GPL replacement" patch to instead call the new
synchronize_rcu() and synchronize_sched() APIs.
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Remove PAGE_BUG - repalce it with BUG and BUG_ON.
Signed-off-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Replace a number of memory barriers with smp_ variants. This means we won't
take the unnecessary hit on UP machines.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The patch makes the following function calls available to allocate memory
on a specific node without changing the basic operation of the slab
allocator:
kmem_cache_alloc_node(kmem_cache_t *cachep, unsigned int flags, int node);
kmalloc_node(size_t size, unsigned int flags, int node);
in a similar way to the existing node-blind functions:
kmem_cache_alloc(kmem_cache_t *cachep, unsigned int flags);
kmalloc(size, flags);
kmem_cache_alloc_node was changed to pass flags and the node information
through the existing layers of the slab allocator (which lead to some minor
rearrangements). The functions at the lowest layer (kmem_getpages,
cache_grow) are already node aware. Also __alloc_percpu can call
kmalloc_node now.
Performance measurements (using the pageset localization patch) yields:
w/o patches:
Tasks jobs/min jti jobs/min/task real cpu
1 484.27 100 484.2736 12.02 1.97 Wed Mar 30 20:50:43 2005
100 25170.83 91 251.7083 23.12 150.10 Wed Mar 30 20:51:06 2005
200 34601.66 84 173.0083 33.64 294.14 Wed Mar 30 20:51:40 2005
300 37154.47 86 123.8482 46.99 436.56 Wed Mar 30 20:52:28 2005
400 39839.82 80 99.5995 58.43 580.46 Wed Mar 30 20:53:27 2005
500 40036.32 79 80.0726 72.68 728.60 Wed Mar 30 20:54:40 2005
600 44074.21 79 73.4570 79.23 872.10 Wed Mar 30 20:55:59 2005
700 44016.60 78 62.8809 92.56 1015.84 Wed Mar 30 20:57:32 2005
800 40411.05 80 50.5138 115.22 1161.13 Wed Mar 30 20:59:28 2005
900 42298.56 79 46.9984 123.83 1303.42 Wed Mar 30 21:01:33 2005
1000 40955.05 80 40.9551 142.11 1441.92 Wed Mar 30 21:03:55 2005
with pageset localization and slab API patches:
Tasks jobs/min jti jobs/min/task real cpu
1 484.19 100 484.1930 12.02 1.98 Wed Mar 30 21:10:18 2005
100 27428.25 92 274.2825 21.22 149.79 Wed Mar 30 21:10:40 2005
200 37228.94 86 186.1447 31.27 293.49 Wed Mar 30 21:11:12 2005
300 41725.42 85 139.0847 41.84 434.10 Wed Mar 30 21:11:54 2005
400 43032.22 82 107.5805 54.10 582.06 Wed Mar 30 21:12:48 2005
500 42211.23 83 84.4225 68.94 722.61 Wed Mar 30 21:13:58 2005
600 40084.49 82 66.8075 87.12 873.11 Wed Mar 30 21:15:25 2005
700 44169.30 79 63.0990 92.24 1008.77 Wed Mar 30 21:16:58 2005
800 43097.94 79 53.8724 108.03 1155.88 Wed Mar 30 21:18:47 2005
900 41846.75 79 46.4964 125.17 1303.38 Wed Mar 30 21:20:52 2005
1000 40247.85 79 40.2478 144.60 1442.21 Wed Mar 30 21:23:17 2005
Signed-off-by: Christoph Lameter <christoph@lameter.com>
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The smp_mb() is becaus sync_page() doesn't have PG_locked while it accesses
page_mapping(page). The comments in the patch (the entire patch is the
addition of this comment) try to explain further how and why smp_mb() is
used.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Always use page counts when doing RLIMIT_MEMLOCK checking to avoid possible
overflow.
Signed-off-by: Chris Wright <chrisw@osdl.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This is a patch for counting the number of pages for bounce buffers. It's
shown in /proc/vmstat.
Currently, the number of bounce pages are not counted anywhere. So, if
there are many bounce pages, it seems that there are leaked pages. And
it's difficult for a user to imagine the usage of bounce pages. So, it's
meaningful to show # of bouce pages.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Use the new __GFP_NOMEMALLOC to simplify the previous handling of
PF_MEMALLOC.
Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Mempool is pretty clever. Looks too clever for its own good :) It
shouldn't really know so much about page reclaim internals.
- don't guess about what effective page reclaim might involve.
- don't randomly flush out all dirty data if some unlikely thing
happens (alloc returns NULL). page reclaim can (sort of :P) handle
it.
I think the main motivation is trying to avoid pool->lock at all costs.
However the first allocation is attempted with __GFP_WAIT cleared, so it
will be 'can_try_harder' if it hits the page allocator. So if allocation
still fails, then we can probably afford to hit the pool->lock - and what's
the alternative? Try page reclaim and hit zone->lru_lock?
A nice upshot is that we don't need to do any fancy memory barriers or do
(intentionally) racy access to pool-> fields outside the lock.
Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Mempools have 2 problems.
The first is that mempool_alloc can possibly get stuck in __alloc_pages
when they should opt to fail, and take an element from their reserved pool.
The second is that it will happily eat emergency PF_MEMALLOC reserves
instead of going to their reserved pools.
Fix the first by passing __GFP_NORETRY in the allocation calls in
mempool_alloc. Fix the second by introducing a __GFP_MEMPOOL flag which
directs the page allocator not to allocate from the reserve pool.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Jack Steiner reported this to have fixed his problem (bad colouring):
"The patches fix both problems that I found - bad
coloring & excessive pages in pagesets."
In most workloads this is not likely to be such a pronounced problem,
however it should help corner cases. And avoiding powers of 2 in these
types of memory operations is always a good idea.
Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
mm/rmap.c:page_referenced_one() and mm/rmap.c:try_to_unmap_one() contain
identical code that
- takes mm->page_table_lock;
- drills through page tables;
- checks that correct pte is reached.
Coalesce this into page_check_address()
Signed-off-by: Nikita Danilov <nikita@clusterfs.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Address bug #4508: there's potential for wraparound in the various places
where we perform RLIMIT_AS checking.
(I'm a bit worried about acct_stack_growth(). Are we sure that vma->vm_mm is
always equal to current->mm? If not, then we're comparing some other
process's total_vm with the calling process's rlimits).
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Anton Altaparmakov <aia21@cam.ac.uk> points out:
- It calls fault_in_pages_readable() which is completely bogus if @nr_segs >
1. It needs to be replaced by a to be written
"fault_in_pages_readable_iovec()".
- It increments @buf even in the iovec case thus @buf can point to random
memory really quickly (in the iovec case) and then it calls
fault_in_pages_readable() on this random memory.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
zonelist_policy() forgot to mask non-zone bits from gfp when comparing
zone number with policy_zone.
ACKed-by: Andi Kleen <ak@suse.de>
Signed-off-by: Al Viro <viro@parcelfarce.linux.theplanet.co.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Once all the MMU architectures define FIRST_USER_ADDRESS, remove hack from
mmap.c which derived it from FIRST_USER_PGD_NR.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|