summaryrefslogtreecommitdiff
path: root/net/ipv4/tcp_ipv4.c
AgeCommit message (Collapse)Author
2023-07-29net: annotate data-races around sk->sk_priorityEric Dumazet
sk_getsockopt() runs locklessly. This means sk->sk_priority can be read while other threads are changing its value. Other reads also happen without socket lock being held. Add missing annotations where needed. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-07-29net: annotate data-races around sk->sk_markEric Dumazet
sk->sk_mark is often read while another thread could change the value. Fixes: 4a19ec5800fc ("[NET]: Introducing socket mark socket option.") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-07-20tcp: annotate data-races around tp->tsoffsetEric Dumazet
do_tcp_getsockopt() reads tp->tsoffset while another cpu might change its value. Fixes: 93be6ce0e91b ("tcp: set and get per-socket timestamp") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-3-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-07-18tcp: annotate data-races around tcp_rsk(req)->ts_recentEric Dumazet
TCP request sockets are lockless, tcp_rsk(req)->ts_recent can change while being read by another cpu as syzbot noticed. This is harmless, but we should annotate the known races. Note that tcp_check_req() changes req->ts_recent a bit early, we might change this in the future. BUG: KCSAN: data-race in tcp_check_req / tcp_check_req write to 0xffff88813c8afb84 of 4 bytes by interrupt on cpu 1: tcp_check_req+0x694/0xc70 net/ipv4/tcp_minisocks.c:762 tcp_v4_rcv+0x12db/0x1b70 net/ipv4/tcp_ipv4.c:2071 ip_protocol_deliver_rcu+0x356/0x6d0 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x13c/0x1a0 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:303 [inline] ip_local_deliver+0xec/0x1c0 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:468 [inline] ip_rcv_finish net/ipv4/ip_input.c:449 [inline] NF_HOOK include/linux/netfilter.h:303 [inline] ip_rcv+0x197/0x270 net/ipv4/ip_input.c:569 __netif_receive_skb_one_core net/core/dev.c:5493 [inline] __netif_receive_skb+0x90/0x1b0 net/core/dev.c:5607 process_backlog+0x21f/0x380 net/core/dev.c:5935 __napi_poll+0x60/0x3b0 net/core/dev.c:6498 napi_poll net/core/dev.c:6565 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6698 __do_softirq+0xc1/0x265 kernel/softirq.c:571 do_softirq+0x7e/0xb0 kernel/softirq.c:472 __local_bh_enable_ip+0x64/0x70 kernel/softirq.c:396 local_bh_enable+0x1f/0x20 include/linux/bottom_half.h:33 rcu_read_unlock_bh include/linux/rcupdate.h:843 [inline] __dev_queue_xmit+0xabb/0x1d10 net/core/dev.c:4271 dev_queue_xmit include/linux/netdevice.h:3088 [inline] neigh_hh_output include/net/neighbour.h:528 [inline] neigh_output include/net/neighbour.h:542 [inline] ip_finish_output2+0x700/0x840 net/ipv4/ip_output.c:229 ip_finish_output+0xf4/0x240 net/ipv4/ip_output.c:317 NF_HOOK_COND include/linux/netfilter.h:292 [inline] ip_output+0xe5/0x1b0 net/ipv4/ip_output.c:431 dst_output include/net/dst.h:458 [inline] ip_local_out net/ipv4/ip_output.c:126 [inline] __ip_queue_xmit+0xa4d/0xa70 net/ipv4/ip_output.c:533 ip_queue_xmit+0x38/0x40 net/ipv4/ip_output.c:547 __tcp_transmit_skb+0x1194/0x16e0 net/ipv4/tcp_output.c:1399 tcp_transmit_skb net/ipv4/tcp_output.c:1417 [inline] tcp_write_xmit+0x13ff/0x2fd0 net/ipv4/tcp_output.c:2693 __tcp_push_pending_frames+0x6a/0x1a0 net/ipv4/tcp_output.c:2877 tcp_push_pending_frames include/net/tcp.h:1952 [inline] __tcp_sock_set_cork net/ipv4/tcp.c:3336 [inline] tcp_sock_set_cork+0xe8/0x100 net/ipv4/tcp.c:3343 rds_tcp_xmit_path_complete+0x3b/0x40 net/rds/tcp_send.c:52 rds_send_xmit+0xf8d/0x1420 net/rds/send.c:422 rds_send_worker+0x42/0x1d0 net/rds/threads.c:200 process_one_work+0x3e6/0x750 kernel/workqueue.c:2408 worker_thread+0x5f2/0xa10 kernel/workqueue.c:2555 kthread+0x1d7/0x210 kernel/kthread.c:379 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 read to 0xffff88813c8afb84 of 4 bytes by interrupt on cpu 0: tcp_check_req+0x32a/0xc70 net/ipv4/tcp_minisocks.c:622 tcp_v4_rcv+0x12db/0x1b70 net/ipv4/tcp_ipv4.c:2071 ip_protocol_deliver_rcu+0x356/0x6d0 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x13c/0x1a0 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:303 [inline] ip_local_deliver+0xec/0x1c0 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:468 [inline] ip_rcv_finish net/ipv4/ip_input.c:449 [inline] NF_HOOK include/linux/netfilter.h:303 [inline] ip_rcv+0x197/0x270 net/ipv4/ip_input.c:569 __netif_receive_skb_one_core net/core/dev.c:5493 [inline] __netif_receive_skb+0x90/0x1b0 net/core/dev.c:5607 process_backlog+0x21f/0x380 net/core/dev.c:5935 __napi_poll+0x60/0x3b0 net/core/dev.c:6498 napi_poll net/core/dev.c:6565 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6698 __do_softirq+0xc1/0x265 kernel/softirq.c:571 run_ksoftirqd+0x17/0x20 kernel/softirq.c:939 smpboot_thread_fn+0x30a/0x4a0 kernel/smpboot.c:164 kthread+0x1d7/0x210 kernel/kthread.c:379 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 value changed: 0x1cd237f1 -> 0x1cd237f2 Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20230717144445.653164-3-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-07-18tcp: annotate data-races around tcp_rsk(req)->txhashEric Dumazet
TCP request sockets are lockless, some of their fields can change while being read by another cpu as syzbot noticed. This is usually harmless, but we should annotate the known races. This patch takes care of tcp_rsk(req)->txhash, a separate one is needed for tcp_rsk(req)->ts_recent. BUG: KCSAN: data-race in tcp_make_synack / tcp_rtx_synack write to 0xffff8881362304bc of 4 bytes by task 32083 on cpu 1: tcp_rtx_synack+0x9d/0x2a0 net/ipv4/tcp_output.c:4213 inet_rtx_syn_ack+0x38/0x80 net/ipv4/inet_connection_sock.c:880 tcp_check_req+0x379/0xc70 net/ipv4/tcp_minisocks.c:665 tcp_v6_rcv+0x125b/0x1b20 net/ipv6/tcp_ipv6.c:1673 ip6_protocol_deliver_rcu+0x92f/0xf30 net/ipv6/ip6_input.c:437 ip6_input_finish net/ipv6/ip6_input.c:482 [inline] NF_HOOK include/linux/netfilter.h:303 [inline] ip6_input+0xbd/0x1b0 net/ipv6/ip6_input.c:491 dst_input include/net/dst.h:468 [inline] ip6_rcv_finish+0x1e2/0x2e0 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:303 [inline] ipv6_rcv+0x74/0x150 net/ipv6/ip6_input.c:309 __netif_receive_skb_one_core net/core/dev.c:5452 [inline] __netif_receive_skb+0x90/0x1b0 net/core/dev.c:5566 netif_receive_skb_internal net/core/dev.c:5652 [inline] netif_receive_skb+0x4a/0x310 net/core/dev.c:5711 tun_rx_batched+0x3bf/0x400 tun_get_user+0x1d24/0x22b0 drivers/net/tun.c:1997 tun_chr_write_iter+0x18e/0x240 drivers/net/tun.c:2043 call_write_iter include/linux/fs.h:1871 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x4ab/0x7d0 fs/read_write.c:584 ksys_write+0xeb/0x1a0 fs/read_write.c:637 __do_sys_write fs/read_write.c:649 [inline] __se_sys_write fs/read_write.c:646 [inline] __x64_sys_write+0x42/0x50 fs/read_write.c:646 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffff8881362304bc of 4 bytes by task 32078 on cpu 0: tcp_make_synack+0x367/0xb40 net/ipv4/tcp_output.c:3663 tcp_v6_send_synack+0x72/0x420 net/ipv6/tcp_ipv6.c:544 tcp_conn_request+0x11a8/0x1560 net/ipv4/tcp_input.c:7059 tcp_v6_conn_request+0x13f/0x180 net/ipv6/tcp_ipv6.c:1175 tcp_rcv_state_process+0x156/0x1de0 net/ipv4/tcp_input.c:6494 tcp_v6_do_rcv+0x98a/0xb70 net/ipv6/tcp_ipv6.c:1509 tcp_v6_rcv+0x17b8/0x1b20 net/ipv6/tcp_ipv6.c:1735 ip6_protocol_deliver_rcu+0x92f/0xf30 net/ipv6/ip6_input.c:437 ip6_input_finish net/ipv6/ip6_input.c:482 [inline] NF_HOOK include/linux/netfilter.h:303 [inline] ip6_input+0xbd/0x1b0 net/ipv6/ip6_input.c:491 dst_input include/net/dst.h:468 [inline] ip6_rcv_finish+0x1e2/0x2e0 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:303 [inline] ipv6_rcv+0x74/0x150 net/ipv6/ip6_input.c:309 __netif_receive_skb_one_core net/core/dev.c:5452 [inline] __netif_receive_skb+0x90/0x1b0 net/core/dev.c:5566 netif_receive_skb_internal net/core/dev.c:5652 [inline] netif_receive_skb+0x4a/0x310 net/core/dev.c:5711 tun_rx_batched+0x3bf/0x400 tun_get_user+0x1d24/0x22b0 drivers/net/tun.c:1997 tun_chr_write_iter+0x18e/0x240 drivers/net/tun.c:2043 call_write_iter include/linux/fs.h:1871 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x4ab/0x7d0 fs/read_write.c:584 ksys_write+0xeb/0x1a0 fs/read_write.c:637 __do_sys_write fs/read_write.c:649 [inline] __se_sys_write fs/read_write.c:646 [inline] __x64_sys_write+0x42/0x50 fs/read_write.c:646 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x91d25731 -> 0xe79325cd Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 32078 Comm: syz-executor.4 Not tainted 6.5.0-rc1-syzkaller-00033-geb26cbb1a754 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023 Fixes: 58d607d3e52f ("tcp: provide skb->hash to synack packets") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20230717144445.653164-2-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-06-24sock: Remove ->sendpage*() in favour of sendmsg(MSG_SPLICE_PAGES)David Howells
Remove ->sendpage() and ->sendpage_locked(). sendmsg() with MSG_SPLICE_PAGES should be used instead. This allows multiple pages and multipage folios to be passed through. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Marc Kleine-Budde <mkl@pengutronix.de> # for net/can cc: Jens Axboe <axboe@kernel.dk> cc: Matthew Wilcox <willy@infradead.org> cc: linux-afs@lists.infradead.org cc: mptcp@lists.linux.dev cc: rds-devel@oss.oracle.com cc: tipc-discussion@lists.sourceforge.net cc: virtualization@lists.linux-foundation.org Link: https://lore.kernel.org/r/20230623225513.2732256-16-dhowells@redhat.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-06-17tcp: enforce receive buffer memory limits by allowing the tcp window to shrinkmfreemon@cloudflare.com
Under certain circumstances, the tcp receive buffer memory limit set by autotuning (sk_rcvbuf) is increased due to incoming data packets as a result of the window not closing when it should be. This can result in the receive buffer growing all the way up to tcp_rmem[2], even for tcp sessions with a low BDP. To reproduce: Connect a TCP session with the receiver doing nothing and the sender sending small packets (an infinite loop of socket send() with 4 bytes of payload with a sleep of 1 ms in between each send()). This will cause the tcp receive buffer to grow all the way up to tcp_rmem[2]. As a result, a host can have individual tcp sessions with receive buffers of size tcp_rmem[2], and the host itself can reach tcp_mem limits, causing the host to go into tcp memory pressure mode. The fundamental issue is the relationship between the granularity of the window scaling factor and the number of byte ACKed back to the sender. This problem has previously been identified in RFC 7323, appendix F [1]. The Linux kernel currently adheres to never shrinking the window. In addition to the overallocation of memory mentioned above, the current behavior is functionally incorrect, because once tcp_rmem[2] is reached when no remediations remain (i.e. tcp collapse fails to free up any more memory and there are no packets to prune from the out-of-order queue), the receiver will drop in-window packets resulting in retransmissions and an eventual timeout of the tcp session. A receive buffer full condition should instead result in a zero window and an indefinite wait. In practice, this problem is largely hidden for most flows. It is not applicable to mice flows. Elephant flows can send data fast enough to "overrun" the sk_rcvbuf limit (in a single ACK), triggering a zero window. But this problem does show up for other types of flows. Examples are websockets and other type of flows that send small amounts of data spaced apart slightly in time. In these cases, we directly encounter the problem described in [1]. RFC 7323, section 2.4 [2], says there are instances when a retracted window can be offered, and that TCP implementations MUST ensure that they handle a shrinking window, as specified in RFC 1122, section 4.2.2.16 [3]. All prior RFCs on the topic of tcp window management have made clear that sender must accept a shrunk window from the receiver, including RFC 793 [4] and RFC 1323 [5]. This patch implements the functionality to shrink the tcp window when necessary to keep the right edge within the memory limit by autotuning (sk_rcvbuf). This new functionality is enabled with the new sysctl: net.ipv4.tcp_shrink_window Additional information can be found at: https://blog.cloudflare.com/unbounded-memory-usage-by-tcp-for-receive-buffers-and-how-we-fixed-it/ [1] https://www.rfc-editor.org/rfc/rfc7323#appendix-F [2] https://www.rfc-editor.org/rfc/rfc7323#section-2.4 [3] https://www.rfc-editor.org/rfc/rfc1122#page-91 [4] https://www.rfc-editor.org/rfc/rfc793 [5] https://www.rfc-editor.org/rfc/rfc1323 Signed-off-by: Mike Freemon <mfreemon@cloudflare.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-06-08ipv4, ipv6: Use splice_eof() to flushDavid Howells
Allow splice to undo the effects of MSG_MORE after prematurely ending a splice/sendfile due to getting an EOF condition (->splice_read() returned 0) after splice had called sendmsg() with MSG_MORE set when the user didn't set MSG_MORE. For UDP, a pending packet will not be emitted if the socket is closed before it is flushed; with this change, it be flushed by ->splice_eof(). For TCP, it's not clear that MSG_MORE is actually effective. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/CAHk-=wh=V579PDYvkpnTobCLGczbgxpMgGmmhqiTyE34Cpi5Gg@mail.gmail.com/ Signed-off-by: David Howells <dhowells@redhat.com> cc: Kuniyuki Iwashima <kuniyu@amazon.com> cc: Willem de Bruijn <willemdebruijn.kernel@gmail.com> cc: David Ahern <dsahern@kernel.org> cc: Jens Axboe <axboe@kernel.dk> cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-05-26Merge tag 'for-netdev' of ↵Jakub Kicinski
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Daniel Borkmann says: ==================== pull-request: bpf-next 2023-05-26 We've added 54 non-merge commits during the last 10 day(s) which contain a total of 76 files changed, 2729 insertions(+), 1003 deletions(-). The main changes are: 1) Add the capability to destroy sockets in BPF through a new kfunc, from Aditi Ghag. 2) Support O_PATH fds in BPF_OBJ_PIN and BPF_OBJ_GET commands, from Andrii Nakryiko. 3) Add capability for libbpf to resize datasec maps when backed via mmap, from JP Kobryn. 4) Move all the test kfuncs for CI out of the kernel and into bpf_testmod, from Jiri Olsa. 5) Big batch of xsk selftest improvements to prep for multi-buffer testing, from Magnus Karlsson. 6) Show the target_{obj,btf}_id in tracing link's fdinfo and dump it via bpftool, from Yafang Shao. 7) Various misc BPF selftest improvements to work with upcoming LLVM 17, from Yonghong Song. 8) Extend bpftool to specify netdevice for resolving XDP hints, from Larysa Zaremba. 9) Document masking in shift operations for the insn set document, from Dave Thaler. 10) Extend BPF selftests to check xdp_feature support for bond driver, from Lorenzo Bianconi. * tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (54 commits) bpf: Fix bad unlock balance on freeze_mutex libbpf: Ensure FD >= 3 during bpf_map__reuse_fd() libbpf: Ensure libbpf always opens files with O_CLOEXEC selftests/bpf: Check whether to run selftest libbpf: Change var type in datasec resize func bpf: drop unnecessary bpf_capable() check in BPF_MAP_FREEZE command libbpf: Selftests for resizing datasec maps libbpf: Add capability for resizing datasec maps selftests/bpf: Add path_fd-based BPF_OBJ_PIN and BPF_OBJ_GET tests libbpf: Add opts-based bpf_obj_pin() API and add support for path_fd bpf: Support O_PATH FDs in BPF_OBJ_PIN and BPF_OBJ_GET commands libbpf: Start v1.3 development cycle bpf: Validate BPF object in BPF_OBJ_PIN before calling LSM bpftool: Specify XDP Hints ifname when loading program selftests/bpf: Add xdp_feature selftest for bond device selftests/bpf: Test bpf_sock_destroy selftests/bpf: Add helper to get port using getsockname bpf: Add bpf_sock_destroy kfunc bpf: Add kfunc filter function to 'struct btf_kfunc_id_set' bpf: udp: Implement batching for sockets iterator ... ==================== Link: https://lore.kernel.org/r/20230526222747.17775-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-05-25net: ipv4: use consistent txhash in TIME_WAIT and SYN_RECVAntoine Tenart
When using IPv4/TCP, skb->hash comes from sk->sk_txhash except in TIME_WAIT and SYN_RECV where it's not set in the reply skb from ip_send_unicast_reply. Those packets will have a mismatched hash with others from the same flow as their hashes will be 0. IPv6 does not have the same issue as the hash is set from the socket txhash in those cases. This commits sets the hash in the reply skb from ip_send_unicast_reply, which makes the IPv4 code behaving like IPv6. Signed-off-by: Antoine Tenart <atenart@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-05-19bpf: Add bpf_sock_destroy kfuncAditi Ghag
The socket destroy kfunc is used to forcefully terminate sockets from certain BPF contexts. We plan to use the capability in Cilium load-balancing to terminate client sockets that continue to connect to deleted backends. The other use case is on-the-fly policy enforcement where existing socket connections prevented by policies need to be forcefully terminated. The kfunc also allows terminating sockets that may or may not be actively sending traffic. The kfunc can currently be called only from BPF TCP and UDP iterators where users can filter, and terminate selected sockets. More specifically, it can only be called from BPF contexts that ensure socket locking in order to allow synchronous execution of protocol specific `diag_destroy` handlers. The previous commit that batches UDP sockets during iteration facilitated a synchronous invocation of the UDP destroy callback from BPF context by skipping socket locks in `udp_abort`. TCP iterator already supported batching of sockets being iterated. To that end, `tracing_iter_filter` callback filter is added so that verifier can restrict the kfunc to programs with `BPF_TRACE_ITER` attach type, and reject other programs. The kfunc takes `sock_common` type argument, even though it expects, and casts them to a `sock` pointer. This enables the verifier to allow the sock_destroy kfunc to be called for TCP with `sock_common` and UDP with `sock` structs. Furthermore, as `sock_common` only has a subset of certain fields of `sock`, casting pointer to the latter type might not always be safe for certain sockets like request sockets, but these have a special handling in the diag_destroy handlers. Additionally, the kfunc is defined with `KF_TRUSTED_ARGS` flag to avoid the cases where a `PTR_TO_BTF_ID` sk is obtained by following another pointer. eg. getting a sk pointer (may be even NULL) by following another sk pointer. The pointer socket argument passed in TCP and UDP iterators is tagged as `PTR_TRUSTED` in {tcp,udp}_reg_info. The TRUSTED arg changes are contributed by Martin KaFai Lau <martin.lau@kernel.org>. Signed-off-by: Aditi Ghag <aditi.ghag@isovalent.com> Link: https://lore.kernel.org/r/20230519225157.760788-8-aditi.ghag@isovalent.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-05-19bpf: tcp: Avoid taking fast sock lock in iteratorAditi Ghag
This is a preparatory commit to replace `lock_sock_fast` with `lock_sock`,and facilitate BPF programs executed from the TCP sockets iterator to be able to destroy TCP sockets using the bpf_sock_destroy kfunc (implemented in follow-up commits). Previously, BPF TCP iterator was acquiring the sock lock with BH disabled. This led to scenarios where the sockets hash table bucket lock can be acquired with BH enabled in some path versus disabled in other. In such situation, kernel issued a warning since it thinks that in the BH enabled path the same bucket lock *might* be acquired again in the softirq context (BH disabled), which will lead to a potential dead lock. Since bpf_sock_destroy also happens in a process context, the potential deadlock warning is likely a false alarm. Here is a snippet of annotated stack trace that motivated this change: ``` Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&h->lhash2[i].lock); local_bh_disable(); lock(&h->lhash2[i].lock); kernel imagined possible scenario: local_bh_disable(); /* Possible softirq */ lock(&h->lhash2[i].lock); *** Potential Deadlock *** process context: lock_acquire+0xcd/0x330 _raw_spin_lock+0x33/0x40 ------> Acquire (bucket) lhash2.lock with BH enabled __inet_hash+0x4b/0x210 inet_csk_listen_start+0xe6/0x100 inet_listen+0x95/0x1d0 __sys_listen+0x69/0xb0 __x64_sys_listen+0x14/0x20 do_syscall_64+0x3c/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc bpf_sock_destroy run from iterator: lock_acquire+0xcd/0x330 _raw_spin_lock+0x33/0x40 ------> Acquire (bucket) lhash2.lock with BH disabled inet_unhash+0x9a/0x110 tcp_set_state+0x6a/0x210 tcp_abort+0x10d/0x200 bpf_prog_6793c5ca50c43c0d_iter_tcp6_server+0xa4/0xa9 bpf_iter_run_prog+0x1ff/0x340 ------> lock_sock_fast that acquires sock lock with BH disabled bpf_iter_tcp_seq_show+0xca/0x190 bpf_seq_read+0x177/0x450 ``` Also, Yonghong reported a deadlock for non-listening TCP sockets that this change resolves. Previously, `lock_sock_fast` held the sock spin lock with BH which was again being acquired in `tcp_abort`: ``` watchdog: BUG: soft lockup - CPU#0 stuck for 86s! [test_progs:2331] RIP: 0010:queued_spin_lock_slowpath+0xd8/0x500 Call Trace: <TASK> _raw_spin_lock+0x84/0x90 tcp_abort+0x13c/0x1f0 bpf_prog_88539c5453a9dd47_iter_tcp6_client+0x82/0x89 bpf_iter_run_prog+0x1aa/0x2c0 ? preempt_count_sub+0x1c/0xd0 ? from_kuid_munged+0x1c8/0x210 bpf_iter_tcp_seq_show+0x14e/0x1b0 bpf_seq_read+0x36c/0x6a0 bpf_iter_tcp_seq_show lock_sock_fast __lock_sock_fast spin_lock_bh(&sk->sk_lock.slock); /* * Fast path return with bottom halves disabled and * sock::sk_lock.slock held.* */ ... tcp_abort local_bh_disable(); spin_lock(&((sk)->sk_lock.slock)); // from bh_lock_sock(sk) ``` With the switch to `lock_sock`, it calls `spin_unlock_bh` before returning: ``` lock_sock lock_sock_nested spin_lock_bh(&sk->sk_lock.slock); : spin_unlock_bh(&sk->sk_lock.slock); ``` Acked-by: Yonghong Song <yhs@meta.com> Acked-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Aditi Ghag <aditi.ghag@isovalent.com> Link: https://lore.kernel.org/r/20230519225157.760788-2-aditi.ghag@isovalent.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-05-18Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
Conflicts: drivers/net/ethernet/freescale/fec_main.c 6ead9c98cafc ("net: fec: remove the xdp_return_frame when lack of tx BDs") 144470c88c5d ("net: fec: using the standard return codes when xdp xmit errors") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-05-12tcp: fix possible sk_priority leak in tcp_v4_send_reset()Eric Dumazet
When tcp_v4_send_reset() is called with @sk == NULL, we do not change ctl_sk->sk_priority, which could have been set from a prior invocation. Change tcp_v4_send_reset() to set sk_priority and sk_mark fields before calling ip_send_unicast_reply(). This means tcp_v4_send_reset() and tcp_v4_send_ack() no longer have to clear ctl_sk->sk_mark after their call to ip_send_unicast_reply(). Fixes: f6c0f5d209fa ("tcp: honor SO_PRIORITY in TIME_WAIT state") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Antoine Tenart <atenart@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-05-11tcp: make the first N SYN RTO backoffs linearDavid Morley
Currently the SYN RTO schedule follows an exponential backoff scheme, which can be unnecessarily conservative in cases where there are link failures. In such cases, it's better to aggressively try to retransmit packets, so it takes routers less time to find a repath with a working link. We chose a default value for this sysctl of 4, to follow the macOS and IOS backoff scheme of 1,1,1,1,1,2,4,8, ... MacOS and IOS have used this backoff schedule for over a decade, since before this 2009 IETF presentation discussed the behavior: https://www.ietf.org/proceedings/75/slides/tcpm-1.pdf This commit makes the SYN RTO schedule start with a number of linear backoffs given by the following sysctl: * tcp_syn_linear_timeouts This changes the SYN RTO scheme to be: init_rto_val for tcp_syn_linear_timeouts, exp backoff starting at init_rto_val For example if init_rto_val = 1 and tcp_syn_linear_timeouts = 2, our backoff scheme would be: 1, 1, 1, 2, 4, 8, 16, ... Signed-off-by: David Morley <morleyd@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Tested-by: David Morley <morleyd@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230509180558.2541885-1-morleyd.kernel@gmail.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-04-13Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
Conflicts: tools/testing/selftests/net/config 62199e3f1658 ("selftests: net: Add VXLAN MDB test") 3a0385be133e ("selftests: add the missing CONFIG_IP_SCTP in net config") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-03-28bpf: tcp: Use sock_gen_put instead of sock_put in bpf_iter_tcpMartin KaFai Lau
While reviewing the udp-iter batching patches, noticed the bpf_iter_tcp calling sock_put() is incorrect. It should call sock_gen_put instead because bpf_iter_tcp is iterating the ehash table which has the req sk and tw sk. This patch replaces all sock_put with sock_gen_put in the bpf_iter_tcp codepath. Fixes: 04c7820b776f ("bpf: tcp: Bpf iter batching and lock_sock") Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20230328004232.2134233-1-martin.lau@linux.dev
2023-03-17tcp: annotate lockless access to sk->sk_errEric Dumazet
tcp_poll() reads sk->sk_err without socket lock held/owned. We should used READ_ONCE() here, and update writers to use WRITE_ONCE(). Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-03-17tcp: annotate lockless accesses to sk->sk_err_softEric Dumazet
This field can be read/written without lock synchronization. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-02tcp: add TCP_MINTTL drop reasonEric Dumazet
In the unlikely case incoming packets are dropped because of IP_MINTTL / IPV6_MINHOPCOUNT constraints... Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230201174345.2708943-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-02tcp: use 2-arg optimal variant of kfree_rcu()Eric Dumazet
kfree_rcu(1-arg) should be avoided as much as possible, since this is only possible from sleepable contexts, and incurr extra rcu barriers. I wish the 1-arg variant of kfree_rcu() would get a distinct name, like kfree_rcu_slow() to avoid it being abused. Fixes: 459837b522f7 ("net/tcp: Disable TCP-MD5 static key on tcp_md5sig_info destruction") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Pavan Chebbi <pavan.chebbi@broadcom.com> Reviewed-by: Dmitry Safonov <dima@arista.com> Link: https://lore.kernel.org/r/20221202052847.2623997-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-01net/tcp: Do cleanup on tcp_md5_key_copy() failureDmitry Safonov
If the kernel was short on (atomic) memory and failed to allocate it - don't proceed to creation of request socket. Otherwise the socket would be unsigned and userspace likely doesn't expect that the TCP is not MD5-signed anymore. Signed-off-by: Dmitry Safonov <dima@arista.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-01net/tcp: Disable TCP-MD5 static key on tcp_md5sig_info destructionDmitry Safonov
To do that, separate two scenarios: - where it's the first MD5 key on the system, which means that enabling of the static key may need to sleep; - copying of an existing key from a listening socket to the request socket upon receiving a signed TCP segment, where static key was already enabled (when the key was added to the listening socket). Now the life-time of the static branch for TCP-MD5 is until: - last tcp_md5sig_info is destroyed - last socket in time-wait state with MD5 key is closed. Which means that after all sockets with TCP-MD5 keys are gone, the system gets back the performance of disabled md5-key static branch. While at here, provide static_key_fast_inc() helper that does ref counter increment in atomic fashion (without grabbing cpus_read_lock() on CONFIG_JUMP_LABEL=y). This is needed to add a new user for a static_key when the caller controls the lifetime of another user. Signed-off-by: Dmitry Safonov <dima@arista.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-12-01net/tcp: Separate tcp_md5sig_info allocation into tcp_md5sig_info_add()Dmitry Safonov
Add a helper to allocate tcp_md5sig_info, that will help later to do/allocate things when info allocated, once per socket. Signed-off-by: Dmitry Safonov <dima@arista.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-29Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
tools/lib/bpf/ringbuf.c 927cbb478adf ("libbpf: Handle size overflow for ringbuf mmap") b486d19a0ab0 ("libbpf: checkpatch: Fixed code alignments in ringbuf.c") https://lore.kernel.org/all/20221121122707.44d1446a@canb.auug.org.au/ Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-22dccp/tcp: Fixup bhash2 bucket when connect() fails.Kuniyuki Iwashima
If a socket bound to a wildcard address fails to connect(), we only reset saddr and keep the port. Then, we have to fix up the bhash2 bucket; otherwise, the bucket has an inconsistent address in the list. Also, listen() for such a socket will fire the WARN_ON() in inet_csk_get_port(). [0] Note that when a system runs out of memory, we give up fixing the bucket and unlink sk from bhash and bhash2 by inet_put_port(). [0]: WARNING: CPU: 0 PID: 207 at net/ipv4/inet_connection_sock.c:548 inet_csk_get_port (net/ipv4/inet_connection_sock.c:548 (discriminator 1)) Modules linked in: CPU: 0 PID: 207 Comm: bhash2_prev_rep Not tainted 6.1.0-rc3-00799-gc8421681c845 #63 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.amzn2022.0.1 04/01/2014 RIP: 0010:inet_csk_get_port (net/ipv4/inet_connection_sock.c:548 (discriminator 1)) Code: 74 a7 eb 93 48 8b 54 24 18 0f b7 cb 4c 89 e6 4c 89 ff e8 48 b2 ff ff 49 8b 87 18 04 00 00 e9 32 ff ff ff 0f 0b e9 34 ff ff ff <0f> 0b e9 42 ff ff ff 41 8b 7f 50 41 8b 4f 54 89 fe 81 f6 00 00 ff RSP: 0018:ffffc900003d7e50 EFLAGS: 00010202 RAX: ffff8881047fb500 RBX: 0000000000004e20 RCX: 0000000000000000 RDX: 000000000000000a RSI: 00000000fffffe00 RDI: 00000000ffffffff RBP: ffffffff8324dc00 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000 R13: 0000000000000001 R14: 0000000000004e20 R15: ffff8881054e1280 FS: 00007f8ac04dc740(0000) GS:ffff88842fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020001540 CR3: 00000001055fa003 CR4: 0000000000770ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> inet_csk_listen_start (net/ipv4/inet_connection_sock.c:1205) inet_listen (net/ipv4/af_inet.c:228) __sys_listen (net/socket.c:1810) __x64_sys_listen (net/socket.c:1819 net/socket.c:1817 net/socket.c:1817) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) RIP: 0033:0x7f8ac051de5d Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 93 af 1b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffc1c177248 EFLAGS: 00000206 ORIG_RAX: 0000000000000032 RAX: ffffffffffffffda RBX: 0000000020001550 RCX: 00007f8ac051de5d RDX: ffffffffffffff80 RSI: 0000000000000000 RDI: 0000000000000004 RBP: 00007ffc1c177270 R08: 0000000000000018 R09: 0000000000000007 R10: 0000000020001540 R11: 0000000000000206 R12: 00007ffc1c177388 R13: 0000000000401169 R14: 0000000000403e18 R15: 00007f8ac0723000 </TASK> Fixes: 28044fc1d495 ("net: Add a bhash2 table hashed by port and address") Reported-by: syzbot <syzkaller@googlegroups.com> Reported-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Joanne Koong <joannelkoong@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-22dccp/tcp: Update saddr under bhash's lock.Kuniyuki Iwashima
When we call connect() for a socket bound to a wildcard address, we update saddr locklessly. However, it could result in a data race; another thread iterating over bhash might see a corrupted address. Let's update saddr under the bhash bucket's lock. Fixes: 3df80d9320bc ("[DCCP]: Introduce DCCPv6") Fixes: 7c657876b63c ("[DCCP]: Initial implementation") Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Joanne Koong <joannelkoong@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-22dccp/tcp: Reset saddr on failure after inet6?_hash_connect().Kuniyuki Iwashima
When connect() is called on a socket bound to the wildcard address, we change the socket's saddr to a local address. If the socket fails to connect() to the destination, we have to reset the saddr. However, when an error occurs after inet_hash6?_connect() in (dccp|tcp)_v[46]_conect(), we forget to reset saddr and leave the socket bound to the address. From the user's point of view, whether saddr is reset or not varies with errno. Let's fix this inconsistent behaviour. Note that after this patch, the repro [0] will trigger the WARN_ON() in inet_csk_get_port() again, but this patch is not buggy and rather fixes a bug papering over the bhash2's bug for which we need another fix. For the record, the repro causes -EADDRNOTAVAIL in inet_hash6_connect() by this sequence: s1 = socket() s1.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) s1.bind(('127.0.0.1', 10000)) s1.sendto(b'hello', MSG_FASTOPEN, (('127.0.0.1', 10000))) # or s1.connect(('127.0.0.1', 10000)) s2 = socket() s2.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) s2.bind(('0.0.0.0', 10000)) s2.connect(('127.0.0.1', 10000)) # -EADDRNOTAVAIL s2.listen(32) # WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2); [0]: https://syzkaller.appspot.com/bug?extid=015d756bbd1f8b5c8f09 Fixes: 3df80d9320bc ("[DCCP]: Introduce DCCPv6") Fixes: 7c657876b63c ("[DCCP]: Initial implementation") Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Joanne Koong <joannelkoong@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-11-14ipasdv4/tcp_ipv4: remove redundant assignmentxu xin
The value of 'st->state' has been verified as "TCP_SEQ_STATE_LISTENING", it's unnecessary to assign TCP_SEQ_STATE_LISTENING to it, so we can remove it. Signed-off-by: xu xin <xu.xin16@zte.com.cn> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-10-28tcp: add PLB functionality for TCPMubashir Adnan Qureshi
Congestion control algorithms track PLB state and cause the connection to trigger a path change when either of the 2 conditions is satisfied: - No packets are in flight and (# consecutive congested rounds >= sysctl_tcp_plb_idle_rehash_rounds) - (# consecutive congested rounds >= sysctl_tcp_plb_rehash_rounds) A round (RTT) is marked as congested when congestion signal (ECN ce_ratio) over an RTT is greater than sysctl_tcp_plb_cong_thresh. In the event of RTO, PLB (via tcp_write_timeout()) triggers a path change and disables congestion-triggered path changes for random time between (sysctl_tcp_plb_suspend_rto_sec, 2*sysctl_tcp_plb_suspend_rto_sec) to avoid hopping onto the "connectivity blackhole". RTO-triggered path changes can still happen during this cool-off period. Signed-off-by: Mubashir Adnan Qureshi <mubashirq@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-10-28tcp: add sysctls for TCP PLB parametersMubashir Adnan Qureshi
PLB (Protective Load Balancing) is a host based mechanism for load balancing across switch links. It leverages congestion signals(e.g. ECN) from transport layer to randomly change the path of the connection experiencing congestion. PLB changes the path of the connection by changing the outgoing IPv6 flow label for IPv6 connections (implemented in Linux by calling sk_rethink_txhash()). Because of this implementation mechanism, PLB can currently only work for IPv6 traffic. For more information, see the SIGCOMM 2022 paper: https://doi.org/10.1145/3544216.3544226 This commit adds new sysctl knobs and sets their default values for TCP PLB. Signed-off-by: Mubashir Adnan Qureshi <mubashirq@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-10-24tcp: fix a signed-integer-overflow bug in tcp_add_backlog()Lu Wei
The type of sk_rcvbuf and sk_sndbuf in struct sock is int, and in tcp_add_backlog(), the variable limit is caculated by adding sk_rcvbuf, sk_sndbuf and 64 * 1024, it may exceed the max value of int and overflow. This patch reduces the limit budget by halving the sndbuf to solve this issue since ACK packets are much smaller than the payload. Fixes: c9c3321257e1 ("tcp: add tcp_add_backlog()") Signed-off-by: Lu Wei <luwei32@huawei.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-10-11treewide: use get_random_{u8,u16}() when possible, part 1Jason A. Donenfeld
Rather than truncate a 32-bit value to a 16-bit value or an 8-bit value, simply use the get_random_{u8,u16}() functions, which are faster than wasting the additional bytes from a 32-bit value. This was done mechanically with this coccinelle script: @@ expression E; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; typedef __be16; typedef __le16; typedef u8; @@ ( - (get_random_u32() & 0xffff) + get_random_u16() | - (get_random_u32() & 0xff) + get_random_u8() | - (get_random_u32() % 65536) + get_random_u16() | - (get_random_u32() % 256) + get_random_u8() | - (get_random_u32() >> 16) + get_random_u16() | - (get_random_u32() >> 24) + get_random_u8() | - (u16)get_random_u32() + get_random_u16() | - (u8)get_random_u32() + get_random_u8() | - (__be16)get_random_u32() + (__be16)get_random_u16() | - (__le16)get_random_u32() + (__le16)get_random_u16() | - prandom_u32_max(65536) + get_random_u16() | - prandom_u32_max(256) + get_random_u8() | - E->inet_id = get_random_u32() + E->inet_id = get_random_u16() ) @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; identifier v; @@ - u16 v = get_random_u32(); + u16 v = get_random_u16(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u8; identifier v; @@ - u8 v = get_random_u32(); + u8 v = get_random_u8(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; u16 v; @@ - v = get_random_u32(); + v = get_random_u16(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u8; u8 v; @@ - v = get_random_u32(); + v = get_random_u8(); // Find a potential literal @literal_mask@ expression LITERAL; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; position p; @@ ((T)get_random_u32()@p & (LITERAL)) // Examine limits @script:python add_one@ literal << literal_mask.LITERAL; RESULT; @@ value = None if literal.startswith('0x'): value = int(literal, 16) elif literal[0] in '123456789': value = int(literal, 10) if value is None: print("I don't know how to handle %s" % (literal)) cocci.include_match(False) elif value < 256: coccinelle.RESULT = cocci.make_ident("get_random_u8") elif value < 65536: coccinelle.RESULT = cocci.make_ident("get_random_u16") else: print("Skipping large mask of %s" % (literal)) cocci.include_match(False) // Replace the literal mask with the calculated result. @plus_one@ expression literal_mask.LITERAL; position literal_mask.p; identifier add_one.RESULT; identifier FUNC; @@ - (FUNC()@p & (LITERAL)) + (RESULT() & LITERAL) Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Yury Norov <yury.norov@gmail.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-09-20tcp: Introduce optional per-netns ehash.Kuniyuki Iwashima
The more sockets we have in the hash table, the longer we spend looking up the socket. While running a number of small workloads on the same host, they penalise each other and cause performance degradation. The root cause might be a single workload that consumes much more resources than the others. It often happens on a cloud service where different workloads share the same computing resource. On EC2 c5.24xlarge instance (196 GiB memory and 524288 (1Mi / 2) ehash entries), after running iperf3 in different netns, creating 24Mi sockets without data transfer in the root netns causes about 10% performance regression for the iperf3's connection. thash_entries sockets length Gbps 524288 1 1 50.7 24Mi 48 45.1 It is basically related to the length of the list of each hash bucket. For testing purposes to see how performance drops along the length, I set 131072 (1Mi / 8) to thash_entries, and here's the result. thash_entries sockets length Gbps 131072 1 1 50.7 1Mi 8 49.9 2Mi 16 48.9 4Mi 32 47.3 8Mi 64 44.6 16Mi 128 40.6 24Mi 192 36.3 32Mi 256 32.5 40Mi 320 27.0 48Mi 384 25.0 To resolve the socket lookup degradation, we introduce an optional per-netns hash table for TCP, but it's just ehash, and we still share the global bhash, bhash2 and lhash2. With a smaller ehash, we can look up non-listener sockets faster and isolate such noisy neighbours. In addition, we can reduce lock contention. We can control the ehash size by a new sysctl knob. However, depending on workloads, it will require very sensitive tuning, so we disable the feature by default (net.ipv4.tcp_child_ehash_entries == 0). Moreover, we can fall back to using the global ehash in case we fail to allocate enough memory for a new ehash. The maximum size is 16Mi, which is large enough that even if we have 48Mi sockets, the average list length is 3, and regression would be less than 1%. We can check the current ehash size by another read-only sysctl knob, net.ipv4.tcp_ehash_entries. A negative value means the netns shares the global ehash (per-netns ehash is disabled or failed to allocate memory). # dmesg | cut -d ' ' -f 5- | grep "established hash" TCP established hash table entries: 524288 (order: 10, 4194304 bytes, vmalloc hugepage) # sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 524288 # can be changed by thash_entries # sysctl net.ipv4.tcp_child_ehash_entries net.ipv4.tcp_child_ehash_entries = 0 # disabled by default # ip netns add test1 # ip netns exec test1 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = -524288 # share the global ehash # sysctl -w net.ipv4.tcp_child_ehash_entries=100 net.ipv4.tcp_child_ehash_entries = 100 # ip netns add test2 # ip netns exec test2 sysctl net.ipv4.tcp_ehash_entries net.ipv4.tcp_ehash_entries = 128 # own a per-netns ehash with 2^n buckets When more than two processes in the same netns create per-netns ehash concurrently with different sizes, we need to guarantee the size in one of the following ways: 1) Share the global ehash and create per-netns ehash First, unshare() with tcp_child_ehash_entries==0. It creates dedicated netns sysctl knobs where we can safely change tcp_child_ehash_entries and clone()/unshare() to create a per-netns ehash. 2) Control write on sysctl by BPF We can use BPF_PROG_TYPE_CGROUP_SYSCTL to allow/deny read/write on sysctl knobs. Note that the global ehash allocated at the boot time is spread over available NUMA nodes, but inet_pernet_hashinfo_alloc() will allocate pages for each per-netns ehash depending on the current process's NUMA policy. By default, the allocation is done in the local node only, so the per-netns hash table could fully reside on a random node. Thus, depending on the NUMA policy the netns is created with and the CPU the current thread is running on, we could see some performance differences for highly optimised networking applications. Note also that the default values of two sysctl knobs depend on the ehash size and should be tuned carefully: tcp_max_tw_buckets : tcp_child_ehash_entries / 2 tcp_max_syn_backlog : max(128, tcp_child_ehash_entries / 128) As a bonus, we can dismantle netns faster. Currently, while destroying netns, we call inet_twsk_purge(), which walks through the global ehash. It can be potentially big because it can have many sockets other than TIME_WAIT in all netns. Splitting ehash changes that situation, where it's only necessary for inet_twsk_purge() to clean up TIME_WAIT sockets in each netns. With regard to this, we do not free the per-netns ehash in inet_twsk_kill() to avoid UAF while iterating the per-netns ehash in inet_twsk_purge(). Instead, we do it in tcp_sk_exit_batch() after calling tcp_twsk_purge() to keep it protocol-family-independent. In the future, we could optimise ehash lookup/iteration further by removing netns comparison for the per-netns ehash. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-20tcp: Save unnecessary inet_twsk_purge() calls.Kuniyuki Iwashima
While destroying netns, we call inet_twsk_purge() in tcp_sk_exit_batch() and tcpv6_net_exit_batch() for AF_INET and AF_INET6. These commands trigger the kernel to walk through the potentially big ehash twice even though the netns has no TIME_WAIT sockets. # ip netns add test # ip netns del test or # unshare -n /bin/true >/dev/null When tw_refcount is 1, we need not call inet_twsk_purge() at least for the net. We can save such unneeded iterations if all netns in net_exit_list have no TIME_WAIT sockets. This change eliminates the tax by the additional unshare() described in the next patch to guarantee the per-netns ehash size. Tested: # mount -t debugfs none /sys/kernel/debug/ # echo cleanup_net > /sys/kernel/debug/tracing/set_ftrace_filter # echo inet_twsk_purge >> /sys/kernel/debug/tracing/set_ftrace_filter # echo function > /sys/kernel/debug/tracing/current_tracer # cat ./add_del_unshare.sh for i in `seq 1 40` do (for j in `seq 1 100` ; do unshare -n /bin/true >/dev/null ; done) & done wait; # ./add_del_unshare.sh Before the patch: # cat /sys/kernel/debug/tracing/trace_pipe kworker/u128:0-8 [031] ...1. 174.162765: cleanup_net <-process_one_work kworker/u128:0-8 [031] ...1. 174.240796: inet_twsk_purge <-cleanup_net kworker/u128:0-8 [032] ...1. 174.244759: inet_twsk_purge <-tcp_sk_exit_batch kworker/u128:0-8 [034] ...1. 174.290861: cleanup_net <-process_one_work kworker/u128:0-8 [039] ...1. 175.245027: inet_twsk_purge <-cleanup_net kworker/u128:0-8 [046] ...1. 175.290541: inet_twsk_purge <-tcp_sk_exit_batch kworker/u128:0-8 [037] ...1. 175.321046: cleanup_net <-process_one_work kworker/u128:0-8 [024] ...1. 175.941633: inet_twsk_purge <-cleanup_net kworker/u128:0-8 [025] ...1. 176.242539: inet_twsk_purge <-tcp_sk_exit_batch After: # cat /sys/kernel/debug/tracing/trace_pipe kworker/u128:0-8 [038] ...1. 428.116174: cleanup_net <-process_one_work kworker/u128:0-8 [038] ...1. 428.262532: cleanup_net <-process_one_work kworker/u128:0-8 [030] ...1. 429.292645: cleanup_net <-process_one_work Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-20tcp: Access &tcp_hashinfo via net.Kuniyuki Iwashima
We will soon introduce an optional per-netns ehash. This means we cannot use tcp_hashinfo directly in most places. Instead, access it via net->ipv4.tcp_death_row.hashinfo. The access will be valid only while initialising tcp_hashinfo itself and creating/destroying each netns. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-20tcp: Set NULL to sk->sk_prot->h.hashinfo.Kuniyuki Iwashima
We will soon introduce an optional per-netns ehash. This means we cannot use the global sk->sk_prot->h.hashinfo to fetch a TCP hashinfo. Instead, set NULL to sk->sk_prot->h.hashinfo for TCP and get a proper hashinfo from net->ipv4.tcp_death_row.hashinfo. Note that we need not use sk->sk_prot->h.hashinfo if DCCP is disabled. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-20tcp: Don't allocate tcp_death_row outside of struct netns_ipv4.Kuniyuki Iwashima
We will soon introduce an optional per-netns ehash and access hash tables via net->ipv4.tcp_death_row->hashinfo instead of &tcp_hashinfo in most places. It could harm the fast path because dereferences of two fields in net and tcp_death_row might incur two extra cache line misses. To save one dereference, let's place tcp_death_row back in netns_ipv4 and fetch hashinfo via net->ipv4.tcp_death_row"."hashinfo. Note tcp_death_row was initially placed in netns_ipv4, and commit fbb8295248e1 ("tcp: allocate tcp_death_row outside of struct netns_ipv4") changed it to a pointer so that we can fire TIME_WAIT timers after freeing net. However, we don't do so after commit 04c494e68a13 ("Revert "tcp/dccp: get rid of inet_twsk_purge()""), so we need not define tcp_death_row as a pointer. Also, we move refcount_dec_and_test(&tw_refcount) from tcp_sk_exit() to tcp_sk_exit_batch() as a debug check. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-20tcp: Clean up some functions.Kuniyuki Iwashima
This patch adds no functional change and cleans up some functions that the following patches touch around so that we make them tidy and easy to review/revert. The changes are - Keep reverse christmas tree order - Remove unnecessary init of port in inet_csk_find_open_port() - Use req_to_sk() once in reqsk_queue_unlink() - Use sock_net(sk) once in tcp_time_wait() and tcp_v[46]_connect() Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-01Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
tools/testing/selftests/net/.gitignore sort the net-next version and use it Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-08-31tcp: make global challenge ack rate limitation per net-ns and default disabledEric Dumazet
Because per host rate limiting has been proven problematic (side channel attacks can be based on it), per host rate limiting of challenge acks ideally should be per netns and turned off by default. This is a long due followup of following commits: 083ae308280d ("tcp: enable per-socket rate limiting of all 'challenge acks'") f2b2c582e824 ("tcp: mitigate ACK loops for connections as tcp_sock") 75ff39ccc1bd ("tcp: make challenge acks less predictable") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Jason Baron <jbaron@akamai.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-08-24net: Add a bhash2 table hashed by port and addressJoanne Koong
The current bind hashtable (bhash) is hashed by port only. In the socket bind path, we have to check for bind conflicts by traversing the specified port's inet_bind_bucket while holding the hashbucket's spinlock (see inet_csk_get_port() and inet_csk_bind_conflict()). In instances where there are tons of sockets hashed to the same port at different addresses, the bind conflict check is time-intensive and can cause softirq cpu lockups, as well as stops new tcp connections since __inet_inherit_port() also contests for the spinlock. This patch adds a second bind table, bhash2, that hashes by port and sk->sk_rcv_saddr (ipv4) and sk->sk_v6_rcv_saddr (ipv6). Searching the bhash2 table leads to significantly faster conflict resolution and less time holding the hashbucket spinlock. Please note a few things: * There can be the case where the a socket's address changes after it has been bound. There are two cases where this happens: 1) The case where there is a bind() call on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6) and then a connect() call. The kernel will assign the socket an address when it handles the connect() 2) In inet_sk_reselect_saddr(), which is called when rebuilding the sk header and a few pre-conditions are met (eg rerouting fails). In these two cases, we need to update the bhash2 table by removing the entry for the old address, and add a new entry reflecting the updated address. * The bhash2 table must have its own lock, even though concurrent accesses on the same port are protected by the bhash lock. Bhash2 must have its own lock to protect against cases where sockets on different ports hash to different bhash hashbuckets but to the same bhash2 hashbucket. This brings up a few stipulations: 1) When acquiring both the bhash and the bhash2 lock, the bhash2 lock will always be acquired after the bhash lock and released before the bhash lock is released. 2) There are no nested bhash2 hashbucket locks. A bhash2 lock is always acquired+released before another bhash2 lock is acquired+released. * The bhash table cannot be superseded by the bhash2 table because for bind requests on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6), every socket bound to that port must be checked for a potential conflict. The bhash table is the only source of port->socket associations. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-07-28Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
No conflicts. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-07-25tcp: Fix data-races around sysctl_tcp_reflect_tos.Kuniyuki Iwashima
While reading sysctl_tcp_reflect_tos, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. Fixes: ac8f1710c12b ("tcp: reflect tos value received in SYN to the socket") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-07-21Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
No conflicts. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-07-18tcp: Fix a data-race around sysctl_tcp_tw_reuse.Kuniyuki Iwashima
While reading sysctl_tcp_tw_reuse, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-07-11net: Find dst with sk's xfrm policy not ctl_sksewookseo
If we set XFRM security policy by calling setsockopt with option IPV6_XFRM_POLICY, the policy will be stored in 'sock_policy' in 'sock' struct. However tcp_v6_send_response doesn't look up dst_entry with the actual socket but looks up with tcp control socket. This may cause a problem that a RST packet is sent without ESP encryption & peer's TCP socket can't receive it. This patch will make the function look up dest_entry with actual socket, if the socket has XFRM policy(sock_policy), so that the TCP response packet via this function can be encrypted, & aligned on the encrypted TCP socket. Tested: We encountered this problem when a TCP socket which is encrypted in ESP transport mode encryption, receives challenge ACK at SYN_SENT state. After receiving challenge ACK, TCP needs to send RST to establish the socket at next SYN try. But the RST was not encrypted & peer TCP socket still remains on ESTABLISHED state. So we verified this with test step as below. [Test step] 1. Making a TCP state mismatch between client(IDLE) & server(ESTABLISHED). 2. Client tries a new connection on the same TCP ports(src & dst). 3. Server will return challenge ACK instead of SYN,ACK. 4. Client will send RST to server to clear the SOCKET. 5. Client will retransmit SYN to server on the same TCP ports. [Expected result] The TCP connection should be established. Cc: Maciej Żenczykowski <maze@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Sehee Lee <seheele@google.com> Signed-off-by: Sewook Seo <sewookseo@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-06-30Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
drivers/net/ethernet/microchip/sparx5/sparx5_switchdev.c 9c5de246c1db ("net: sparx5: mdb add/del handle non-sparx5 devices") fbb89d02e33a ("net: sparx5: Allow mdb entries to both CPU and ports") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-06-24tcp: add a missing nf_reset_ct() in 3WHS handlingEric Dumazet
When the third packet of 3WHS connection establishment contains payload, it is added into socket receive queue without the XFRM check and the drop of connection tracking context. This means that if the data is left unread in the socket receive queue, conntrack module can not be unloaded. As most applications usually reads the incoming data immediately after accept(), bug has been hiding for quite a long time. Commit 68822bdf76f1 ("net: generalize skb freeing deferral to per-cpu lists") exposed this bug because even if the application reads this data, the skb with nfct state could stay in a per-cpu cache for an arbitrary time, if said cpu no longer process RX softirqs. Many thanks to Ilya Maximets for reporting this issue, and for testing various patches: https://lore.kernel.org/netdev/20220619003919.394622-1-i.maximets@ovn.org/ Note that I also added a missing xfrm4_policy_check() call, although this is probably not a big issue, as the SYN packet should have been dropped earlier. Fixes: b59c270104f0 ("[NETFILTER]: Keep conntrack reference until IPsec policy checks are done") Reported-by: Ilya Maximets <i.maximets@ovn.org> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Florian Westphal <fw@strlen.de> Cc: Pablo Neira Ayuso <pablo@netfilter.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Tested-by: Ilya Maximets <i.maximets@ovn.org> Reviewed-by: Ilya Maximets <i.maximets@ovn.org> Link: https://lore.kernel.org/r/20220623050436.1290307-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-06-10net: add per_cpu_fw_alloc field to struct protoEric Dumazet
Each protocol having a ->memory_allocated pointer gets a corresponding per-cpu reserve, that following patches will use. Instead of having reserved bytes per socket, we want to have per-cpu reserves. Signed-off-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>