Age | Commit message (Collapse) | Author |
|
The offload types currently supported in mqprio are 0 (no offload) and
1 (offload only TCs) by setting these values for the 'hw' option. If
offloads are supported by setting the 'hw' option to 1, the default
offload mode is 'dcb' where only the TC values are offloaded to the
device. This patch introduces a new hardware offload mode called
'channel' with 'hw' set to 1 in mqprio which makes full use of the
mqprio options, the TCs, the queue configurations and the QoS parameters
for the TCs. This is achieved through a new netlink attribute for the
'mode' option which takes values such as 'dcb' (default) and 'channel'.
The 'channel' mode also supports QoS attributes for traffic class such as
minimum and maximum values for bandwidth rate limits.
This patch enables configuring additional HW shaper attributes associated
with a traffic class. Currently the shaper for bandwidth rate limiting is
supported which takes options such as minimum and maximum bandwidth rates
and are offloaded to the hardware in the 'channel' mode. The min and max
limits for bandwidth rates are provided by the user along with the TCs
and the queue configurations when creating the mqprio qdisc. The interface
can be extended to support new HW shapers in future through the 'shaper'
attribute.
Introduces a new data structure 'tc_mqprio_qopt_offload' for offloading
mqprio queue options and use this to be shared between the kernel and
device driver. This contains a copy of the existing data structure
for mqprio queue options. This new data structure can be extended when
adding new attributes for traffic class such as mode, shaper, shaper
parameters (bandwidth rate limits). The existing data structure for mqprio
queue options will be shared between the kernel and userspace.
Example:
queues 4@0 4@4 hw 1 mode channel shaper bw_rlimit\
min_rate 1Gbit 2Gbit max_rate 4Gbit 5Gbit
To dump the bandwidth rates:
qdisc mqprio 804a: root tc 2 map 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
queues:(0:3) (4:7)
mode:channel
shaper:bw_rlimit min_rate:1Gbit 2Gbit max_rate:4Gbit 5Gbit
Signed-off-by: Amritha Nambiar <amritha.nambiar@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
|
|
We already have point-to-multipoint flow control within a group. But
we even need the opposite; -a scheme which can handle that potentially
hundreds of sources may try to send messages to the same destination
simultaneously without causing buffer overflow at the recipient. This
commit adds such a mechanism.
The algorithm works as follows:
- When a member detects a new, joining member, it initially set its
state to JOINED and advertises a minimum window to the new member.
This window is chosen so that the new member can send exactly one
maximum sized message, or several smaller ones, to the recipient
before it must stop and wait for an additional advertisement. This
minimum window ADV_IDLE is set to 65 1kB blocks.
- When a member receives the first data message from a JOINED member,
it changes the state of the latter to ACTIVE, and advertises a larger
window ADV_ACTIVE = 12 x ADV_IDLE blocks to the sender, so it can
continue sending with minimal disturbances to the data flow.
- The active members are kept in a dedicated linked list. Each time a
message is received from an active member, it will be moved to the
tail of that list. This way, we keep a record of which members have
been most (tail) and least (head) recently active.
- There is a maximum number (16) of permitted simultaneous active
senders per receiver. When this limit is reached, the receiver will
not advertise anything immediately to a new sender, but instead put
it in a PENDING state, and add it to a corresponding queue. At the
same time, it will pick the least recently active member, send it an
advertisement RECLAIM message, and set this member to state
RECLAIMING.
- The reclaimee member has to respond with a REMIT message, meaning that
it goes back to a send window of ADV_IDLE, and returns its unused
advertised blocks beyond that value to the reclaiming member.
- When the reclaiming member receives the REMIT message, it unlinks
the reclaimee from its active list, resets its state to JOINED, and
notes that it is now back at ADV_IDLE advertised blocks to that
member. If there are still unread data messages sent out by
reclaimee before the REMIT, the member goes into an intermediate
state REMITTED, where it stays until the said messages have been
consumed.
- The returned advertised blocks can now be re-advertised to the
pending member, which is now set to state ACTIVE and added to
the active member list.
- To be proactive, i.e., to minimize the risk that any member will
end up in the pending queue, we start reclaiming resources already
when the number of active members exceeds 3/4 of the permitted
maximum.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The following scenario is possible:
- A user sends a broadcast message, and thereafter immediately leaves
the group.
- The LEAVE message, following a different path than the broadcast,
arrives ahead of the broadcast, and the sending member is removed
from the receiver's list.
- The broadcast message arrives, but is dropped because the sender
now is unknown to the receipient.
We fix this by sequence numbering membership events, just like ordinary
unicast messages. Currently, when a JOIN is sent to a peer, it contains
a synchronization point, - the sequence number of the next sent
broadcast, in order to give the receiver a start synchronization point.
We now let even LEAVE messages contain such an "end synchronization"
point, so that the recipient can delay the removal of the sending member
until it knows that all messages have been received.
The received synchronization points are added as sequence numbers to the
generated membership events, making it possible to handle them almost
the same way as regular unicasts in the receiving filter function. In
particular, a DOWN event with a too high sequence number will be kept
in the reordering queue until the missing broadcast(s) arrive and have
been delivered.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The following scenario is possible:
- A user joins a group, and immediately sends out a broadcast message
to its members.
- The broadcast message, following a different data path than the
initial JOIN message sent out during the joining procedure, arrives
to a receiver before the latter..
- The receiver drops the message, since it is not ready to accept any
messages until the JOIN has arrived.
We avoid this by treating group protocol JOIN messages like unicast
messages.
- We let them pass through the recipient's multicast input queue, just
like ordinary unicasts.
- We force the first following broadacst to be sent as replicated
unicast and being acknowledged by the recipient before accepting
any more broadcast transmissions.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We need a mechanism guaranteeing that group unicasts sent out from a
socket are not bypassed by later sent broadcasts from the same socket.
We do this as follows:
- Each time a unicast is sent, we set a the broadcast method for the
socket to "replicast" and "mandatory". This forces the first
subsequent broadcast message to follow the same network and data path
as the preceding unicast to a destination, hence preventing it from
overtaking the latter.
- In order to make the 'same data path' statement above true, we let
group unicasts pass through the multicast link input queue, instead
of as previously through the unicast link input queue.
- In the first broadcast following a unicast, we set a new header flag,
requiring all recipients to immediately acknowledge its reception.
- During the period before all the expected acknowledges are received,
the socket refuses to accept any more broadcast attempts, i.e., by
blocking or returning EAGAIN. This period should typically not be
longer than a few microseconds.
- When all acknowledges have been received, the sending socket will
open up for subsequent broadcasts, this time giving the link layer
freedom to itself select the best transmission method.
- The forced and/or abrupt transmission method changes described above
may lead to broadcasts arriving out of order to the recipients. We
remedy this by introducing code that checks and if necessary
re-orders such messages at the receiving end.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Group unicast messages don't follow the same path as broadcast messages,
and there is a high risk that unicasts sent from a socket might bypass
previously sent broadcasts from the same socket.
We fix this by letting all unicast messages carry the sequence number of
the next sent broadcast from the same node, but without updating this
number at the receiver. This way, a receiver can check and if necessary
re-order such messages before they are added to the socket receive buffer.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The previously introduced message transport to all group members is
based on the tipc multicast service, but is logically a broadcast
service within the group, and that is what we call it.
We now add functionality for sending messages to all group members
having a certain identity. Correspondingly, we call this feature 'group
multicast'. The service is using unicast when only one destination is
found, otherwise it will use the bearer broadcast service to transfer
the messages. In the latter case, the receiving members filter arriving
messages by looking at the intended destination instance. If there is
no match, the message will be dropped, while still being considered
received and read as seen by the flow control mechanism.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In this commit, we make it possible to send connectionless unicast
messages to any member corresponding to the given member identity,
when there is more than one such member. The sender must use a
TIPC_ADDR_NAME address to achieve this effect.
We also perform load balancing between the destinations, i.e., we
primarily select one which has advertised sufficient send window
to not cause a block/EAGAIN delay, if any. This mechanism is
overlayed on the always present round-robin selection.
Anycast messages are subject to the same start synchronization
and flow control mechanism as group broadcast messages.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We now make it possible to send connectionless unicast messages
within a communication group. To send a message, the sender can use
either a direct port address, aka port identity, or an indirect port
name to be looked up.
This type of messages are subject to the same start synchronization
and flow control mechanism as group broadcast messages.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We introduce an end-to-end flow control mechanism for group broadcast
messages. This ensures that no messages are ever lost because of
destination receive buffer overflow, with minimal impact on performance.
For now, the algorithm is based on the assumption that there is only one
active transmitter at any moment in time.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Like with any other service, group members' availability can be
subscribed for by connecting to be topology server. However, because
the events arrive via a different socket than the member socket, there
is a real risk that membership events my arrive out of synch with the
actual JOIN/LEAVE action. I.e., it is possible to receive the first
messages from a new member before the corresponding JOIN event arrives,
just as it is possible to receive the last messages from a leaving
member after the LEAVE event has already been received.
Since each member socket is internally also subscribing for membership
events, we now fix this problem by passing those events on to the user
via the member socket. We leverage the already present member synch-
ronization protocol to guarantee correct message/event order. An event
is delivered to the user as an empty message where the two source
addresses identify the new/lost member. Furthermore, we set the MSG_OOB
bit in the message flags to mark it as an event. If the event is an
indication about a member loss we also set the MSG_EOR bit, so it can
be distinguished from a member addition event.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
With group communication, it becomes important for a message receiver to
identify not only from which socket (identfied by a node:port tuple) the
message was sent, but also the logical identity (type:instance) of the
sending member.
We fix this by adding a second instance of struct sockaddr_tipc to the
source address area when a message is read. The extra address struct
is filled in with data found in the received message header (type,) and
in the local member representation struct (instance.)
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As a preparation for introducing flow control for multicast and datagram
messaging we need a more strictly defined framework than we have now. A
socket must be able keep track of exactly how many and which other
sockets it is allowed to communicate with at any moment, and keep the
necessary state for those.
We therefore introduce a new concept we have named Communication Group.
Sockets can join a group via a new setsockopt() call TIPC_GROUP_JOIN.
The call takes four parameters: 'type' serves as group identifier,
'instance' serves as an logical member identifier, and 'scope' indicates
the visibility of the group (node/cluster/zone). Finally, 'flags' makes
it possible to set certain properties for the member. For now, there is
only one flag, indicating if the creator of the socket wants to receive
a copy of broadcast or multicast messages it is sending via the socket,
and if wants to be eligible as destination for its own anycasts.
A group is closed, i.e., sockets which have not joined a group will
not be able to send messages to or receive messages from members of
the group, and vice versa.
Any member of a group can send multicast ('group broadcast') messages
to all group members, optionally including itself, using the primitive
send(). The messages are received via the recvmsg() primitive. A socket
can only be member of one group at a time.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We often see a need for a linked list of destination identities,
sometimes containing a port number, sometimes a node identity, and
sometimes both. The currently defined struct u32_list is not generic
enough to cover all cases, so we extend it to contain two u32 integers
and rename it to struct tipc_dest_list.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We see an increasing need to send multiple single-buffer messages
of TIPC_SYSTEM_IMPORTANCE to different individual destination nodes.
Instead of looping over the send queue and sending each buffer
individually, as we do now, we add a new help function
tipc_node_distr_xmit() to do this.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In the following commits we will need to handle multiple incoming and
rejected/returned buffers in the function socket.c::filter_rcv().
As a preparation for this, we generalize the function by handling
buffer queues instead of individual buffers. We also introduce a
help function tipc_skb_reject(), and rename filter_rcv() to
tipc_sk_filter_rcv() in line with other functions in socket.c.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In the coming commits, functions at the socket level will need the
ability to read the availability status of a given node. We therefore
introduce a new function for this purpose, while renaming the existing
static function currently having the wanted name.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The address given to tipc_connect() is not completely sanity checked,
under the assumption that this will be done later in the function
__tipc_sendmsg() when the address is used there.
However, the latter functon will in the next commits serve as caller
to several other send functions, so we want to move the corresponding
sanity check there to the beginning of that function, before we possibly
need to grab the address stored by tipc_connect(). We must therefore
be able to trust that this address already has been thoroughly checked.
We do this in this commit.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As preparation for introducing communication groups, we add the ability
to issue topology subscriptions and receive topology events from kernel
space. This will make it possible for group member sockets to keep track
of other group members.
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch changes the parameter updating via RCU and not protected by a
spinlock anymore. This reduce the time that the spinlock is being held.
Signed-off-by: Alexander Aring <aring@mojatatu.com>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch migrates the current counter handling which is protected by a
spinlock to a per-cpu counter handling. This reduce the time where the
spinlock is being held.
Signed-off-by: Alexander Aring <aring@mojatatu.com>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch adds the check of the two possible ife handlings encode
and decode to the init callback. The decode value is for usability
aspect and used in userspace code only. The current code offers encode
else decode only. This patch avoids any other option than this.
Signed-off-by: Alexander Aring <aring@mojatatu.com>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Macro __stringify_1() can stringify a macro argument, however IFE_META_*
are enums, so they never expand, however request_module expects an integer
in IFE module name, so as a result it always fails to auto-load.
Fixes: ef6980b6becb ("introduce IFE action")
Signed-off-by: Roman Mashak <mrv@mojatatu.com>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Make style of module alias name consistent with other subsystems in kernel,
for example net devices.
Fixes: 084e2f6566d2 ("Support to encoding decoding skb mark on IFE action")
Fixes: 200e10f46936 ("Support to encoding decoding skb prio on IFE action")
Fixes: 408fbc22ef1e ("net sched ife action: Introduce skb tcindex metadata encap decap")
Signed-off-by: Roman Mashak <mrv@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When af_mpls is built-in but the tunnel support is a module,
we get a link failure:
net/mpls/af_mpls.o: In function `mpls_init':
af_mpls.c:(.init.text+0xdc): undefined reference to `ip_tunnel_encap_add_ops'
This adds a Kconfig statement to prevent the broken
configuration and force mpls to be a module as well in
this case.
Fixes: bdc476413dcd ("ip_tunnel: add mpls over gre support")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Amine Kherbouche <amine.kherbouche@6wind.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
For RoCEs ib_query_gid() takes a reference count on the net_device.
This reference count must be decreased by the caller.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Reported-by: Parav Pandit <parav@mellanox.com>
Reviewed-by: Parav Pandit <parav@mellanox.com>
Fixes: 0cfdd8f92cac ("smc: connection and link group creation")
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
SMC should not open code the function pointer get_netdev of the
IB device. Replacing ib_query_gid(..., NULL) with
ib_query_gid(..., gid_attr) allows access to the netdev.
Signed-off-by: Ursula Braun <ubraun@linux.vnet.ibm.com>
Suggested-by: Parav Pandit <parav@mellanox.com>
Reviewed-by: Parav Pandit <parav@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We need to tell the DSA master network device doing the actual
transmission what the desired switch port and queue number is for it to
resolve that to the internal transmit queue it is mapped to.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In preparation for communicating a given DSA network device's port
number and switch index, create a specialized DSA notifier and two
events: DSA_PORT_REGISTER and DSA_PORT_UNREGISTER that communicate: the
slave network device (slave_dev), port number and switch number in the
tree.
This will be later used for network device drivers like bcmsysport which
needs to cooperate with its DSA network devices to set-up queue mapping
and scheduling.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The function ipgre_mpls_encap_hlen is local to the source and
does not need to be in global scope, so make it static.
Cleans up sparse warning:
symbol 'ipgre_mpls_encap_hlen' was not declared. Should it be static?
Fixes: bdc476413dcdb ("ip_tunnel: add mpls over gre support")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The array sctp_sched_ops is local to the source and
does not need to be in global scope, so make it static.
Cleans up sparse warning:
symbol 'sctp_sched_ops' was not declared. Should it be static?
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Similar to the previous patch, use the device lookup functions
that bump device refcount and flag this as DOIT_UNLOCKED to avoid
rtnl mutex.
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Instead of relying on rtnl mutex bump device reference count.
After this change, values reported can change in parallel, but thats not
much different from current state, as anyone can change the settings
right after rtnl_unlock (and before userspace processed reply).
While at it, switch to GFP_KERNEL allocation.
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The helper and the struct field ares no longer used by any code,
so remove them.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The only user of cls_flower->egress_dev is mlx5. So do the conversion
there alongside with the code originating the call in cls_flower
function fl_hw_replace_filter to the newly introduced egress device
callback infrastucture.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Introduce infrastructure that allows drivers to register callbacks that
are called whenever tc would offload inserted rule and specified device
acts as tc action egress device.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Return dev directly, NULL if not possible. That is enough.
Makes no sense to pass struct net * to get_dev op, as there is only one
net possible, the one the action was created in. So just store it in
mirred priv and use directly.
Rename the mirred op callback function.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Add the necessary logic for decoding incoming messages of version 2 as
well. Also make sure there's room for the bigger of version 1 and 2
headers in the code allocating skbs for outgoing messages.
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Rather than parsing the header of incoming messages throughout the
implementation do it once when we retrieve the message and store the
relevant information in the "cb" member of the sk_buff.
This allows us to, in a later commit, decode version 2 messages into
this same structure.
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As the message header generation is deferred the internal functions for
generating control packets can be simplified.
This patch modifies qrtr_alloc_ctrl_packet() to, in addition to the
sk_buff, return a reference to a struct qrtr_ctrl_pkt, which clarifies
and simplifies the helpers to the point that these functions can be
folded back into the callers.
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Defer writing the message header to the skb until its time to enqueue
the packet. As the receive path is reworked to decode the message header
as it's received from the transport and only pass around the payload in
the skb this change means that we do not have to fill out the full
message header just to decode it immediately in qrtr_local_enqueue().
In the future this change also makes it possible to prepend message
headers based on the version of each link.
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The QMUX protocol specification defines structure of the special control
packet messages being sent between handlers of the control port.
Add these to the uapi header, as this structure and the associated types
are shared between the kernel and all userspace handlers of control
messages.
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The constants are used by both the name server and clients, so clarify
their value and move them to the uapi header.
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Rather than manually waking up any context sleeping on the sock to
signal an error we should call sk_error_report(). This has the added
benefit that in-kernel consumers can override this notification with
its own callback.
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac80211-next
Johannes Berg says:
====================
Work continues in various areas:
* port authorized event for 4-way-HS offload (Avi)
* enable MFP optional for such devices (Emmanuel)
* Kees's timer setup patch for mac80211 mesh
(the part that isn't trivially scripted)
* improve VLAN vs. TXQ handling (myself)
* load regulatory database as firmware file (myself)
* with various other small improvements and cleanups
I merged net-next once in the meantime to allow Kees's
timer setup patch to go in.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Currently CRDA implements the signature checking, and the previous
commits added the ability to load the whole regulatory database
into the kernel.
However, we really can't lose the signature checking, so implement
it in the kernel by loading a detached signature (regulatory.db.p7s)
and check it against built-in keys.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|
|
Parsing and building C structures from a regdb is no longer needed
since the "firmware" file (regulatory.db) can be linked into the
kernel image to achieve the same effect.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|
|
If the regulatory database is loaded, and then updated, it may
be necessary to reload it. Add an nl80211 command to do this.
Note that this just reloads the database, it doesn't re-apply
the rules from it immediately.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|
|
As the current regulatory database is only about 4k big, and already
difficult to extend, we decided that overall it would be better to
get rid of the complications with CRDA and load the database into the
kernel directly, but in a new format that is extensible.
The new file format can be extended since it carries a length field
on all the structs that need to be extensible.
In order to be able to request firmware when the module initializes,
move cfg80211 from subsys_initcall() to the later fs_initcall(); the
firmware loader is at the same level but linked earlier, so it can
be called from there. Otherwise, when both the firmware loader and
cfg80211 are built-in, the request will crash the kernel. We also
need to be before device_initcall() so that cfg80211 is available
for devices when they initialize.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|
|
When removing an AP VLAN interface, mac80211 currently purges
the entire TXQ for the AP interface. Fix this by using the FQ
API introduced in the previous patch to filter frames.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
|