From 9d7fb04276481c59610983362d8e023d262b58ca Mon Sep 17 00:00:00 2001 From: Peter Zijlstra Date: Tue, 30 Jun 2015 11:30:54 +0200 Subject: sched/cputime: Guarantee stime + utime == rtime While the current code guarantees monotonicity for stime and utime independently of one another, it does not guarantee that the sum of both is equal to the total time we started out with. This confuses things (and peoples) who look at this sum, like top, and will report >100% usage followed by a matching period of 0%. Rework the code to provide both individual monotonicity and a coherent sum. Suggested-by: Fredrik Markstrom Reported-by: Fredrik Markstrom Tested-by: Fredrik Markstrom Signed-off-by: Peter Zijlstra (Intel) Cc: Frederic Weisbecker Cc: Linus Torvalds Cc: Mike Galbraith Cc: Peter Zijlstra Cc: Rik van Riel Cc: Stanislaw Gruszka Cc: Thomas Gleixner Cc: jason.low2@hp.com Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar --- include/linux/init_task.h | 10 ++++++++++ include/linux/sched.h | 40 +++++++++++++++++++++++----------------- 2 files changed, 33 insertions(+), 17 deletions(-) (limited to 'include') diff --git a/include/linux/init_task.h b/include/linux/init_task.h index e8493fee8160..d0b380ee7d67 100644 --- a/include/linux/init_task.h +++ b/include/linux/init_task.h @@ -32,6 +32,14 @@ extern struct fs_struct init_fs; #define INIT_CPUSET_SEQ(tsk) #endif +#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE +#define INIT_PREV_CPUTIME(x) .prev_cputime = { \ + .lock = __RAW_SPIN_LOCK_UNLOCKED(x.prev_cputime.lock), \ +}, +#else +#define INIT_PREV_CPUTIME(x) +#endif + #define INIT_SIGNALS(sig) { \ .nr_threads = 1, \ .thread_head = LIST_HEAD_INIT(init_task.thread_node), \ @@ -46,6 +54,7 @@ extern struct fs_struct init_fs; .cputime_atomic = INIT_CPUTIME_ATOMIC, \ .running = 0, \ }, \ + INIT_PREV_CPUTIME(sig) \ .cred_guard_mutex = \ __MUTEX_INITIALIZER(sig.cred_guard_mutex), \ } @@ -246,6 +255,7 @@ extern struct task_group root_task_group; INIT_TASK_RCU_TASKS(tsk) \ INIT_CPUSET_SEQ(tsk) \ INIT_RT_MUTEXES(tsk) \ + INIT_PREV_CPUTIME(tsk) \ INIT_VTIME(tsk) \ INIT_NUMA_BALANCING(tsk) \ INIT_KASAN(tsk) \ diff --git a/include/linux/sched.h b/include/linux/sched.h index ae21f1591615..7412070a25cc 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -530,39 +530,49 @@ struct cpu_itimer { }; /** - * struct cputime - snaphsot of system and user cputime + * struct prev_cputime - snaphsot of system and user cputime * @utime: time spent in user mode * @stime: time spent in system mode + * @lock: protects the above two fields * - * Gathers a generic snapshot of user and system time. + * Stores previous user/system time values such that we can guarantee + * monotonicity. */ -struct cputime { +struct prev_cputime { +#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE cputime_t utime; cputime_t stime; + raw_spinlock_t lock; +#endif }; +static inline void prev_cputime_init(struct prev_cputime *prev) +{ +#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE + prev->utime = prev->stime = 0; + raw_spin_lock_init(&prev->lock); +#endif +} + /** * struct task_cputime - collected CPU time counts * @utime: time spent in user mode, in &cputime_t units * @stime: time spent in kernel mode, in &cputime_t units * @sum_exec_runtime: total time spent on the CPU, in nanoseconds * - * This is an extension of struct cputime that includes the total runtime - * spent by the task from the scheduler point of view. - * - * As a result, this structure groups together three kinds of CPU time - * that are tracked for threads and thread groups. Most things considering - * CPU time want to group these counts together and treat all three - * of them in parallel. + * This structure groups together three kinds of CPU time that are tracked for + * threads and thread groups. Most things considering CPU time want to group + * these counts together and treat all three of them in parallel. */ struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; }; + /* Alternate field names when used to cache expirations. */ -#define prof_exp stime #define virt_exp utime +#define prof_exp stime #define sched_exp sum_exec_runtime #define INIT_CPUTIME \ @@ -715,9 +725,7 @@ struct signal_struct { cputime_t utime, stime, cutime, cstime; cputime_t gtime; cputime_t cgtime; -#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE - struct cputime prev_cputime; -#endif + struct prev_cputime prev_cputime; unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; unsigned long inblock, oublock, cinblock, coublock; @@ -1481,9 +1489,7 @@ struct task_struct { cputime_t utime, stime, utimescaled, stimescaled; cputime_t gtime; -#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE - struct cputime prev_cputime; -#endif + struct prev_cputime prev_cputime; #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN seqlock_t vtime_seqlock; unsigned long long vtime_snap; -- cgit v1.2.3-70-g09d2 From fbd705a0c6184580d0e2fbcbd47a37b6e5822511 Mon Sep 17 00:00:00 2001 From: Peter Zijlstra Date: Tue, 9 Jun 2015 11:13:36 +0200 Subject: sched: Introduce the 'trace_sched_waking' tracepoint Mathieu reported that since 317f394160e9 ("sched: Move the second half of ttwu() to the remote cpu") trace_sched_wakeup() can happen out of context of the waker. This is a problem when you want to analyse wakeup paths because it is now very hard to correlate the wakeup event to whoever issued the wakeup. OTOH trace_sched_wakeup() is issued at the point where we set p->state = TASK_RUNNING, which is right were we hand the task off to the scheduler, so this is an important point when looking at scheduling behaviour, up to here its been the wakeup path everything hereafter is due to scheduler policy. To bridge this gap, introduce a second tracepoint: trace_sched_waking. It is guaranteed to be called in the waker context. Reported-by: Mathieu Desnoyers Signed-off-by: Peter Zijlstra (Intel) Cc: Francis Giraldeau Cc: Linus Torvalds Cc: Mike Galbraith Cc: Peter Zijlstra Cc: Steven Rostedt Cc: Thomas Gleixner Link: http://lkml.kernel.org/r/20150609091336.GQ3644@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar --- include/trace/events/sched.h | 30 +++++++++++++++++++++--------- kernel/sched/core.c | 10 +++++++--- kernel/trace/trace_sched_switch.c | 2 +- kernel/trace/trace_sched_wakeup.c | 2 +- 4 files changed, 30 insertions(+), 14 deletions(-) (limited to 'include') diff --git a/include/trace/events/sched.h b/include/trace/events/sched.h index d57a575fe31f..539d6bc3216a 100644 --- a/include/trace/events/sched.h +++ b/include/trace/events/sched.h @@ -55,9 +55,9 @@ TRACE_EVENT(sched_kthread_stop_ret, */ DECLARE_EVENT_CLASS(sched_wakeup_template, - TP_PROTO(struct task_struct *p, int success), + TP_PROTO(struct task_struct *p), - TP_ARGS(__perf_task(p), success), + TP_ARGS(__perf_task(p)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) @@ -71,25 +71,37 @@ DECLARE_EVENT_CLASS(sched_wakeup_template, memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; - __entry->success = success; + __entry->success = 1; /* rudiment, kill when possible */ __entry->target_cpu = task_cpu(p); ), - TP_printk("comm=%s pid=%d prio=%d success=%d target_cpu=%03d", + TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d", __entry->comm, __entry->pid, __entry->prio, - __entry->success, __entry->target_cpu) + __entry->target_cpu) ); +/* + * Tracepoint called when waking a task; this tracepoint is guaranteed to be + * called from the waking context. + */ +DEFINE_EVENT(sched_wakeup_template, sched_waking, + TP_PROTO(struct task_struct *p), + TP_ARGS(p)); + +/* + * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG. + * It it not always called from the waking context. + */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup, - TP_PROTO(struct task_struct *p, int success), - TP_ARGS(p, success)); + TP_PROTO(struct task_struct *p), + TP_ARGS(p)); /* * Tracepoint for waking up a new task: */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new, - TP_PROTO(struct task_struct *p, int success), - TP_ARGS(p, success)); + TP_PROTO(struct task_struct *p), + TP_ARGS(p)); #ifdef CREATE_TRACE_POINTS static inline long __trace_sched_switch_state(struct task_struct *p) diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 48be7dc3d497..fa5826cc612f 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -1654,9 +1654,9 @@ static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) { check_preempt_curr(rq, p, wake_flags); - trace_sched_wakeup(p, true); - p->state = TASK_RUNNING; + trace_sched_wakeup(p); + #ifdef CONFIG_SMP if (p->sched_class->task_woken) { /* @@ -1874,6 +1874,8 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) if (!(p->state & state)) goto out; + trace_sched_waking(p); + success = 1; /* we're going to change ->state */ cpu = task_cpu(p); @@ -1949,6 +1951,8 @@ static void try_to_wake_up_local(struct task_struct *p) if (!(p->state & TASK_NORMAL)) goto out; + trace_sched_waking(p); + if (!task_on_rq_queued(p)) ttwu_activate(rq, p, ENQUEUE_WAKEUP); @@ -2307,7 +2311,7 @@ void wake_up_new_task(struct task_struct *p) rq = __task_rq_lock(p); activate_task(rq, p, 0); p->on_rq = TASK_ON_RQ_QUEUED; - trace_sched_wakeup_new(p, true); + trace_sched_wakeup_new(p); check_preempt_curr(rq, p, WF_FORK); #ifdef CONFIG_SMP if (p->sched_class->task_woken) diff --git a/kernel/trace/trace_sched_switch.c b/kernel/trace/trace_sched_switch.c index 419ca37e72c9..f270088e9929 100644 --- a/kernel/trace/trace_sched_switch.c +++ b/kernel/trace/trace_sched_switch.c @@ -26,7 +26,7 @@ probe_sched_switch(void *ignore, struct task_struct *prev, struct task_struct *n } static void -probe_sched_wakeup(void *ignore, struct task_struct *wakee, int success) +probe_sched_wakeup(void *ignore, struct task_struct *wakee) { if (unlikely(!sched_ref)) return; diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c index 9b33dd117f3f..12cbe77b4136 100644 --- a/kernel/trace/trace_sched_wakeup.c +++ b/kernel/trace/trace_sched_wakeup.c @@ -514,7 +514,7 @@ static void wakeup_reset(struct trace_array *tr) } static void -probe_wakeup(void *ignore, struct task_struct *p, int success) +probe_wakeup(void *ignore, struct task_struct *p) { struct trace_array_cpu *data; int cpu = smp_processor_id(); -- cgit v1.2.3-70-g09d2 From 63b0e9edceec10fa41ec33393a1515a5ff444277 Mon Sep 17 00:00:00 2001 From: Mike Galbraith Date: Tue, 14 Jul 2015 17:39:50 +0200 Subject: sched/fair: Beef up wake_wide() Josef Bacik reported that Facebook sees better performance with their 1:N load (1 dispatch/node, N workers/node) when carrying an old patch to try very hard to wake to an idle CPU. While looking at wake_wide(), I noticed that it doesn't pay attention to the wakeup of a many partner waker, returning 1 only when waking one of its many partners. Correct that, letting explicit domain flags override the heuristic. While at it, adjust task_struct bits, we don't need a 64-bit counter. Tested-by: Josef Bacik Signed-off-by: Mike Galbraith [ Tidy things up. ] Signed-off-by: Peter Zijlstra (Intel) Cc: Linus Torvalds Cc: Mike Galbraith Cc: Peter Zijlstra Cc: Thomas Gleixner Cc: kernel-team Cc: morten.rasmussen@arm.com Cc: riel@redhat.com Link: http://lkml.kernel.org/r/1436888390.7983.49.camel@gmail.com Signed-off-by: Ingo Molnar --- include/linux/sched.h | 4 +-- kernel/sched/fair.c | 67 +++++++++++++++++++++++++-------------------------- 2 files changed, 35 insertions(+), 36 deletions(-) (limited to 'include') diff --git a/include/linux/sched.h b/include/linux/sched.h index 7412070a25cc..65a8a8651596 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -1359,9 +1359,9 @@ struct task_struct { #ifdef CONFIG_SMP struct llist_node wake_entry; int on_cpu; - struct task_struct *last_wakee; - unsigned long wakee_flips; + unsigned int wakee_flips; unsigned long wakee_flip_decay_ts; + struct task_struct *last_wakee; int wake_cpu; #endif diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 8b384b8d2f1d..ea23f9f1b51b 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -4726,26 +4726,29 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg) #endif +/* + * Detect M:N waker/wakee relationships via a switching-frequency heuristic. + * A waker of many should wake a different task than the one last awakened + * at a frequency roughly N times higher than one of its wakees. In order + * to determine whether we should let the load spread vs consolodating to + * shared cache, we look for a minimum 'flip' frequency of llc_size in one + * partner, and a factor of lls_size higher frequency in the other. With + * both conditions met, we can be relatively sure that the relationship is + * non-monogamous, with partner count exceeding socket size. Waker/wakee + * being client/server, worker/dispatcher, interrupt source or whatever is + * irrelevant, spread criteria is apparent partner count exceeds socket size. + */ static int wake_wide(struct task_struct *p) { + unsigned int master = current->wakee_flips; + unsigned int slave = p->wakee_flips; int factor = this_cpu_read(sd_llc_size); - /* - * Yeah, it's the switching-frequency, could means many wakee or - * rapidly switch, use factor here will just help to automatically - * adjust the loose-degree, so bigger node will lead to more pull. - */ - if (p->wakee_flips > factor) { - /* - * wakee is somewhat hot, it needs certain amount of cpu - * resource, so if waker is far more hot, prefer to leave - * it alone. - */ - if (current->wakee_flips > (factor * p->wakee_flips)) - return 1; - } - - return 0; + if (master < slave) + swap(master, slave); + if (slave < factor || master < slave * factor) + return 0; + return 1; } static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) @@ -4757,13 +4760,6 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) unsigned long weight; int balanced; - /* - * If we wake multiple tasks be careful to not bounce - * ourselves around too much. - */ - if (wake_wide(p)) - return 0; - idx = sd->wake_idx; this_cpu = smp_processor_id(); prev_cpu = task_cpu(p); @@ -5017,17 +5013,17 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f { struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; int cpu = smp_processor_id(); - int new_cpu = cpu; + int new_cpu = prev_cpu; int want_affine = 0; int sync = wake_flags & WF_SYNC; if (sd_flag & SD_BALANCE_WAKE) - want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); + want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); rcu_read_lock(); for_each_domain(cpu, tmp) { if (!(tmp->flags & SD_LOAD_BALANCE)) - continue; + break; /* * If both cpu and prev_cpu are part of this domain, @@ -5041,17 +5037,21 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f if (tmp->flags & sd_flag) sd = tmp; + else if (!want_affine) + break; } - if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) - prev_cpu = cpu; - - if (sd_flag & SD_BALANCE_WAKE) { - new_cpu = select_idle_sibling(p, prev_cpu); - goto unlock; + if (affine_sd) { + sd = NULL; /* Prefer wake_affine over balance flags */ + if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) + new_cpu = cpu; } - while (sd) { + if (!sd) { + if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ + new_cpu = select_idle_sibling(p, new_cpu); + + } else while (sd) { struct sched_group *group; int weight; @@ -5085,7 +5085,6 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f } /* while loop will break here if sd == NULL */ } -unlock: rcu_read_unlock(); return new_cpu; -- cgit v1.2.3-70-g09d2 From fe32d3cd5e8eb0f82e459763374aa80797023403 Mon Sep 17 00:00:00 2001 From: Konstantin Khlebnikov Date: Wed, 15 Jul 2015 12:52:04 +0300 Subject: sched/preempt: Fix cond_resched_lock() and cond_resched_softirq() These functions check should_resched() before unlocking spinlock/bh-enable: preempt_count always non-zero => should_resched() always returns false. cond_resched_lock() worked iff spin_needbreak is set. This patch adds argument "preempt_offset" to should_resched(). preempt_count offset constants for that: PREEMPT_DISABLE_OFFSET - offset after preempt_disable() PREEMPT_LOCK_OFFSET - offset after spin_lock() SOFTIRQ_DISABLE_OFFSET - offset after local_bh_distable() SOFTIRQ_LOCK_OFFSET - offset after spin_lock_bh() Signed-off-by: Konstantin Khlebnikov Signed-off-by: Peter Zijlstra (Intel) Cc: Alexander Graf Cc: Boris Ostrovsky Cc: David Vrabel Cc: Linus Torvalds Cc: Mike Galbraith Cc: Paul Mackerras Cc: Peter Zijlstra Cc: Thomas Gleixner Fixes: bdb438065890 ("sched: Extract the basic add/sub preempt_count modifiers") Link: http://lkml.kernel.org/r/20150715095204.12246.98268.stgit@buzz Signed-off-by: Ingo Molnar --- arch/x86/include/asm/preempt.h | 4 ++-- include/asm-generic/preempt.h | 5 +++-- include/linux/preempt.h | 19 ++++++++++++++----- include/linux/sched.h | 6 ------ kernel/sched/core.c | 6 +++--- 5 files changed, 22 insertions(+), 18 deletions(-) (limited to 'include') diff --git a/arch/x86/include/asm/preempt.h b/arch/x86/include/asm/preempt.h index dca71714f860..b12f81022a6b 100644 --- a/arch/x86/include/asm/preempt.h +++ b/arch/x86/include/asm/preempt.h @@ -90,9 +90,9 @@ static __always_inline bool __preempt_count_dec_and_test(void) /* * Returns true when we need to resched and can (barring IRQ state). */ -static __always_inline bool should_resched(void) +static __always_inline bool should_resched(int preempt_offset) { - return unlikely(!raw_cpu_read_4(__preempt_count)); + return unlikely(raw_cpu_read_4(__preempt_count) == preempt_offset); } #ifdef CONFIG_PREEMPT diff --git a/include/asm-generic/preempt.h b/include/asm-generic/preempt.h index d0a7a4753db2..0bec580a4885 100644 --- a/include/asm-generic/preempt.h +++ b/include/asm-generic/preempt.h @@ -71,9 +71,10 @@ static __always_inline bool __preempt_count_dec_and_test(void) /* * Returns true when we need to resched and can (barring IRQ state). */ -static __always_inline bool should_resched(void) +static __always_inline bool should_resched(int preempt_offset) { - return unlikely(!preempt_count() && tif_need_resched()); + return unlikely(preempt_count() == preempt_offset && + tif_need_resched()); } #ifdef CONFIG_PREEMPT diff --git a/include/linux/preempt.h b/include/linux/preempt.h index 84991f185173..bea8dd8ff5e0 100644 --- a/include/linux/preempt.h +++ b/include/linux/preempt.h @@ -84,12 +84,20 @@ */ #define in_nmi() (preempt_count() & NMI_MASK) +/* + * The preempt_count offset after preempt_disable(); + */ #if defined(CONFIG_PREEMPT_COUNT) -# define PREEMPT_DISABLE_OFFSET 1 +# define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET #else -# define PREEMPT_DISABLE_OFFSET 0 +# define PREEMPT_DISABLE_OFFSET 0 #endif +/* + * The preempt_count offset after spin_lock() + */ +#define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET + /* * The preempt_count offset needed for things like: * @@ -103,7 +111,7 @@ * * Work as expected. */ -#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_DISABLE_OFFSET) +#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) /* * Are we running in atomic context? WARNING: this macro cannot @@ -124,7 +132,8 @@ #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_PREEMPT_TRACER) extern void preempt_count_add(int val); extern void preempt_count_sub(int val); -#define preempt_count_dec_and_test() ({ preempt_count_sub(1); should_resched(); }) +#define preempt_count_dec_and_test() \ + ({ preempt_count_sub(1); should_resched(0); }) #else #define preempt_count_add(val) __preempt_count_add(val) #define preempt_count_sub(val) __preempt_count_sub(val) @@ -184,7 +193,7 @@ do { \ #define preempt_check_resched() \ do { \ - if (should_resched()) \ + if (should_resched(0)) \ __preempt_schedule(); \ } while (0) diff --git a/include/linux/sched.h b/include/linux/sched.h index 65a8a8651596..9c144657aace 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -2891,12 +2891,6 @@ extern int _cond_resched(void); extern int __cond_resched_lock(spinlock_t *lock); -#ifdef CONFIG_PREEMPT_COUNT -#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET -#else -#define PREEMPT_LOCK_OFFSET 0 -#endif - #define cond_resched_lock(lock) ({ \ ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ __cond_resched_lock(lock); \ diff --git a/kernel/sched/core.c b/kernel/sched/core.c index fa5826cc612f..f5fad2b12baf 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -4496,7 +4496,7 @@ SYSCALL_DEFINE0(sched_yield) int __sched _cond_resched(void) { - if (should_resched()) { + if (should_resched(0)) { preempt_schedule_common(); return 1; } @@ -4514,7 +4514,7 @@ EXPORT_SYMBOL(_cond_resched); */ int __cond_resched_lock(spinlock_t *lock) { - int resched = should_resched(); + int resched = should_resched(PREEMPT_LOCK_OFFSET); int ret = 0; lockdep_assert_held(lock); @@ -4536,7 +4536,7 @@ int __sched __cond_resched_softirq(void) { BUG_ON(!in_softirq()); - if (should_resched()) { + if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { local_bh_enable(); preempt_schedule_common(); local_bh_disable(); -- cgit v1.2.3-70-g09d2 From 7eeb088e72048bf4660f64fc3824c8066cf17591 Mon Sep 17 00:00:00 2001 From: Oleg Nesterov Date: Tue, 30 Jun 2015 03:29:51 +0200 Subject: stop_machine: Unexport __stop_machine() The only caller outside of stop_machine.c is _cpu_down(), it can use stop_machine(). get_online_cpus() is fine under cpu_hotplug_begin(). Signed-off-by: Oleg Nesterov Signed-off-by: Peter Zijlstra (Intel) Cc: Linus Torvalds Cc: Mike Galbraith Cc: Peter Zijlstra Cc: Tejun Heo Cc: Thomas Gleixner Cc: dave@stgolabs.net Cc: der.herr@hofr.at Cc: paulmck@linux.vnet.ibm.com Cc: riel@redhat.com Cc: viro@ZenIV.linux.org.uk Link: http://lkml.kernel.org/r/20150630012951.GA23934@redhat.com Signed-off-by: Ingo Molnar --- include/linux/stop_machine.h | 22 ++-------------------- kernel/cpu.c | 2 +- kernel/stop_machine.c | 2 +- 3 files changed, 4 insertions(+), 22 deletions(-) (limited to 'include') diff --git a/include/linux/stop_machine.h b/include/linux/stop_machine.h index d2abbdb8c6aa..0fca276a0537 100644 --- a/include/linux/stop_machine.h +++ b/include/linux/stop_machine.h @@ -114,23 +114,11 @@ static inline int try_stop_cpus(const struct cpumask *cpumask, * grabbing every spinlock in the kernel. */ int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus); -/** - * __stop_machine: freeze the machine on all CPUs and run this function - * @fn: the function to run - * @data: the data ptr for the @fn - * @cpus: the cpus to run the @fn() on (NULL = any online cpu) - * - * Description: This is a special version of the above, which assumes cpus - * won't come or go while it's being called. Used by hotplug cpu. - */ -int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus); - int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data, const struct cpumask *cpus); - #else /* CONFIG_STOP_MACHINE && CONFIG_SMP */ -static inline int __stop_machine(int (*fn)(void *), void *data, +static inline int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) { unsigned long flags; @@ -141,16 +129,10 @@ static inline int __stop_machine(int (*fn)(void *), void *data, return ret; } -static inline int stop_machine(int (*fn)(void *), void *data, - const struct cpumask *cpus) -{ - return __stop_machine(fn, data, cpus); -} - static inline int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data, const struct cpumask *cpus) { - return __stop_machine(fn, data, cpus); + return stop_machine(fn, data, cpus); } #endif /* CONFIG_STOP_MACHINE && CONFIG_SMP */ diff --git a/kernel/cpu.c b/kernel/cpu.c index 9c9c9fab16cc..664ce5299334 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c @@ -395,7 +395,7 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) * So now all preempt/rcu users must observe !cpu_active(). */ - err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); + err = stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); if (err) { /* CPU didn't die: tell everyone. Can't complain. */ cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu); diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index 621220852df0..b50910dbf030 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c @@ -513,7 +513,7 @@ early_initcall(cpu_stop_init); #ifdef CONFIG_STOP_MACHINE -int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) +static int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) { struct multi_stop_data msdata = { .fn = fn, -- cgit v1.2.3-70-g09d2 From 9a301f22faac7fc2207ee49c1855a6b4ba9c5a52 Mon Sep 17 00:00:00 2001 From: Oleg Nesterov Date: Tue, 30 Jun 2015 03:29:55 +0200 Subject: stop_machine: Use 'cpu_stop_fn_t' where possible Cosmetic, but 'cpu_stop_fn_t' actually makes the code more readable and it doesn't break cscope. And most of the declarations already use it. Signed-off-by: Oleg Nesterov Signed-off-by: Peter Zijlstra (Intel) Cc: Linus Torvalds Cc: Mike Galbraith Cc: Peter Zijlstra Cc: Tejun Heo Cc: Thomas Gleixner Cc: dave@stgolabs.net Cc: der.herr@hofr.at Cc: paulmck@linux.vnet.ibm.com Cc: riel@redhat.com Cc: viro@ZenIV.linux.org.uk Link: http://lkml.kernel.org/r/20150630012955.GA23937@redhat.com Signed-off-by: Ingo Molnar --- include/linux/stop_machine.h | 8 ++++---- kernel/stop_machine.c | 8 ++++---- 2 files changed, 8 insertions(+), 8 deletions(-) (limited to 'include') diff --git a/include/linux/stop_machine.h b/include/linux/stop_machine.h index 0fca276a0537..414d924318ce 100644 --- a/include/linux/stop_machine.h +++ b/include/linux/stop_machine.h @@ -112,13 +112,13 @@ static inline int try_stop_cpus(const struct cpumask *cpumask, * * This can be thought of as a very heavy write lock, equivalent to * grabbing every spinlock in the kernel. */ -int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus); +int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus); -int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data, +int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus); #else /* CONFIG_STOP_MACHINE && CONFIG_SMP */ -static inline int stop_machine(int (*fn)(void *), void *data, +static inline int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) { unsigned long flags; @@ -129,7 +129,7 @@ static inline int stop_machine(int (*fn)(void *), void *data, return ret; } -static inline int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data, +static inline int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) { return stop_machine(fn, data, cpus); diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index b50910dbf030..9a70defe9f1f 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c @@ -141,7 +141,7 @@ enum multi_stop_state { }; struct multi_stop_data { - int (*fn)(void *); + cpu_stop_fn_t fn; void *data; /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ unsigned int num_threads; @@ -513,7 +513,7 @@ early_initcall(cpu_stop_init); #ifdef CONFIG_STOP_MACHINE -static int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) +static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) { struct multi_stop_data msdata = { .fn = fn, @@ -546,7 +546,7 @@ static int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *c return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); } -int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) +int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) { int ret; @@ -580,7 +580,7 @@ EXPORT_SYMBOL_GPL(stop_machine); * 0 if all executions of @fn returned 0, any non zero return value if any * returned non zero. */ -int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data, +int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) { struct multi_stop_data msdata = { .fn = fn, .data = data, -- cgit v1.2.3-70-g09d2 From 9d89c257dfb9c51a532d69397f6eed75e5168c35 Mon Sep 17 00:00:00 2001 From: Yuyang Du Date: Wed, 15 Jul 2015 08:04:37 +0800 Subject: sched/fair: Rewrite runnable load and utilization average tracking The idea of runnable load average (let runnable time contribute to weight) was proposed by Paul Turner and Ben Segall, and it is still followed by this rewrite. This rewrite aims to solve the following issues: 1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is updated at the granularity of an entity at a time, which results in the cfs_rq's load average is stale or partially updated: at any time, only one entity is up to date, all other entities are effectively lagging behind. This is undesirable. To illustrate, if we have n runnable entities in the cfs_rq, as time elapses, they certainly become outdated: t0: cfs_rq { e1_old, e2_old, ..., en_old } and when we update: t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old } t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old } ... We solve this by combining all runnable entities' load averages together in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based on the fact that if we regard the update as a function, then: w * update(e) = update(w * e) and update(e1) + update(e2) = update(e1 + e2), then w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2) therefore, by this rewrite, we have an entirely updated cfs_rq at the time we update it: t1: update cfs_rq { e1_new, e2_new, ..., en_new } t2: update cfs_rq { e1_new, e2_new, ..., en_new } ... 2. cfs_rq's load average is different between top rq->cfs_rq and other task_group's per CPU cfs_rqs in whether or not blocked_load_average contributes to the load. The basic idea behind runnable load average (the same for utilization) is that the blocked state is taken into account as opposed to only accounting for the currently runnable state. Therefore, the average should include both the runnable/running and blocked load averages. This rewrite does that. In addition, we also combine runnable/running and blocked averages of all entities into the cfs_rq's average, and update it together at once. This is based on the fact that: update(runnable) + update(blocked) = update(runnable + blocked) This significantly reduces the code as we don't need to separately maintain/update runnable/running load and blocked load. 3. How task_group entities' share is calculated is complex and imprecise. We reduce the complexity in this rewrite to allow a very simple rule: the task_group's load_avg is aggregated from its per CPU cfs_rqs's load_avgs. Then group entity's weight is simply proportional to its own cfs_rq's load_avg / task_group's load_avg. To illustrate, if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then, task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share To sum up, this rewrite in principle is equivalent to the current one, but fixes the issues described above. Turns out, it significantly reduces the code complexity and hence increases clarity and efficiency. In addition, the new averages are more smooth/continuous (no spurious spikes and valleys) and updated more consistently and quickly to reflect the load dynamics. As a result, we have less load tracking overhead, better performance, and especially better power efficiency due to more balanced load. Signed-off-by: Yuyang Du Signed-off-by: Peter Zijlstra (Intel) Cc: Linus Torvalds Cc: Mike Galbraith Cc: Peter Zijlstra Cc: Thomas Gleixner Cc: arjan@linux.intel.com Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: fengguang.wu@intel.com Cc: len.brown@intel.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: rafael.j.wysocki@intel.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com Signed-off-by: Ingo Molnar --- include/linux/sched.h | 41 ++-- kernel/sched/core.c | 3 - kernel/sched/debug.c | 41 ++-- kernel/sched/fair.c | 630 ++++++++++++++++---------------------------------- kernel/sched/sched.h | 28 +-- 5 files changed, 249 insertions(+), 494 deletions(-) (limited to 'include') diff --git a/include/linux/sched.h b/include/linux/sched.h index 9c144657aace..44dca5b35de6 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -1175,29 +1175,24 @@ struct load_weight { u32 inv_weight; }; +/* + * The load_avg/util_avg accumulates an infinite geometric series. + * 1) load_avg factors the amount of time that a sched_entity is + * runnable on a rq into its weight. For cfs_rq, it is the aggregated + * such weights of all runnable and blocked sched_entities. + * 2) util_avg factors frequency scaling into the amount of time + * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. + * For cfs_rq, it is the aggregated such times of all runnable and + * blocked sched_entities. + * The 64 bit load_sum can: + * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with + * the highest weight (=88761) always runnable, we should not overflow + * 2) for entity, support any load.weight always runnable + */ struct sched_avg { - u64 last_runnable_update; - s64 decay_count; - /* - * utilization_avg_contrib describes the amount of time that a - * sched_entity is running on a CPU. It is based on running_avg_sum - * and is scaled in the range [0..SCHED_LOAD_SCALE]. - * load_avg_contrib described the amount of time that a sched_entity - * is runnable on a rq. It is based on both runnable_avg_sum and the - * weight of the task. - */ - unsigned long load_avg_contrib, utilization_avg_contrib; - /* - * These sums represent an infinite geometric series and so are bound - * above by 1024/(1-y). Thus we only need a u32 to store them for all - * choices of y < 1-2^(-32)*1024. - * running_avg_sum reflects the time that the sched_entity is - * effectively running on the CPU. - * runnable_avg_sum represents the amount of time a sched_entity is on - * a runqueue which includes the running time that is monitored by - * running_avg_sum. - */ - u32 runnable_avg_sum, avg_period, running_avg_sum; + u64 last_update_time, load_sum; + u32 util_sum, period_contrib; + unsigned long load_avg, util_avg; }; #ifdef CONFIG_SCHEDSTATS @@ -1263,7 +1258,7 @@ struct sched_entity { #endif #ifdef CONFIG_SMP - /* Per-entity load-tracking */ + /* Per entity load average tracking */ struct sched_avg avg; #endif }; diff --git a/kernel/sched/core.c b/kernel/sched/core.c index f5fad2b12baf..3981526539c5 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -2020,9 +2020,6 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) p->se.prev_sum_exec_runtime = 0; p->se.nr_migrations = 0; p->se.vruntime = 0; -#ifdef CONFIG_SMP - p->se.avg.decay_count = 0; -#endif INIT_LIST_HEAD(&p->se.group_node); #ifdef CONFIG_SCHEDSTATS diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c index 363b7e82554b..74f276f5568c 100644 --- a/kernel/sched/debug.c +++ b/kernel/sched/debug.c @@ -88,12 +88,8 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group #endif P(se->load.weight); #ifdef CONFIG_SMP - P(se->avg.runnable_avg_sum); - P(se->avg.running_avg_sum); - P(se->avg.avg_period); - P(se->avg.load_avg_contrib); - P(se->avg.utilization_avg_contrib); - P(se->avg.decay_count); + P(se->avg.load_avg); + P(se->avg.util_avg); #endif #undef PN #undef P @@ -209,21 +205,19 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); #ifdef CONFIG_SMP - SEQ_printf(m, " .%-30s: %ld\n", "runnable_load_avg", - cfs_rq->runnable_load_avg); - SEQ_printf(m, " .%-30s: %ld\n", "blocked_load_avg", - cfs_rq->blocked_load_avg); - SEQ_printf(m, " .%-30s: %ld\n", "utilization_load_avg", - cfs_rq->utilization_load_avg); + SEQ_printf(m, " .%-30s: %lu\n", "load_avg", + cfs_rq->avg.load_avg); + SEQ_printf(m, " .%-30s: %lu\n", "util_avg", + cfs_rq->avg.util_avg); + SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg", + atomic_long_read(&cfs_rq->removed_load_avg)); + SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg", + atomic_long_read(&cfs_rq->removed_util_avg)); #ifdef CONFIG_FAIR_GROUP_SCHED - SEQ_printf(m, " .%-30s: %ld\n", "tg_load_contrib", - cfs_rq->tg_load_contrib); - SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib", - cfs_rq->tg_runnable_contrib); + SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", + cfs_rq->tg_load_avg_contrib); SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", atomic_long_read(&cfs_rq->tg->load_avg)); - SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg", - atomic_read(&cfs_rq->tg->runnable_avg)); #endif #endif #ifdef CONFIG_CFS_BANDWIDTH @@ -631,12 +625,11 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) P(se.load.weight); #ifdef CONFIG_SMP - P(se.avg.runnable_avg_sum); - P(se.avg.running_avg_sum); - P(se.avg.avg_period); - P(se.avg.load_avg_contrib); - P(se.avg.utilization_avg_contrib); - P(se.avg.decay_count); + P(se.avg.load_sum); + P(se.avg.util_sum); + P(se.avg.load_avg); + P(se.avg.util_avg); + P(se.avg.last_update_time); #endif P(policy); P(prio); diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 90292c672a3b..01ffa9509c23 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -283,9 +283,6 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) return grp->my_q; } -static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, - int force_update); - static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) { if (!cfs_rq->on_list) { @@ -305,8 +302,6 @@ static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) } cfs_rq->on_list = 1; - /* We should have no load, but we need to update last_decay. */ - update_cfs_rq_blocked_load(cfs_rq, 0); } } @@ -664,19 +659,31 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) static int select_idle_sibling(struct task_struct *p, int cpu); static unsigned long task_h_load(struct task_struct *p); -static inline void __update_task_entity_contrib(struct sched_entity *se); -static inline void __update_task_entity_utilization(struct sched_entity *se); +/* + * We choose a half-life close to 1 scheduling period. + * Note: The tables below are dependent on this value. + */ +#define LOAD_AVG_PERIOD 32 +#define LOAD_AVG_MAX 47742 /* maximum possible load avg */ +#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ /* Give new task start runnable values to heavy its load in infant time */ void init_task_runnable_average(struct task_struct *p) { - u32 slice; + struct sched_avg *sa = &p->se.avg; - slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; - p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice; - p->se.avg.avg_period = slice; - __update_task_entity_contrib(&p->se); - __update_task_entity_utilization(&p->se); + sa->last_update_time = 0; + /* + * sched_avg's period_contrib should be strictly less then 1024, so + * we give it 1023 to make sure it is almost a period (1024us), and + * will definitely be update (after enqueue). + */ + sa->period_contrib = 1023; + sa->load_avg = scale_load_down(p->se.load.weight); + sa->load_sum = sa->load_avg * LOAD_AVG_MAX; + sa->util_avg = scale_load_down(SCHED_LOAD_SCALE); + sa->util_sum = LOAD_AVG_MAX; + /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ } #else void init_task_runnable_average(struct task_struct *p) @@ -1698,8 +1705,8 @@ static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) delta = runtime - p->last_sum_exec_runtime; *period = now - p->last_task_numa_placement; } else { - delta = p->se.avg.runnable_avg_sum; - *period = p->se.avg.avg_period; + delta = p->se.avg.load_sum / p->se.load.weight; + *period = LOAD_AVG_MAX; } p->last_sum_exec_runtime = runtime; @@ -2347,13 +2354,13 @@ static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) long tg_weight; /* - * Use this CPU's actual weight instead of the last load_contribution - * to gain a more accurate current total weight. See - * __update_cfs_rq_tg_load_contrib(). + * Use this CPU's real-time load instead of the last load contribution + * as the updating of the contribution is delayed, and we will use the + * the real-time load to calc the share. See update_tg_load_avg(). */ tg_weight = atomic_long_read(&tg->load_avg); - tg_weight -= cfs_rq->tg_load_contrib; - tg_weight += cfs_rq->load.weight; + tg_weight -= cfs_rq->tg_load_avg_contrib; + tg_weight += cfs_rq->avg.load_avg; return tg_weight; } @@ -2363,7 +2370,7 @@ static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) long tg_weight, load, shares; tg_weight = calc_tg_weight(tg, cfs_rq); - load = cfs_rq->load.weight; + load = cfs_rq->avg.load_avg; shares = (tg->shares * load); if (tg_weight) @@ -2425,14 +2432,6 @@ static inline void update_cfs_shares(struct cfs_rq *cfs_rq) #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_SMP -/* - * We choose a half-life close to 1 scheduling period. - * Note: The tables below are dependent on this value. - */ -#define LOAD_AVG_PERIOD 32 -#define LOAD_AVG_MAX 47742 /* maximum possible load avg */ -#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ - /* Precomputed fixed inverse multiplies for multiplication by y^n */ static const u32 runnable_avg_yN_inv[] = { 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, @@ -2481,9 +2480,8 @@ static __always_inline u64 decay_load(u64 val, u64 n) local_n %= LOAD_AVG_PERIOD; } - val *= runnable_avg_yN_inv[local_n]; - /* We don't use SRR here since we always want to round down. */ - return val >> 32; + val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); + return val; } /* @@ -2542,23 +2540,22 @@ static u32 __compute_runnable_contrib(u64 n) * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] */ -static __always_inline int __update_entity_runnable_avg(u64 now, int cpu, - struct sched_avg *sa, - int runnable, - int running) +static __always_inline int +__update_load_avg(u64 now, int cpu, struct sched_avg *sa, + unsigned long weight, int running) { u64 delta, periods; - u32 runnable_contrib; + u32 contrib; int delta_w, decayed = 0; unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu); - delta = now - sa->last_runnable_update; + delta = now - sa->last_update_time; /* * This should only happen when time goes backwards, which it * unfortunately does during sched clock init when we swap over to TSC. */ if ((s64)delta < 0) { - sa->last_runnable_update = now; + sa->last_update_time = now; return 0; } @@ -2569,26 +2566,26 @@ static __always_inline int __update_entity_runnable_avg(u64 now, int cpu, delta >>= 10; if (!delta) return 0; - sa->last_runnable_update = now; + sa->last_update_time = now; /* delta_w is the amount already accumulated against our next period */ - delta_w = sa->avg_period % 1024; + delta_w = sa->period_contrib; if (delta + delta_w >= 1024) { - /* period roll-over */ decayed = 1; + /* how much left for next period will start over, we don't know yet */ + sa->period_contrib = 0; + /* * Now that we know we're crossing a period boundary, figure * out how much from delta we need to complete the current * period and accrue it. */ delta_w = 1024 - delta_w; - if (runnable) - sa->runnable_avg_sum += delta_w; + if (weight) + sa->load_sum += weight * delta_w; if (running) - sa->running_avg_sum += delta_w * scale_freq - >> SCHED_CAPACITY_SHIFT; - sa->avg_period += delta_w; + sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT; delta -= delta_w; @@ -2596,334 +2593,156 @@ static __always_inline int __update_entity_runnable_avg(u64 now, int cpu, periods = delta / 1024; delta %= 1024; - sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, - periods + 1); - sa->running_avg_sum = decay_load(sa->running_avg_sum, - periods + 1); - sa->avg_period = decay_load(sa->avg_period, - periods + 1); + sa->load_sum = decay_load(sa->load_sum, periods + 1); + sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); /* Efficiently calculate \sum (1..n_period) 1024*y^i */ - runnable_contrib = __compute_runnable_contrib(periods); - if (runnable) - sa->runnable_avg_sum += runnable_contrib; + contrib = __compute_runnable_contrib(periods); + if (weight) + sa->load_sum += weight * contrib; if (running) - sa->running_avg_sum += runnable_contrib * scale_freq - >> SCHED_CAPACITY_SHIFT; - sa->avg_period += runnable_contrib; + sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT; } /* Remainder of delta accrued against u_0` */ - if (runnable) - sa->runnable_avg_sum += delta; + if (weight) + sa->load_sum += weight * delta; if (running) - sa->running_avg_sum += delta * scale_freq - >> SCHED_CAPACITY_SHIFT; - sa->avg_period += delta; - - return decayed; -} - -/* Synchronize an entity's decay with its parenting cfs_rq.*/ -static inline u64 __synchronize_entity_decay(struct sched_entity *se) -{ - struct cfs_rq *cfs_rq = cfs_rq_of(se); - u64 decays = atomic64_read(&cfs_rq->decay_counter); + sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT; - decays -= se->avg.decay_count; - se->avg.decay_count = 0; - if (!decays) - return 0; + sa->period_contrib += delta; - se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); - se->avg.utilization_avg_contrib = - decay_load(se->avg.utilization_avg_contrib, decays); + if (decayed) { + sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); + sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX; + } - return decays; + return decayed; } #ifdef CONFIG_FAIR_GROUP_SCHED -static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, - int force_update) -{ - struct task_group *tg = cfs_rq->tg; - long tg_contrib; - - tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; - tg_contrib -= cfs_rq->tg_load_contrib; - - if (!tg_contrib) - return; - - if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { - atomic_long_add(tg_contrib, &tg->load_avg); - cfs_rq->tg_load_contrib += tg_contrib; - } -} - /* - * Aggregate cfs_rq runnable averages into an equivalent task_group - * representation for computing load contributions. + * Updating tg's load_avg is necessary before update_cfs_share (which is done) + * and effective_load (which is not done because it is too costly). */ -static inline void __update_tg_runnable_avg(struct sched_avg *sa, - struct cfs_rq *cfs_rq) +static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) { - struct task_group *tg = cfs_rq->tg; - long contrib; - - /* The fraction of a cpu used by this cfs_rq */ - contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, - sa->avg_period + 1); - contrib -= cfs_rq->tg_runnable_contrib; + long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; - if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { - atomic_add(contrib, &tg->runnable_avg); - cfs_rq->tg_runnable_contrib += contrib; - } -} - -static inline void __update_group_entity_contrib(struct sched_entity *se) -{ - struct cfs_rq *cfs_rq = group_cfs_rq(se); - struct task_group *tg = cfs_rq->tg; - int runnable_avg; - - u64 contrib; - - contrib = cfs_rq->tg_load_contrib * tg->shares; - se->avg.load_avg_contrib = div_u64(contrib, - atomic_long_read(&tg->load_avg) + 1); - - /* - * For group entities we need to compute a correction term in the case - * that they are consuming <1 cpu so that we would contribute the same - * load as a task of equal weight. - * - * Explicitly co-ordinating this measurement would be expensive, but - * fortunately the sum of each cpus contribution forms a usable - * lower-bound on the true value. - * - * Consider the aggregate of 2 contributions. Either they are disjoint - * (and the sum represents true value) or they are disjoint and we are - * understating by the aggregate of their overlap. - * - * Extending this to N cpus, for a given overlap, the maximum amount we - * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of - * cpus that overlap for this interval and w_i is the interval width. - * - * On a small machine; the first term is well-bounded which bounds the - * total error since w_i is a subset of the period. Whereas on a - * larger machine, while this first term can be larger, if w_i is the - * of consequential size guaranteed to see n_i*w_i quickly converge to - * our upper bound of 1-cpu. - */ - runnable_avg = atomic_read(&tg->runnable_avg); - if (runnable_avg < NICE_0_LOAD) { - se->avg.load_avg_contrib *= runnable_avg; - se->avg.load_avg_contrib >>= NICE_0_SHIFT; + if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { + atomic_long_add(delta, &cfs_rq->tg->load_avg); + cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; } } #else /* CONFIG_FAIR_GROUP_SCHED */ -static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, - int force_update) {} -static inline void __update_tg_runnable_avg(struct sched_avg *sa, - struct cfs_rq *cfs_rq) {} -static inline void __update_group_entity_contrib(struct sched_entity *se) {} +static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} #endif /* CONFIG_FAIR_GROUP_SCHED */ -static inline void __update_task_entity_contrib(struct sched_entity *se) -{ - u32 contrib; - - /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ - contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); - contrib /= (se->avg.avg_period + 1); - se->avg.load_avg_contrib = scale_load(contrib); -} +static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); -/* Compute the current contribution to load_avg by se, return any delta */ -static long __update_entity_load_avg_contrib(struct sched_entity *se) +/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */ +static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) { - long old_contrib = se->avg.load_avg_contrib; + int decayed; + struct sched_avg *sa = &cfs_rq->avg; - if (entity_is_task(se)) { - __update_task_entity_contrib(se); - } else { - __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); - __update_group_entity_contrib(se); + if (atomic_long_read(&cfs_rq->removed_load_avg)) { + long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); + sa->load_avg = max_t(long, sa->load_avg - r, 0); + sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0); } - return se->avg.load_avg_contrib - old_contrib; -} - - -static inline void __update_task_entity_utilization(struct sched_entity *se) -{ - u32 contrib; - - /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ - contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE); - contrib /= (se->avg.avg_period + 1); - se->avg.utilization_avg_contrib = scale_load(contrib); -} + if (atomic_long_read(&cfs_rq->removed_util_avg)) { + long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); + sa->util_avg = max_t(long, sa->util_avg - r, 0); + sa->util_sum = max_t(s32, sa->util_sum - + ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0); + } -static long __update_entity_utilization_avg_contrib(struct sched_entity *se) -{ - long old_contrib = se->avg.utilization_avg_contrib; + decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, + scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL); - if (entity_is_task(se)) - __update_task_entity_utilization(se); - else - se->avg.utilization_avg_contrib = - group_cfs_rq(se)->utilization_load_avg; - - return se->avg.utilization_avg_contrib - old_contrib; -} +#ifndef CONFIG_64BIT + smp_wmb(); + cfs_rq->load_last_update_time_copy = sa->last_update_time; +#endif -static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, - long load_contrib) -{ - if (likely(load_contrib < cfs_rq->blocked_load_avg)) - cfs_rq->blocked_load_avg -= load_contrib; - else - cfs_rq->blocked_load_avg = 0; + return decayed; } -static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); - -/* Update a sched_entity's runnable average */ -static inline void update_entity_load_avg(struct sched_entity *se, - int update_cfs_rq) +/* Update task and its cfs_rq load average */ +static inline void update_load_avg(struct sched_entity *se, int update_tg) { struct cfs_rq *cfs_rq = cfs_rq_of(se); - long contrib_delta, utilization_delta; int cpu = cpu_of(rq_of(cfs_rq)); - u64 now; + u64 now = cfs_rq_clock_task(cfs_rq); /* - * For a group entity we need to use their owned cfs_rq_clock_task() in - * case they are the parent of a throttled hierarchy. + * Track task load average for carrying it to new CPU after migrated, and + * track group sched_entity load average for task_h_load calc in migration */ - if (entity_is_task(se)) - now = cfs_rq_clock_task(cfs_rq); - else - now = cfs_rq_clock_task(group_cfs_rq(se)); + __update_load_avg(now, cpu, &se->avg, + se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se); - if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq, - cfs_rq->curr == se)) - return; - - contrib_delta = __update_entity_load_avg_contrib(se); - utilization_delta = __update_entity_utilization_avg_contrib(se); - - if (!update_cfs_rq) - return; - - if (se->on_rq) { - cfs_rq->runnable_load_avg += contrib_delta; - cfs_rq->utilization_load_avg += utilization_delta; - } else { - subtract_blocked_load_contrib(cfs_rq, -contrib_delta); - } + if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg) + update_tg_load_avg(cfs_rq, 0); } -/* - * Decay the load contributed by all blocked children and account this so that - * their contribution may appropriately discounted when they wake up. - */ -static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) +/* Add the load generated by se into cfs_rq's load average */ +static inline void +enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { - u64 now = cfs_rq_clock_task(cfs_rq) >> 20; - u64 decays; - - decays = now - cfs_rq->last_decay; - if (!decays && !force_update) - return; + struct sched_avg *sa = &se->avg; + u64 now = cfs_rq_clock_task(cfs_rq); + int migrated = 0, decayed; - if (atomic_long_read(&cfs_rq->removed_load)) { - unsigned long removed_load; - removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); - subtract_blocked_load_contrib(cfs_rq, removed_load); + if (sa->last_update_time == 0) { + sa->last_update_time = now; + migrated = 1; } - - if (decays) { - cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, - decays); - atomic64_add(decays, &cfs_rq->decay_counter); - cfs_rq->last_decay = now; + else { + __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, + se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se); } - __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); -} + decayed = update_cfs_rq_load_avg(now, cfs_rq); -/* Add the load generated by se into cfs_rq's child load-average */ -static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, - struct sched_entity *se, - int wakeup) -{ - /* - * We track migrations using entity decay_count <= 0, on a wake-up - * migration we use a negative decay count to track the remote decays - * accumulated while sleeping. - * - * Newly forked tasks are enqueued with se->avg.decay_count == 0, they - * are seen by enqueue_entity_load_avg() as a migration with an already - * constructed load_avg_contrib. - */ - if (unlikely(se->avg.decay_count <= 0)) { - se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); - if (se->avg.decay_count) { - /* - * In a wake-up migration we have to approximate the - * time sleeping. This is because we can't synchronize - * clock_task between the two cpus, and it is not - * guaranteed to be read-safe. Instead, we can - * approximate this using our carried decays, which are - * explicitly atomically readable. - */ - se->avg.last_runnable_update -= (-se->avg.decay_count) - << 20; - update_entity_load_avg(se, 0); - /* Indicate that we're now synchronized and on-rq */ - se->avg.decay_count = 0; - } - wakeup = 0; - } else { - __synchronize_entity_decay(se); + if (migrated) { + cfs_rq->avg.load_avg += sa->load_avg; + cfs_rq->avg.load_sum += sa->load_sum; + cfs_rq->avg.util_avg += sa->util_avg; + cfs_rq->avg.util_sum += sa->util_sum; } - /* migrated tasks did not contribute to our blocked load */ - if (wakeup) { - subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); - update_entity_load_avg(se, 0); - } - - cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; - cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib; - /* we force update consideration on load-balancer moves */ - update_cfs_rq_blocked_load(cfs_rq, !wakeup); + if (decayed || migrated) + update_tg_load_avg(cfs_rq, 0); } /* - * Remove se's load from this cfs_rq child load-average, if the entity is - * transitioning to a blocked state we track its projected decay using - * blocked_load_avg. + * Task first catches up with cfs_rq, and then subtract + * itself from the cfs_rq (task must be off the queue now). */ -static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, - struct sched_entity *se, - int sleep) +void remove_entity_load_avg(struct sched_entity *se) { - update_entity_load_avg(se, 1); - /* we force update consideration on load-balancer moves */ - update_cfs_rq_blocked_load(cfs_rq, !sleep); + struct cfs_rq *cfs_rq = cfs_rq_of(se); + u64 last_update_time; + +#ifndef CONFIG_64BIT + u64 last_update_time_copy; - cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; - cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib; - if (sleep) { - cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; - se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); - } /* migrations, e.g. sleep=0 leave decay_count == 0 */ + do { + last_update_time_copy = cfs_rq->load_last_update_time_copy; + smp_rmb(); + last_update_time = cfs_rq->avg.last_update_time; + } while (last_update_time != last_update_time_copy); +#else + last_update_time = cfs_rq->avg.last_update_time; +#endif + + __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0); + atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); + atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); } /* @@ -2948,16 +2767,10 @@ static int idle_balance(struct rq *this_rq); #else /* CONFIG_SMP */ -static inline void update_entity_load_avg(struct sched_entity *se, - int update_cfs_rq) {} -static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, - struct sched_entity *se, - int wakeup) {} -static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, - struct sched_entity *se, - int sleep) {} -static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, - int force_update) {} +static inline void update_load_avg(struct sched_entity *se, int update_tg) {} +static inline void +enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} +static inline void remove_entity_load_avg(struct sched_entity *se) {} static inline int idle_balance(struct rq *rq) { @@ -3089,7 +2902,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) * Update run-time statistics of the 'current'. */ update_curr(cfs_rq); - enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); + enqueue_entity_load_avg(cfs_rq, se); account_entity_enqueue(cfs_rq, se); update_cfs_shares(cfs_rq); @@ -3164,7 +2977,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) * Update run-time statistics of the 'current'. */ update_curr(cfs_rq); - dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); + update_load_avg(se, 1); update_stats_dequeue(cfs_rq, se); if (flags & DEQUEUE_SLEEP) { @@ -3254,7 +3067,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) */ update_stats_wait_end(cfs_rq, se); __dequeue_entity(cfs_rq, se); - update_entity_load_avg(se, 1); + update_load_avg(se, 1); } update_stats_curr_start(cfs_rq, se); @@ -3354,7 +3167,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) /* Put 'current' back into the tree. */ __enqueue_entity(cfs_rq, prev); /* in !on_rq case, update occurred at dequeue */ - update_entity_load_avg(prev, 1); + update_load_avg(prev, 0); } cfs_rq->curr = NULL; } @@ -3370,8 +3183,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) /* * Ensure that runnable average is periodically updated. */ - update_entity_load_avg(curr, 1); - update_cfs_rq_blocked_load(cfs_rq, 1); + update_load_avg(curr, 1); update_cfs_shares(cfs_rq); #ifdef CONFIG_SCHED_HRTICK @@ -4244,8 +4056,8 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) if (cfs_rq_throttled(cfs_rq)) break; + update_load_avg(se, 1); update_cfs_shares(cfs_rq); - update_entity_load_avg(se, 1); } if (!se) @@ -4304,8 +4116,8 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) if (cfs_rq_throttled(cfs_rq)) break; + update_load_avg(se, 1); update_cfs_shares(cfs_rq); - update_entity_load_avg(se, 1); } if (!se) @@ -4444,7 +4256,7 @@ static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, static void update_idle_cpu_load(struct rq *this_rq) { unsigned long curr_jiffies = READ_ONCE(jiffies); - unsigned long load = this_rq->cfs.runnable_load_avg; + unsigned long load = this_rq->cfs.avg.load_avg; unsigned long pending_updates; /* @@ -4490,7 +4302,7 @@ void update_cpu_load_nohz(void) */ void update_cpu_load_active(struct rq *this_rq) { - unsigned long load = this_rq->cfs.runnable_load_avg; + unsigned long load = this_rq->cfs.avg.load_avg; /* * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). */ @@ -4501,7 +4313,7 @@ void update_cpu_load_active(struct rq *this_rq) /* Used instead of source_load when we know the type == 0 */ static unsigned long weighted_cpuload(const int cpu) { - return cpu_rq(cpu)->cfs.runnable_load_avg; + return cpu_rq(cpu)->cfs.avg.load_avg; } /* @@ -4551,7 +4363,7 @@ static unsigned long cpu_avg_load_per_task(int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); - unsigned long load_avg = rq->cfs.runnable_load_avg; + unsigned long load_avg = rq->cfs.avg.load_avg; if (nr_running) return load_avg / nr_running; @@ -4670,7 +4482,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg) /* * w = rw_i + @wl */ - w = se->my_q->load.weight + wl; + w = se->my_q->avg.load_avg + wl; /* * wl = S * s'_i; see (2) @@ -4691,7 +4503,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg) /* * wl = dw_i = S * (s'_i - s_i); see (3) */ - wl -= se->load.weight; + wl -= se->avg.load_avg; /* * Recursively apply this logic to all parent groups to compute @@ -4761,14 +4573,14 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) */ if (sync) { tg = task_group(current); - weight = current->se.load.weight; + weight = current->se.avg.load_avg; this_load += effective_load(tg, this_cpu, -weight, -weight); load += effective_load(tg, prev_cpu, 0, -weight); } tg = task_group(p); - weight = p->se.load.weight; + weight = p->se.avg.load_avg; /* * In low-load situations, where prev_cpu is idle and this_cpu is idle @@ -4961,12 +4773,12 @@ done: * tasks. The unit of the return value must be the one of capacity so we can * compare the usage with the capacity of the CPU that is available for CFS * task (ie cpu_capacity). - * cfs.utilization_load_avg is the sum of running time of runnable tasks on a + * cfs.avg.util_avg is the sum of running time of runnable tasks on a * CPU. It represents the amount of utilization of a CPU in the range * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full * capacity of the CPU because it's about the running time on this CPU. - * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE - * because of unfortunate rounding in avg_period and running_load_avg or just + * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE + * because of unfortunate rounding in util_avg or just * after migrating tasks until the average stabilizes with the new running * time. So we need to check that the usage stays into the range * [0..cpu_capacity_orig] and cap if necessary. @@ -4975,7 +4787,7 @@ done: */ static int get_cpu_usage(int cpu) { - unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg; + unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg; unsigned long capacity = capacity_orig_of(cpu); if (usage >= SCHED_LOAD_SCALE) @@ -5084,26 +4896,22 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f * previous cpu. However, the caller only guarantees p->pi_lock is held; no * other assumptions, including the state of rq->lock, should be made. */ -static void -migrate_task_rq_fair(struct task_struct *p, int next_cpu) +static void migrate_task_rq_fair(struct task_struct *p, int next_cpu) { - struct sched_entity *se = &p->se; - struct cfs_rq *cfs_rq = cfs_rq_of(se); - /* - * Load tracking: accumulate removed load so that it can be processed - * when we next update owning cfs_rq under rq->lock. Tasks contribute - * to blocked load iff they have a positive decay-count. It can never - * be negative here since on-rq tasks have decay-count == 0. + * We are supposed to update the task to "current" time, then its up to date + * and ready to go to new CPU/cfs_rq. But we have difficulty in getting + * what current time is, so simply throw away the out-of-date time. This + * will result in the wakee task is less decayed, but giving the wakee more + * load sounds not bad. */ - if (se->avg.decay_count) { - se->avg.decay_count = -__synchronize_entity_decay(se); - atomic_long_add(se->avg.load_avg_contrib, - &cfs_rq->removed_load); - } + remove_entity_load_avg(&p->se); + + /* Tell new CPU we are migrated */ + p->se.avg.last_update_time = 0; /* We have migrated, no longer consider this task hot */ - se->exec_start = 0; + p->se.exec_start = 0; } #endif /* CONFIG_SMP */ @@ -5966,36 +5774,6 @@ static void attach_tasks(struct lb_env *env) } #ifdef CONFIG_FAIR_GROUP_SCHED -/* - * update tg->load_weight by folding this cpu's load_avg - */ -static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) -{ - struct sched_entity *se = tg->se[cpu]; - struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; - - /* throttled entities do not contribute to load */ - if (throttled_hierarchy(cfs_rq)) - return; - - update_cfs_rq_blocked_load(cfs_rq, 1); - - if (se) { - update_entity_load_avg(se, 1); - /* - * We pivot on our runnable average having decayed to zero for - * list removal. This generally implies that all our children - * have also been removed (modulo rounding error or bandwidth - * control); however, such cases are rare and we can fix these - * at enqueue. - * - * TODO: fix up out-of-order children on enqueue. - */ - if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) - list_del_leaf_cfs_rq(cfs_rq); - } -} - static void update_blocked_averages(int cpu) { struct rq *rq = cpu_rq(cpu); @@ -6004,19 +5782,19 @@ static void update_blocked_averages(int cpu) raw_spin_lock_irqsave(&rq->lock, flags); update_rq_clock(rq); + /* * Iterates the task_group tree in a bottom up fashion, see * list_add_leaf_cfs_rq() for details. */ for_each_leaf_cfs_rq(rq, cfs_rq) { - /* - * Note: We may want to consider periodically releasing - * rq->lock about these updates so that creating many task - * groups does not result in continually extending hold time. - */ - __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); - } + /* throttled entities do not contribute to load */ + if (throttled_hierarchy(cfs_rq)) + continue; + if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) + update_tg_load_avg(cfs_rq, 0); + } raw_spin_unlock_irqrestore(&rq->lock, flags); } @@ -6044,14 +5822,13 @@ static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) } if (!se) { - cfs_rq->h_load = cfs_rq->runnable_load_avg; + cfs_rq->h_load = cfs_rq->avg.load_avg; cfs_rq->last_h_load_update = now; } while ((se = cfs_rq->h_load_next) != NULL) { load = cfs_rq->h_load; - load = div64_ul(load * se->avg.load_avg_contrib, - cfs_rq->runnable_load_avg + 1); + load = div64_ul(load * se->avg.load_avg, cfs_rq->avg.load_avg + 1); cfs_rq = group_cfs_rq(se); cfs_rq->h_load = load; cfs_rq->last_h_load_update = now; @@ -6063,8 +5840,8 @@ static unsigned long task_h_load(struct task_struct *p) struct cfs_rq *cfs_rq = task_cfs_rq(p); update_cfs_rq_h_load(cfs_rq); - return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, - cfs_rq->runnable_load_avg + 1); + return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, + cfs_rq->avg.load_avg + 1); } #else static inline void update_blocked_averages(int cpu) @@ -6073,7 +5850,7 @@ static inline void update_blocked_averages(int cpu) static unsigned long task_h_load(struct task_struct *p) { - return p->se.avg.load_avg_contrib; + return p->se.avg.load_avg; } #endif @@ -8071,15 +7848,18 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p) } #ifdef CONFIG_SMP - /* - * Remove our load from contribution when we leave sched_fair - * and ensure we don't carry in an old decay_count if we - * switch back. - */ - if (se->avg.decay_count) { - __synchronize_entity_decay(se); - subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); - } + /* Catch up with the cfs_rq and remove our load when we leave */ + __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg, + se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se); + + cfs_rq->avg.load_avg = + max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0); + cfs_rq->avg.load_sum = + max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0); + cfs_rq->avg.util_avg = + max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0); + cfs_rq->avg.util_sum = + max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0); #endif } @@ -8136,8 +7916,8 @@ void init_cfs_rq(struct cfs_rq *cfs_rq) cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; #endif #ifdef CONFIG_SMP - atomic64_set(&cfs_rq->decay_counter, 1); - atomic_long_set(&cfs_rq->removed_load, 0); + atomic_long_set(&cfs_rq->removed_load_avg, 0); + atomic_long_set(&cfs_rq->removed_util_avg, 0); #endif } @@ -8182,14 +7962,14 @@ static void task_move_group_fair(struct task_struct *p, int queued) if (!queued) { cfs_rq = cfs_rq_of(se); se->vruntime += cfs_rq->min_vruntime; + #ifdef CONFIG_SMP - /* - * migrate_task_rq_fair() will have removed our previous - * contribution, but we must synchronize for ongoing future - * decay. - */ - se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); - cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; + /* Virtually synchronize task with its new cfs_rq */ + p->se.avg.last_update_time = cfs_rq->avg.last_update_time; + cfs_rq->avg.load_avg += p->se.avg.load_avg; + cfs_rq->avg.load_sum += p->se.avg.load_sum; + cfs_rq->avg.util_avg += p->se.avg.util_avg; + cfs_rq->avg.util_sum += p->se.avg.util_sum; #endif } } diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index e13210cce7e8..dcde941a585b 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -245,7 +245,6 @@ struct task_group { #ifdef CONFIG_SMP atomic_long_t load_avg; - atomic_t runnable_avg; #endif #endif @@ -366,27 +365,18 @@ struct cfs_rq { #ifdef CONFIG_SMP /* - * CFS Load tracking - * Under CFS, load is tracked on a per-entity basis and aggregated up. - * This allows for the description of both thread and group usage (in - * the FAIR_GROUP_SCHED case). - * runnable_load_avg is the sum of the load_avg_contrib of the - * sched_entities on the rq. - * blocked_load_avg is similar to runnable_load_avg except that its - * the blocked sched_entities on the rq. - * utilization_load_avg is the sum of the average running time of the - * sched_entities on the rq. + * CFS load tracking */ - unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg; - atomic64_t decay_counter; - u64 last_decay; - atomic_long_t removed_load; - + struct sched_avg avg; #ifdef CONFIG_FAIR_GROUP_SCHED - /* Required to track per-cpu representation of a task_group */ - u32 tg_runnable_contrib; - unsigned long tg_load_contrib; + unsigned long tg_load_avg_contrib; +#endif + atomic_long_t removed_load_avg, removed_util_avg; +#ifndef CONFIG_64BIT + u64 load_last_update_time_copy; +#endif +#ifdef CONFIG_FAIR_GROUP_SCHED /* * h_load = weight * f(tg) * -- cgit v1.2.3-70-g09d2 From 25834c73f93af7f0712c98ca4593691592e6b360 Mon Sep 17 00:00:00 2001 From: Peter Zijlstra Date: Fri, 15 May 2015 17:43:34 +0200 Subject: sched: Fix a race between __kthread_bind() and sched_setaffinity() Because sched_setscheduler() checks p->flags & PF_NO_SETAFFINITY without locks, a caller might observe an old value and race with the set_cpus_allowed_ptr() call from __kthread_bind() and effectively undo it: __kthread_bind() do_set_cpus_allowed() sched_setaffinity() if (p->flags & PF_NO_SETAFFINITIY) set_cpus_allowed_ptr() p->flags |= PF_NO_SETAFFINITY Fix the bug by putting everything under the regular scheduler locks. This also closes a hole in the serialization of task_struct::{nr_,}cpus_allowed. Signed-off-by: Peter Zijlstra (Intel) Acked-by: Tejun Heo Cc: Linus Torvalds Cc: Mike Galbraith Cc: Oleg Nesterov Cc: Peter Zijlstra Cc: Thomas Gleixner Cc: dedekind1@gmail.com Cc: juri.lelli@arm.com Cc: mgorman@suse.de Cc: riel@redhat.com Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/20150515154833.545640346@infradead.org Signed-off-by: Ingo Molnar --- include/linux/kthread.h | 1 + include/linux/sched.h | 7 ------- kernel/kthread.c | 20 +++++++++++++++++--- kernel/sched/core.c | 36 ++++++++++++++++++++++++++++++++---- kernel/workqueue.c | 6 ++---- 5 files changed, 52 insertions(+), 18 deletions(-) (limited to 'include') diff --git a/include/linux/kthread.h b/include/linux/kthread.h index 13d55206ccf6..869b21dcf503 100644 --- a/include/linux/kthread.h +++ b/include/linux/kthread.h @@ -38,6 +38,7 @@ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), }) void kthread_bind(struct task_struct *k, unsigned int cpu); +void kthread_bind_mask(struct task_struct *k, const struct cpumask *mask); int kthread_stop(struct task_struct *k); bool kthread_should_stop(void); bool kthread_should_park(void); diff --git a/include/linux/sched.h b/include/linux/sched.h index 44dca5b35de6..81bb4577274b 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -2203,13 +2203,6 @@ static inline void calc_load_enter_idle(void) { } static inline void calc_load_exit_idle(void) { } #endif /* CONFIG_NO_HZ_COMMON */ -#ifndef CONFIG_CPUMASK_OFFSTACK -static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) -{ - return set_cpus_allowed_ptr(p, &new_mask); -} -#endif - /* * Do not use outside of architecture code which knows its limitations. * diff --git a/kernel/kthread.c b/kernel/kthread.c index 10e489c448fe..7c40a189becc 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c @@ -325,16 +325,30 @@ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), } EXPORT_SYMBOL(kthread_create_on_node); -static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state) +static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state) { - /* Must have done schedule() in kthread() before we set_task_cpu */ + unsigned long flags; + if (!wait_task_inactive(p, state)) { WARN_ON(1); return; } + /* It's safe because the task is inactive. */ - do_set_cpus_allowed(p, cpumask_of(cpu)); + raw_spin_lock_irqsave(&p->pi_lock, flags); + do_set_cpus_allowed(p, mask); p->flags |= PF_NO_SETAFFINITY; + raw_spin_unlock_irqrestore(&p->pi_lock, flags); +} + +static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state) +{ + __kthread_bind_mask(p, cpumask_of(cpu), state); +} + +void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) +{ + __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); } /** diff --git a/kernel/sched/core.c b/kernel/sched/core.c index ea6d74345e60..2e3b983da836 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -1153,6 +1153,8 @@ static int migration_cpu_stop(void *data) void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) { + lockdep_assert_held(&p->pi_lock); + if (p->sched_class->set_cpus_allowed) p->sched_class->set_cpus_allowed(p, new_mask); @@ -1169,7 +1171,8 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) * task must not exit() & deallocate itself prematurely. The * call is not atomic; no spinlocks may be held. */ -int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) +static int __set_cpus_allowed_ptr(struct task_struct *p, + const struct cpumask *new_mask, bool check) { unsigned long flags; struct rq *rq; @@ -1178,6 +1181,15 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) rq = task_rq_lock(p, &flags); + /* + * Must re-check here, to close a race against __kthread_bind(), + * sched_setaffinity() is not guaranteed to observe the flag. + */ + if (check && (p->flags & PF_NO_SETAFFINITY)) { + ret = -EINVAL; + goto out; + } + if (cpumask_equal(&p->cpus_allowed, new_mask)) goto out; @@ -1214,6 +1226,11 @@ out: return ret; } + +int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) +{ + return __set_cpus_allowed_ptr(p, new_mask, false); +} EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); void set_task_cpu(struct task_struct *p, unsigned int new_cpu) @@ -1595,6 +1612,15 @@ static void update_avg(u64 *avg, u64 sample) s64 diff = sample - *avg; *avg += diff >> 3; } + +#else + +static inline int __set_cpus_allowed_ptr(struct task_struct *p, + const struct cpumask *new_mask, bool check) +{ + return set_cpus_allowed_ptr(p, new_mask); +} + #endif /* CONFIG_SMP */ static void @@ -4340,7 +4366,7 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) } #endif again: - retval = set_cpus_allowed_ptr(p, new_mask); + retval = __set_cpus_allowed_ptr(p, new_mask, true); if (!retval) { cpuset_cpus_allowed(p, cpus_allowed); @@ -4865,7 +4891,8 @@ void init_idle(struct task_struct *idle, int cpu) struct rq *rq = cpu_rq(cpu); unsigned long flags; - raw_spin_lock_irqsave(&rq->lock, flags); + raw_spin_lock_irqsave(&idle->pi_lock, flags); + raw_spin_lock(&rq->lock); __sched_fork(0, idle); idle->state = TASK_RUNNING; @@ -4891,7 +4918,8 @@ void init_idle(struct task_struct *idle, int cpu) #if defined(CONFIG_SMP) idle->on_cpu = 1; #endif - raw_spin_unlock_irqrestore(&rq->lock, flags); + raw_spin_unlock(&rq->lock); + raw_spin_unlock_irqrestore(&idle->pi_lock, flags); /* Set the preempt count _outside_ the spinlocks! */ init_idle_preempt_count(idle, cpu); diff --git a/kernel/workqueue.c b/kernel/workqueue.c index 4c4f06176f74..f5782d5fd196 100644 --- a/kernel/workqueue.c +++ b/kernel/workqueue.c @@ -1714,9 +1714,7 @@ static struct worker *create_worker(struct worker_pool *pool) goto fail; set_user_nice(worker->task, pool->attrs->nice); - - /* prevent userland from meddling with cpumask of workqueue workers */ - worker->task->flags |= PF_NO_SETAFFINITY; + kthread_bind_mask(worker->task, pool->attrs->cpumask); /* successful, attach the worker to the pool */ worker_attach_to_pool(worker, pool); @@ -3856,7 +3854,7 @@ struct workqueue_struct *__alloc_workqueue_key(const char *fmt, } wq->rescuer = rescuer; - rescuer->task->flags |= PF_NO_SETAFFINITY; + kthread_bind_mask(rescuer->task, cpu_possible_mask); wake_up_process(rescuer->task); } -- cgit v1.2.3-70-g09d2