From 64db4cfff99c04cd5f550357edcc8780f96b54a2 Mon Sep 17 00:00:00 2001 From: "Paul E. McKenney" Date: Thu, 18 Dec 2008 21:55:32 +0100 Subject: "Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney Signed-off-by: Ingo Molnar --- kernel/Makefile | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'kernel/Makefile') diff --git a/kernel/Makefile b/kernel/Makefile index 19fad003b19d..b4fdbbff5ec0 100644 --- a/kernel/Makefile +++ b/kernel/Makefile @@ -74,10 +74,10 @@ obj-$(CONFIG_GENERIC_HARDIRQS) += irq/ obj-$(CONFIG_SECCOMP) += seccomp.o obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o obj-$(CONFIG_CLASSIC_RCU) += rcuclassic.o +obj-$(CONFIG_TREE_RCU) += rcutree.o obj-$(CONFIG_PREEMPT_RCU) += rcupreempt.o -ifeq ($(CONFIG_PREEMPT_RCU),y) -obj-$(CONFIG_RCU_TRACE) += rcupreempt_trace.o -endif +obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o +obj-$(CONFIG_PREEMPT_RCU_TRACE) += rcupreempt_trace.o obj-$(CONFIG_RELAY) += relay.o obj-$(CONFIG_SYSCTL) += utsname_sysctl.o obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o -- cgit v1.2.3-70-g09d2 From 22a9d645677feefd402befd02edd59b122289ef1 Mon Sep 17 00:00:00 2001 From: Arjan van de Ven Date: Wed, 7 Jan 2009 08:45:46 -0800 Subject: async: Asynchronous function calls to speed up kernel boot Right now, most of the kernel boot is strictly synchronous, such that various hardware delays are done sequentially. In order to make the kernel boot faster, this patch introduces infrastructure to allow doing some of the initialization steps asynchronously, which will hide significant portions of the hardware delays in practice. In order to not change device order and other similar observables, this patch does NOT do full parallel initialization. Rather, it operates more in the way an out of order CPU does; the work may be done out of order and asynchronous, but the observable effects (instruction retiring for the CPU) are still done in the original sequence. Signed-off-by: Arjan van de Ven --- include/linux/async.h | 25 ++++ init/do_mounts.c | 2 + init/main.c | 5 +- kernel/Makefile | 3 +- kernel/async.c | 321 +++++++++++++++++++++++++++++++++++++++++++++++++ kernel/irq/autoprobe.c | 5 + kernel/module.c | 2 + 7 files changed, 361 insertions(+), 2 deletions(-) create mode 100644 include/linux/async.h create mode 100644 kernel/async.c (limited to 'kernel/Makefile') diff --git a/include/linux/async.h b/include/linux/async.h new file mode 100644 index 000000000000..c4ecacd0b327 --- /dev/null +++ b/include/linux/async.h @@ -0,0 +1,25 @@ +/* + * async.h: Asynchronous function calls for boot performance + * + * (C) Copyright 2009 Intel Corporation + * Author: Arjan van de Ven + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; version 2 + * of the License. + */ + +#include +#include + +typedef u64 async_cookie_t; +typedef void (async_func_ptr) (void *data, async_cookie_t cookie); + +extern async_cookie_t async_schedule(async_func_ptr *ptr, void *data); +extern async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *list); +extern void async_synchronize_full(void); +extern void async_synchronize_full_special(struct list_head *list); +extern void async_synchronize_cookie(async_cookie_t cookie); +extern void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *list); + diff --git a/init/do_mounts.c b/init/do_mounts.c index 5efca73b39f9..708105e163df 100644 --- a/init/do_mounts.c +++ b/init/do_mounts.c @@ -13,6 +13,7 @@ #include #include #include +#include #include #include @@ -372,6 +373,7 @@ void __init prepare_namespace(void) /* wait for the known devices to complete their probing */ while (driver_probe_done() != 0) msleep(100); + async_synchronize_full(); md_run_setup(); diff --git a/init/main.c b/init/main.c index b5a892c68375..f66715d8a853 100644 --- a/init/main.c +++ b/init/main.c @@ -62,6 +62,7 @@ #include #include #include +#include #include #include @@ -684,7 +685,7 @@ asmlinkage void __init start_kernel(void) rest_init(); } -static int initcall_debug; +int initcall_debug; core_param(initcall_debug, initcall_debug, bool, 0644); int do_one_initcall(initcall_t fn) @@ -785,6 +786,8 @@ static void run_init_process(char *init_filename) */ static noinline int init_post(void) { + /* need to finish all async __init code before freeing the memory */ + async_synchronize_full(); free_initmem(); unlock_kernel(); mark_rodata_ro(); diff --git a/kernel/Makefile b/kernel/Makefile index e1c5bf3365c0..2921d90ce32f 100644 --- a/kernel/Makefile +++ b/kernel/Makefile @@ -9,7 +9,8 @@ obj-y = sched.o fork.o exec_domain.o panic.o printk.o \ rcupdate.o extable.o params.o posix-timers.o \ kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \ hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \ - notifier.o ksysfs.o pm_qos_params.o sched_clock.o cred.o + notifier.o ksysfs.o pm_qos_params.o sched_clock.o cred.o \ + async.o ifdef CONFIG_FUNCTION_TRACER # Do not trace debug files and internal ftrace files diff --git a/kernel/async.c b/kernel/async.c new file mode 100644 index 000000000000..afaa8a653d5a --- /dev/null +++ b/kernel/async.c @@ -0,0 +1,321 @@ +/* + * async.c: Asynchronous function calls for boot performance + * + * (C) Copyright 2009 Intel Corporation + * Author: Arjan van de Ven + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; version 2 + * of the License. + */ + + +/* + +Goals and Theory of Operation + +The primary goal of this feature is to reduce the kernel boot time, +by doing various independent hardware delays and discovery operations +decoupled and not strictly serialized. + +More specifically, the asynchronous function call concept allows +certain operations (primarily during system boot) to happen +asynchronously, out of order, while these operations still +have their externally visible parts happen sequentially and in-order. +(not unlike how out-of-order CPUs retire their instructions in order) + +Key to the asynchronous function call implementation is the concept of +a "sequence cookie" (which, although it has an abstracted type, can be +thought of as a monotonically incrementing number). + +The async core will assign each scheduled event such a sequence cookie and +pass this to the called functions. + +The asynchronously called function should before doing a globally visible +operation, such as registering device numbers, call the +async_synchronize_cookie() function and pass in its own cookie. The +async_synchronize_cookie() function will make sure that all asynchronous +operations that were scheduled prior to the operation corresponding with the +cookie have completed. + +Subsystem/driver initialization code that scheduled asynchronous probe +functions, but which shares global resources with other drivers/subsystems +that do not use the asynchronous call feature, need to do a full +synchronization with the async_synchronize_full() function, before returning +from their init function. This is to maintain strict ordering between the +asynchronous and synchronous parts of the kernel. + +*/ + +#include +#include +#include +#include +#include +#include +#include + +static async_cookie_t next_cookie = 1; + +#define MAX_THREADS 256 +#define MAX_WORK 32768 + +static LIST_HEAD(async_pending); +static LIST_HEAD(async_running); +static DEFINE_SPINLOCK(async_lock); + +struct async_entry { + struct list_head list; + async_cookie_t cookie; + async_func_ptr *func; + void *data; + struct list_head *running; +}; + +static DECLARE_WAIT_QUEUE_HEAD(async_done); +static DECLARE_WAIT_QUEUE_HEAD(async_new); + +static atomic_t entry_count; +static atomic_t thread_count; + +extern int initcall_debug; + + +/* + * MUST be called with the lock held! + */ +static async_cookie_t __lowest_in_progress(struct list_head *running) +{ + struct async_entry *entry; + if (!list_empty(&async_pending)) { + entry = list_first_entry(&async_pending, + struct async_entry, list); + return entry->cookie; + } else if (!list_empty(running)) { + entry = list_first_entry(running, + struct async_entry, list); + return entry->cookie; + } else { + /* nothing in progress... next_cookie is "infinity" */ + return next_cookie; + } + +} +/* + * pick the first pending entry and run it + */ +static void run_one_entry(void) +{ + unsigned long flags; + struct async_entry *entry; + ktime_t calltime, delta, rettime; + + /* 1) pick one task from the pending queue */ + + spin_lock_irqsave(&async_lock, flags); + if (list_empty(&async_pending)) + goto out; + entry = list_first_entry(&async_pending, struct async_entry, list); + + /* 2) move it to the running queue */ + list_del(&entry->list); + list_add_tail(&entry->list, &async_running); + spin_unlock_irqrestore(&async_lock, flags); + + /* 3) run it (and print duration)*/ + if (initcall_debug) { + printk("calling %lli_%pF @ %i\n", entry->cookie, entry->func, task_pid_nr(current)); + calltime = ktime_get(); + } + entry->func(entry->data, entry->cookie); + if (initcall_debug) { + rettime = ktime_get(); + delta = ktime_sub(rettime, calltime); + printk("initcall %lli_%pF returned 0 after %lld usecs\n", entry->cookie, + entry->func, ktime_to_ns(delta) >> 10); + } + + /* 4) remove it from the running queue */ + spin_lock_irqsave(&async_lock, flags); + list_del(&entry->list); + + /* 5) free the entry */ + kfree(entry); + atomic_dec(&entry_count); + + spin_unlock_irqrestore(&async_lock, flags); + + /* 6) wake up any waiters. */ + wake_up(&async_done); + return; + +out: + spin_unlock_irqrestore(&async_lock, flags); +} + + +static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running) +{ + struct async_entry *entry; + unsigned long flags; + async_cookie_t newcookie; + + + /* allow irq-off callers */ + entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC); + + /* + * If we're out of memory or if there's too much work + * pending already, we execute synchronously. + */ + if (!entry || atomic_read(&entry_count) > MAX_WORK) { + kfree(entry); + spin_lock_irqsave(&async_lock, flags); + newcookie = next_cookie++; + spin_unlock_irqrestore(&async_lock, flags); + + /* low on memory.. run synchronously */ + ptr(data, newcookie); + return newcookie; + } + entry->func = ptr; + entry->data = data; + entry->running = running; + + spin_lock_irqsave(&async_lock, flags); + newcookie = entry->cookie = next_cookie++; + list_add_tail(&entry->list, &async_pending); + atomic_inc(&entry_count); + spin_unlock_irqrestore(&async_lock, flags); + wake_up(&async_new); + return newcookie; +} + +async_cookie_t async_schedule(async_func_ptr *ptr, void *data) +{ + return __async_schedule(ptr, data, &async_pending); +} +EXPORT_SYMBOL_GPL(async_schedule); + +async_cookie_t async_schedule_special(async_func_ptr *ptr, void *data, struct list_head *running) +{ + return __async_schedule(ptr, data, running); +} +EXPORT_SYMBOL_GPL(async_schedule_special); + +void async_synchronize_full(void) +{ + async_synchronize_cookie(next_cookie); +} +EXPORT_SYMBOL_GPL(async_synchronize_full); + +void async_synchronize_full_special(struct list_head *list) +{ + async_synchronize_cookie_special(next_cookie, list); +} +EXPORT_SYMBOL_GPL(async_synchronize_full_special); + +void async_synchronize_cookie_special(async_cookie_t cookie, struct list_head *running) +{ + ktime_t starttime, delta, endtime; + + if (initcall_debug) { + printk("async_waiting @ %i\n", task_pid_nr(current)); + starttime = ktime_get(); + } + + wait_event(async_done, __lowest_in_progress(running) >= cookie); + + if (initcall_debug) { + endtime = ktime_get(); + delta = ktime_sub(endtime, starttime); + + printk("async_continuing @ %i after %lli usec\n", + task_pid_nr(current), ktime_to_ns(delta) >> 10); + } +} +EXPORT_SYMBOL_GPL(async_synchronize_cookie_special); + +void async_synchronize_cookie(async_cookie_t cookie) +{ + async_synchronize_cookie_special(cookie, &async_running); +} +EXPORT_SYMBOL_GPL(async_synchronize_cookie); + + +static int async_thread(void *unused) +{ + DECLARE_WAITQUEUE(wq, current); + add_wait_queue(&async_new, &wq); + + while (!kthread_should_stop()) { + int ret = HZ; + set_current_state(TASK_INTERRUPTIBLE); + /* + * check the list head without lock.. false positives + * are dealt with inside run_one_entry() while holding + * the lock. + */ + rmb(); + if (!list_empty(&async_pending)) + run_one_entry(); + else + ret = schedule_timeout(HZ); + + if (ret == 0) { + /* + * we timed out, this means we as thread are redundant. + * we sign off and die, but we to avoid any races there + * is a last-straw check to see if work snuck in. + */ + atomic_dec(&thread_count); + wmb(); /* manager must see our departure first */ + if (list_empty(&async_pending)) + break; + /* + * woops work came in between us timing out and us + * signing off; we need to stay alive and keep working. + */ + atomic_inc(&thread_count); + } + } + remove_wait_queue(&async_new, &wq); + + return 0; +} + +static int async_manager_thread(void *unused) +{ + DECLARE_WAITQUEUE(wq, current); + add_wait_queue(&async_new, &wq); + + while (!kthread_should_stop()) { + int tc, ec; + + set_current_state(TASK_INTERRUPTIBLE); + + tc = atomic_read(&thread_count); + rmb(); + ec = atomic_read(&entry_count); + + while (tc < ec && tc < MAX_THREADS) { + kthread_run(async_thread, NULL, "async/%i", tc); + atomic_inc(&thread_count); + tc++; + } + + schedule(); + } + remove_wait_queue(&async_new, &wq); + + return 0; +} + +static int __init async_init(void) +{ + kthread_run(async_manager_thread, NULL, "async/mgr"); + return 0; +} + +core_initcall(async_init); diff --git a/kernel/irq/autoprobe.c b/kernel/irq/autoprobe.c index cc0f7321b8ce..1de9700f416e 100644 --- a/kernel/irq/autoprobe.c +++ b/kernel/irq/autoprobe.c @@ -10,6 +10,7 @@ #include #include #include +#include #include "internals.h" @@ -34,6 +35,10 @@ unsigned long probe_irq_on(void) unsigned int status; int i; + /* + * quiesce the kernel, or at least the asynchronous portion + */ + async_synchronize_full(); mutex_lock(&probing_active); /* * something may have generated an irq long ago and we want to diff --git a/kernel/module.c b/kernel/module.c index 496dcb57b608..c9332c90d5a0 100644 --- a/kernel/module.c +++ b/kernel/module.c @@ -50,6 +50,7 @@ #include #include #include +#include #if 0 #define DEBUGP printk @@ -816,6 +817,7 @@ sys_delete_module(const char __user *name_user, unsigned int flags) mod->exit(); blocking_notifier_call_chain(&module_notify_list, MODULE_STATE_GOING, mod); + async_synchronize_full(); mutex_lock(&module_mutex); /* Store the name of the last unloaded module for diagnostic purposes */ strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module)); -- cgit v1.2.3-70-g09d2