From 463f74089ff9148e3e46af454a6977d40b98cd10 Mon Sep 17 00:00:00 2001 From: Eric Biggers Date: Sat, 9 Jul 2022 14:18:48 -0700 Subject: crypto: lib - move lib/sha1.c into lib/crypto/ SHA-1 is a crypto algorithm (or at least was intended to be -- it's not considered secure anymore), so move it out of the top-level library directory and into lib/crypto/. Signed-off-by: Eric Biggers Reviewed-by: Jason A. Donenfeld Signed-off-by: Herbert Xu --- lib/sha1.c | 137 ------------------------------------------------------------- 1 file changed, 137 deletions(-) delete mode 100644 lib/sha1.c (limited to 'lib/sha1.c') diff --git a/lib/sha1.c b/lib/sha1.c deleted file mode 100644 index 0494766fc574..000000000000 --- a/lib/sha1.c +++ /dev/null @@ -1,137 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * SHA1 routine optimized to do word accesses rather than byte accesses, - * and to avoid unnecessary copies into the context array. - * - * This was based on the git SHA1 implementation. - */ - -#include -#include -#include -#include -#include -#include - -/* - * If you have 32 registers or more, the compiler can (and should) - * try to change the array[] accesses into registers. However, on - * machines with less than ~25 registers, that won't really work, - * and at least gcc will make an unholy mess of it. - * - * So to avoid that mess which just slows things down, we force - * the stores to memory to actually happen (we might be better off - * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as - * suggested by Artur Skawina - that will also make gcc unable to - * try to do the silly "optimize away loads" part because it won't - * see what the value will be). - * - * Ben Herrenschmidt reports that on PPC, the C version comes close - * to the optimized asm with this (ie on PPC you don't want that - * 'volatile', since there are lots of registers). - * - * On ARM we get the best code generation by forcing a full memory barrier - * between each SHA_ROUND, otherwise gcc happily get wild with spilling and - * the stack frame size simply explode and performance goes down the drain. - */ - -#ifdef CONFIG_X86 - #define setW(x, val) (*(volatile __u32 *)&W(x) = (val)) -#elif defined(CONFIG_ARM) - #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0) -#else - #define setW(x, val) (W(x) = (val)) -#endif - -/* This "rolls" over the 512-bit array */ -#define W(x) (array[(x)&15]) - -/* - * Where do we get the source from? The first 16 iterations get it from - * the input data, the next mix it from the 512-bit array. - */ -#define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t) -#define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1) - -#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \ - __u32 TEMP = input(t); setW(t, TEMP); \ - E += TEMP + rol32(A,5) + (fn) + (constant); \ - B = ror32(B, 2); \ - TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0) - -#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) -#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) -#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E ) -#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E ) -#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E ) - -/** - * sha1_transform - single block SHA1 transform (deprecated) - * - * @digest: 160 bit digest to update - * @data: 512 bits of data to hash - * @array: 16 words of workspace (see note) - * - * This function executes SHA-1's internal compression function. It updates the - * 160-bit internal state (@digest) with a single 512-bit data block (@data). - * - * Don't use this function. SHA-1 is no longer considered secure. And even if - * you do have to use SHA-1, this isn't the correct way to hash something with - * SHA-1 as this doesn't handle padding and finalization. - * - * Note: If the hash is security sensitive, the caller should be sure - * to clear the workspace. This is left to the caller to avoid - * unnecessary clears between chained hashing operations. - */ -void sha1_transform(__u32 *digest, const char *data, __u32 *array) -{ - __u32 A, B, C, D, E; - unsigned int i = 0; - - A = digest[0]; - B = digest[1]; - C = digest[2]; - D = digest[3]; - E = digest[4]; - - /* Round 1 - iterations 0-16 take their input from 'data' */ - for (; i < 16; ++i) - T_0_15(i, A, B, C, D, E); - - /* Round 1 - tail. Input from 512-bit mixing array */ - for (; i < 20; ++i) - T_16_19(i, A, B, C, D, E); - - /* Round 2 */ - for (; i < 40; ++i) - T_20_39(i, A, B, C, D, E); - - /* Round 3 */ - for (; i < 60; ++i) - T_40_59(i, A, B, C, D, E); - - /* Round 4 */ - for (; i < 80; ++i) - T_60_79(i, A, B, C, D, E); - - digest[0] += A; - digest[1] += B; - digest[2] += C; - digest[3] += D; - digest[4] += E; -} -EXPORT_SYMBOL(sha1_transform); - -/** - * sha1_init - initialize the vectors for a SHA1 digest - * @buf: vector to initialize - */ -void sha1_init(__u32 *buf) -{ - buf[0] = 0x67452301; - buf[1] = 0xefcdab89; - buf[2] = 0x98badcfe; - buf[3] = 0x10325476; - buf[4] = 0xc3d2e1f0; -} -EXPORT_SYMBOL(sha1_init); -- cgit v1.2.3-70-g09d2