// SPDX-License-Identifier: GPL-2.0-only /* * Based on arch/arm/mm/init.c * * Copyright (C) 1995-2005 Russell King * Copyright (C) 2012 ARM Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * We need to be able to catch inadvertent references to memstart_addr * that occur (potentially in generic code) before arm64_memblock_init() * executes, which assigns it its actual value. So use a default value * that cannot be mistaken for a real physical address. */ s64 memstart_addr __ro_after_init = -1; EXPORT_SYMBOL(memstart_addr); /* * If the corresponding config options are enabled, we create both ZONE_DMA * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4). * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory, * otherwise it is empty. */ phys_addr_t __ro_after_init arm64_dma_phys_limit; /* * To make optimal use of block mappings when laying out the linear * mapping, round down the base of physical memory to a size that can * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE * (64k granule), or a multiple that can be mapped using contiguous bits * in the page tables: 32 * PMD_SIZE (16k granule) */ #if defined(CONFIG_ARM64_4K_PAGES) #define ARM64_MEMSTART_SHIFT PUD_SHIFT #elif defined(CONFIG_ARM64_16K_PAGES) #define ARM64_MEMSTART_SHIFT CONT_PMD_SHIFT #else #define ARM64_MEMSTART_SHIFT PMD_SHIFT #endif /* * sparsemem vmemmap imposes an additional requirement on the alignment of * memstart_addr, due to the fact that the base of the vmemmap region * has a direct correspondence, and needs to appear sufficiently aligned * in the virtual address space. */ #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS #define ARM64_MEMSTART_ALIGN (1UL << SECTION_SIZE_BITS) #else #define ARM64_MEMSTART_ALIGN (1UL << ARM64_MEMSTART_SHIFT) #endif static void __init arch_reserve_crashkernel(void) { unsigned long long low_size = 0; unsigned long long crash_base, crash_size; char *cmdline = boot_command_line; bool high = false; int ret; if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) return; ret = parse_crashkernel(cmdline, memblock_phys_mem_size(), &crash_size, &crash_base, &low_size, &high); if (ret) return; reserve_crashkernel_generic(cmdline, crash_size, crash_base, low_size, high); } static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit) { /** * Information we get from firmware (e.g. DT dma-ranges) describe DMA * bus constraints. Devices using DMA might have their own limitations. * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM * DMA zone on platforms that have RAM there. */ if (memblock_start_of_DRAM() < U32_MAX) zone_limit = min(zone_limit, U32_MAX); return min(zone_limit, memblock_end_of_DRAM() - 1) + 1; } static void __init zone_sizes_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; phys_addr_t __maybe_unused acpi_zone_dma_limit; phys_addr_t __maybe_unused dt_zone_dma_limit; phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(DMA_BIT_MASK(32)); #ifdef CONFIG_ZONE_DMA acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address(); dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL); zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit); arm64_dma_phys_limit = max_zone_phys(zone_dma_limit); max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); #endif #ifdef CONFIG_ZONE_DMA32 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); if (!arm64_dma_phys_limit) arm64_dma_phys_limit = dma32_phys_limit; #endif if (!arm64_dma_phys_limit) arm64_dma_phys_limit = PHYS_MASK + 1; max_zone_pfns[ZONE_NORMAL] = max_pfn; free_area_init(max_zone_pfns); } int pfn_is_map_memory(unsigned long pfn) { phys_addr_t addr = PFN_PHYS(pfn); /* avoid false positives for bogus PFNs, see comment in pfn_valid() */ if (PHYS_PFN(addr) != pfn) return 0; return memblock_is_map_memory(addr); } EXPORT_SYMBOL(pfn_is_map_memory); static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX; /* * Limit the memory size that was specified via FDT. */ static int __init early_mem(char *p) { if (!p) return 1; memory_limit = memparse(p, &p) & PAGE_MASK; pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); return 0; } early_param("mem", early_mem); void __init arm64_memblock_init(void) { s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual); /* * Corner case: 52-bit VA capable systems running KVM in nVHE mode may * be limited in their ability to support a linear map that exceeds 51 * bits of VA space, depending on the placement of the ID map. Given * that the placement of the ID map may be randomized, let's simply * limit the kernel's linear map to 51 bits as well if we detect this * configuration. */ if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 && is_hyp_mode_available() && !is_kernel_in_hyp_mode()) { pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n"); linear_region_size = min_t(u64, linear_region_size, BIT(51)); } /* Remove memory above our supported physical address size */ memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); /* * Select a suitable value for the base of physical memory. */ memstart_addr = round_down(memblock_start_of_DRAM(), ARM64_MEMSTART_ALIGN); if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size) pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n"); /* * Remove the memory that we will not be able to cover with the * linear mapping. Take care not to clip the kernel which may be * high in memory. */ memblock_remove(max_t(u64, memstart_addr + linear_region_size, __pa_symbol(_end)), ULLONG_MAX); if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { /* ensure that memstart_addr remains sufficiently aligned */ memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, ARM64_MEMSTART_ALIGN); memblock_remove(0, memstart_addr); } /* * If we are running with a 52-bit kernel VA config on a system that * does not support it, we have to place the available physical * memory in the 48-bit addressable part of the linear region, i.e., * we have to move it upward. Since memstart_addr represents the * physical address of PAGE_OFFSET, we have to *subtract* from it. */ if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52); /* * Apply the memory limit if it was set. Since the kernel may be loaded * high up in memory, add back the kernel region that must be accessible * via the linear mapping. */ if (memory_limit != PHYS_ADDR_MAX) { memblock_mem_limit_remove_map(memory_limit); memblock_add(__pa_symbol(_text), (u64)(_end - _text)); } if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { /* * Add back the memory we just removed if it results in the * initrd to become inaccessible via the linear mapping. * Otherwise, this is a no-op */ u64 base = phys_initrd_start & PAGE_MASK; u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; /* * We can only add back the initrd memory if we don't end up * with more memory than we can address via the linear mapping. * It is up to the bootloader to position the kernel and the * initrd reasonably close to each other (i.e., within 32 GB of * each other) so that all granule/#levels combinations can * always access both. */ if (WARN(base < memblock_start_of_DRAM() || base + size > memblock_start_of_DRAM() + linear_region_size, "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { phys_initrd_size = 0; } else { memblock_add(base, size); memblock_clear_nomap(base, size); memblock_reserve(base, size); } } if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { extern u16 memstart_offset_seed; u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); int parange = cpuid_feature_extract_unsigned_field( mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT); s64 range = linear_region_size - BIT(id_aa64mmfr0_parange_to_phys_shift(parange)); /* * If the size of the linear region exceeds, by a sufficient * margin, the size of the region that the physical memory can * span, randomize the linear region as well. */ if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) { range /= ARM64_MEMSTART_ALIGN; memstart_addr -= ARM64_MEMSTART_ALIGN * ((range * memstart_offset_seed) >> 16); } } /* * Register the kernel text, kernel data, initrd, and initial * pagetables with memblock. */ memblock_reserve(__pa_symbol(_stext), _end - _stext); if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { /* the generic initrd code expects virtual addresses */ initrd_start = __phys_to_virt(phys_initrd_start); initrd_end = initrd_start + phys_initrd_size; } early_init_fdt_scan_reserved_mem(); high_memory = __va(memblock_end_of_DRAM() - 1) + 1; } void __init bootmem_init(void) { unsigned long min, max; min = PFN_UP(memblock_start_of_DRAM()); max = PFN_DOWN(memblock_end_of_DRAM()); early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); max_pfn = max_low_pfn = max; min_low_pfn = min; arch_numa_init(); /* * must be done after arch_numa_init() which calls numa_init() to * initialize node_online_map that gets used in hugetlb_cma_reserve() * while allocating required CMA size across online nodes. */ #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) arm64_hugetlb_cma_reserve(); #endif kvm_hyp_reserve(); /* * sparse_init() tries to allocate memory from memblock, so must be * done after the fixed reservations */ sparse_init(); zone_sizes_init(); /* * Reserve the CMA area after arm64_dma_phys_limit was initialised. */ dma_contiguous_reserve(arm64_dma_phys_limit); /* * request_standard_resources() depends on crashkernel's memory being * reserved, so do it here. */ arch_reserve_crashkernel(); memblock_dump_all(); } /* * mem_init() marks the free areas in the mem_map and tells us how much memory * is free. This is done after various parts of the system have claimed their * memory after the kernel image. */ void __init mem_init(void) { unsigned int flags = SWIOTLB_VERBOSE; bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit); if (is_realm_world()) { swiotlb = true; flags |= SWIOTLB_FORCE; } if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) { /* * If no bouncing needed for ZONE_DMA, reduce the swiotlb * buffer for kmalloc() bouncing to 1MB per 1GB of RAM. */ unsigned long size = DIV_ROUND_UP(memblock_phys_mem_size(), 1024); swiotlb_adjust_size(min(swiotlb_size_or_default(), size)); swiotlb = true; } swiotlb_init(swiotlb, flags); swiotlb_update_mem_attributes(); /* this will put all unused low memory onto the freelists */ memblock_free_all(); /* * Check boundaries twice: Some fundamental inconsistencies can be * detected at build time already. */ #ifdef CONFIG_COMPAT BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); #endif /* * Selected page table levels should match when derived from * scratch using the virtual address range and page size. */ BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) != CONFIG_PGTABLE_LEVELS); if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { extern int sysctl_overcommit_memory; /* * On a machine this small we won't get anywhere without * overcommit, so turn it on by default. */ sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; } } void free_initmem(void) { void *lm_init_begin = lm_alias(__init_begin); void *lm_init_end = lm_alias(__init_end); WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE)); WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE)); /* Delete __init region from memblock.reserved. */ memblock_free(lm_init_begin, lm_init_end - lm_init_begin); free_reserved_area(lm_init_begin, lm_init_end, POISON_FREE_INITMEM, "unused kernel"); /* * Unmap the __init region but leave the VM area in place. This * prevents the region from being reused for kernel modules, which * is not supported by kallsyms. */ vunmap_range((u64)__init_begin, (u64)__init_end); } void dump_mem_limit(void) { if (memory_limit != PHYS_ADDR_MAX) { pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); } else { pr_emerg("Memory Limit: none\n"); } } #ifdef CONFIG_EXECMEM static u64 module_direct_base __ro_after_init = 0; static u64 module_plt_base __ro_after_init = 0; /* * Choose a random page-aligned base address for a window of 'size' bytes which * entirely contains the interval [start, end - 1]. */ static u64 __init random_bounding_box(u64 size, u64 start, u64 end) { u64 max_pgoff, pgoff; if ((end - start) >= size) return 0; max_pgoff = (size - (end - start)) / PAGE_SIZE; pgoff = get_random_u32_inclusive(0, max_pgoff); return start - pgoff * PAGE_SIZE; } /* * Modules may directly reference data and text anywhere within the kernel * image and other modules. References using PREL32 relocations have a +/-2G * range, and so we need to ensure that the entire kernel image and all modules * fall within a 2G window such that these are always within range. * * Modules may directly branch to functions and code within the kernel text, * and to functions and code within other modules. These branches will use * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure * that the entire kernel text and all module text falls within a 128M window * such that these are always within range. With PLTs, we can expand this to a * 2G window. * * We chose the 128M region to surround the entire kernel image (rather than * just the text) as using the same bounds for the 128M and 2G regions ensures * by construction that we never select a 128M region that is not a subset of * the 2G region. For very large and unusual kernel configurations this means * we may fall back to PLTs where they could have been avoided, but this keeps * the logic significantly simpler. */ static int __init module_init_limits(void) { u64 kernel_end = (u64)_end; u64 kernel_start = (u64)_text; u64 kernel_size = kernel_end - kernel_start; /* * The default modules region is placed immediately below the kernel * image, and is large enough to use the full 2G relocation range. */ BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END); BUILD_BUG_ON(MODULES_VSIZE < SZ_2G); if (!kaslr_enabled()) { if (kernel_size < SZ_128M) module_direct_base = kernel_end - SZ_128M; if (kernel_size < SZ_2G) module_plt_base = kernel_end - SZ_2G; } else { u64 min = kernel_start; u64 max = kernel_end; if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) { pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n"); } else { module_direct_base = random_bounding_box(SZ_128M, min, max); if (module_direct_base) { min = module_direct_base; max = module_direct_base + SZ_128M; } } module_plt_base = random_bounding_box(SZ_2G, min, max); } pr_info("%llu pages in range for non-PLT usage", module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0); pr_info("%llu pages in range for PLT usage", module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0); return 0; } static struct execmem_info execmem_info __ro_after_init; struct execmem_info __init *execmem_arch_setup(void) { unsigned long fallback_start = 0, fallback_end = 0; unsigned long start = 0, end = 0; module_init_limits(); /* * Where possible, prefer to allocate within direct branch range of the * kernel such that no PLTs are necessary. */ if (module_direct_base) { start = module_direct_base; end = module_direct_base + SZ_128M; if (module_plt_base) { fallback_start = module_plt_base; fallback_end = module_plt_base + SZ_2G; } } else if (module_plt_base) { start = module_plt_base; end = module_plt_base + SZ_2G; } execmem_info = (struct execmem_info){ .ranges = { [EXECMEM_DEFAULT] = { .start = start, .end = end, .pgprot = PAGE_KERNEL, .alignment = 1, .fallback_start = fallback_start, .fallback_end = fallback_end, }, [EXECMEM_KPROBES] = { .start = VMALLOC_START, .end = VMALLOC_END, .pgprot = PAGE_KERNEL_ROX, .alignment = 1, }, [EXECMEM_BPF] = { .start = VMALLOC_START, .end = VMALLOC_END, .pgprot = PAGE_KERNEL, .alignment = 1, }, }, }; return &execmem_info; } #endif /* CONFIG_EXECMEM */