/* * Common CPM code * * Author: Scott Wood * * Copyright 2007-2008,2010 Freescale Semiconductor, Inc. * * Some parts derived from commproc.c/cpm2_common.c, which is: * Copyright (c) 1997 Dan error_act (dmalek@jlc.net) * Copyright (c) 1999-2001 Dan Malek * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com) * 2006 (c) MontaVista Software, Inc. * Vitaly Bordug * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_CPM2) || defined(CONFIG_8xx_GPIO) #include #endif #ifdef CONFIG_PPC_EARLY_DEBUG_CPM static u32 __iomem *cpm_udbg_txdesc = (u32 __iomem __force *)CONFIG_PPC_EARLY_DEBUG_CPM_ADDR; static void udbg_putc_cpm(char c) { u8 __iomem *txbuf = (u8 __iomem __force *)in_be32(&cpm_udbg_txdesc[1]); if (c == '\n') udbg_putc_cpm('\r'); while (in_be32(&cpm_udbg_txdesc[0]) & 0x80000000) ; out_8(txbuf, c); out_be32(&cpm_udbg_txdesc[0], 0xa0000001); } void __init udbg_init_cpm(void) { if (cpm_udbg_txdesc) { #ifdef CONFIG_CPM2 setbat(1, 0xf0000000, 0xf0000000, 1024*1024, PAGE_KERNEL_NCG); #endif udbg_putc = udbg_putc_cpm; } } #endif static struct gen_pool *muram_pool; static spinlock_t cpm_muram_lock; static u8 __iomem *muram_vbase; static phys_addr_t muram_pbase; struct muram_block { struct list_head head; unsigned long start; int size; }; static LIST_HEAD(muram_block_list); /* max address size we deal with */ #define OF_MAX_ADDR_CELLS 4 #define GENPOOL_OFFSET (4096 * 8) int cpm_muram_init(void) { struct device_node *np; struct resource r; u32 zero[OF_MAX_ADDR_CELLS] = {}; resource_size_t max = 0; int i = 0; int ret = 0; if (muram_pbase) return 0; spin_lock_init(&cpm_muram_lock); np = of_find_compatible_node(NULL, NULL, "fsl,cpm-muram-data"); if (!np) { /* try legacy bindings */ np = of_find_node_by_name(NULL, "data-only"); if (!np) { pr_err("Cannot find CPM muram data node"); ret = -ENODEV; goto out_muram; } } muram_pool = gen_pool_create(0, -1); muram_pbase = of_translate_address(np, zero); if (muram_pbase == (phys_addr_t)OF_BAD_ADDR) { pr_err("Cannot translate zero through CPM muram node"); ret = -ENODEV; goto out_pool; } while (of_address_to_resource(np, i++, &r) == 0) { if (r.end > max) max = r.end; ret = gen_pool_add(muram_pool, r.start - muram_pbase + GENPOOL_OFFSET, resource_size(&r), -1); if (ret) { pr_err("QE: couldn't add muram to pool!\n"); goto out_pool; } } muram_vbase = ioremap(muram_pbase, max - muram_pbase + 1); if (!muram_vbase) { pr_err("Cannot map QE muram"); ret = -ENOMEM; goto out_pool; } goto out_muram; out_pool: gen_pool_destroy(muram_pool); out_muram: of_node_put(np); return ret; } /* * cpm_muram_alloc - allocate the requested size worth of multi-user ram * @size: number of bytes to allocate * @align: requested alignment, in bytes * * This function returns an offset into the muram area. * Use cpm_dpram_addr() to get the virtual address of the area. * Use cpm_muram_free() to free the allocation. */ unsigned long cpm_muram_alloc(unsigned long size, unsigned long align) { unsigned long start; unsigned long flags; struct genpool_data_align muram_pool_data; spin_lock_irqsave(&cpm_muram_lock, flags); muram_pool_data.align = align; start = cpm_muram_alloc_common(size, gen_pool_first_fit_align, &muram_pool_data); spin_unlock_irqrestore(&cpm_muram_lock, flags); return start; } EXPORT_SYMBOL(cpm_muram_alloc); /** * cpm_muram_free - free a chunk of multi-user ram * @offset: The beginning of the chunk as returned by cpm_muram_alloc(). */ int cpm_muram_free(unsigned long offset) { unsigned long flags; int size; struct muram_block *tmp; size = 0; spin_lock_irqsave(&cpm_muram_lock, flags); list_for_each_entry(tmp, &muram_block_list, head) { if (tmp->start == offset) { size = tmp->size; list_del(&tmp->head); kfree(tmp); break; } } gen_pool_free(muram_pool, offset + GENPOOL_OFFSET, size); spin_unlock_irqrestore(&cpm_muram_lock, flags); return size; } EXPORT_SYMBOL(cpm_muram_free); /* * cpm_muram_alloc_fixed - reserve a specific region of multi-user ram * @offset: offset of allocation start address * @size: number of bytes to allocate * This function returns an offset into the muram area * Use cpm_dpram_addr() to get the virtual address of the area. * Use cpm_muram_free() to free the allocation. */ unsigned long cpm_muram_alloc_fixed(unsigned long offset, unsigned long size) { unsigned long start; unsigned long flags; struct genpool_data_fixed muram_pool_data_fixed; spin_lock_irqsave(&cpm_muram_lock, flags); muram_pool_data_fixed.offset = offset + GENPOOL_OFFSET; start = cpm_muram_alloc_common(size, gen_pool_fixed_alloc, &muram_pool_data_fixed); spin_unlock_irqrestore(&cpm_muram_lock, flags); return start; } EXPORT_SYMBOL(cpm_muram_alloc_fixed); /* * cpm_muram_alloc_common - cpm_muram_alloc common code * @size: number of bytes to allocate * @algo: algorithm for alloc. * @data: data for genalloc's algorithm. * * This function returns an offset into the muram area. */ unsigned long cpm_muram_alloc_common(unsigned long size, genpool_algo_t algo, void *data) { struct muram_block *entry; unsigned long start; start = gen_pool_alloc_algo(muram_pool, size, algo, data); if (!start) goto out2; start = start - GENPOOL_OFFSET; memset_io(cpm_muram_addr(start), 0, size); entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) goto out1; entry->start = start; entry->size = size; list_add(&entry->head, &muram_block_list); return start; out1: gen_pool_free(muram_pool, start, size); out2: return (unsigned long)-ENOMEM; } /** * cpm_muram_addr - turn a muram offset into a virtual address * @offset: muram offset to convert */ void __iomem *cpm_muram_addr(unsigned long offset) { return muram_vbase + offset; } EXPORT_SYMBOL(cpm_muram_addr); unsigned long cpm_muram_offset(void __iomem *addr) { return addr - (void __iomem *)muram_vbase; } EXPORT_SYMBOL(cpm_muram_offset); /** * cpm_muram_dma - turn a muram virtual address into a DMA address * @offset: virtual address from cpm_muram_addr() to convert */ dma_addr_t cpm_muram_dma(void __iomem *addr) { return muram_pbase + ((u8 __iomem *)addr - muram_vbase); } EXPORT_SYMBOL(cpm_muram_dma); #if defined(CONFIG_CPM2) || defined(CONFIG_8xx_GPIO) struct cpm2_ioports { u32 dir, par, sor, odr, dat; u32 res[3]; }; struct cpm2_gpio32_chip { struct of_mm_gpio_chip mm_gc; spinlock_t lock; /* shadowed data register to clear/set bits safely */ u32 cpdata; }; static inline struct cpm2_gpio32_chip * to_cpm2_gpio32_chip(struct of_mm_gpio_chip *mm_gc) { return container_of(mm_gc, struct cpm2_gpio32_chip, mm_gc); } static void cpm2_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc) { struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc); struct cpm2_ioports __iomem *iop = mm_gc->regs; cpm2_gc->cpdata = in_be32(&iop->dat); } static int cpm2_gpio32_get(struct gpio_chip *gc, unsigned int gpio) { struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); struct cpm2_ioports __iomem *iop = mm_gc->regs; u32 pin_mask; pin_mask = 1 << (31 - gpio); return !!(in_be32(&iop->dat) & pin_mask); } static void __cpm2_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask, int value) { struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc); struct cpm2_ioports __iomem *iop = mm_gc->regs; if (value) cpm2_gc->cpdata |= pin_mask; else cpm2_gc->cpdata &= ~pin_mask; out_be32(&iop->dat, cpm2_gc->cpdata); } static void cpm2_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value) { struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc); unsigned long flags; u32 pin_mask = 1 << (31 - gpio); spin_lock_irqsave(&cpm2_gc->lock, flags); __cpm2_gpio32_set(mm_gc, pin_mask, value); spin_unlock_irqrestore(&cpm2_gc->lock, flags); } static int cpm2_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val) { struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc); struct cpm2_ioports __iomem *iop = mm_gc->regs; unsigned long flags; u32 pin_mask = 1 << (31 - gpio); spin_lock_irqsave(&cpm2_gc->lock, flags); setbits32(&iop->dir, pin_mask); __cpm2_gpio32_set(mm_gc, pin_mask, val); spin_unlock_irqrestore(&cpm2_gc->lock, flags); return 0; } static int cpm2_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio) { struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc); struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc); struct cpm2_ioports __iomem *iop = mm_gc->regs; unsigned long flags; u32 pin_mask = 1 << (31 - gpio); spin_lock_irqsave(&cpm2_gc->lock, flags); clrbits32(&iop->dir, pin_mask); spin_unlock_irqrestore(&cpm2_gc->lock, flags); return 0; } int cpm2_gpiochip_add32(struct device_node *np) { struct cpm2_gpio32_chip *cpm2_gc; struct of_mm_gpio_chip *mm_gc; struct gpio_chip *gc; cpm2_gc = kzalloc(sizeof(*cpm2_gc), GFP_KERNEL); if (!cpm2_gc) return -ENOMEM; spin_lock_init(&cpm2_gc->lock); mm_gc = &cpm2_gc->mm_gc; gc = &mm_gc->gc; mm_gc->save_regs = cpm2_gpio32_save_regs; gc->ngpio = 32; gc->direction_input = cpm2_gpio32_dir_in; gc->direction_output = cpm2_gpio32_dir_out; gc->get = cpm2_gpio32_get; gc->set = cpm2_gpio32_set; return of_mm_gpiochip_add(np, mm_gc); } #endif /* CONFIG_CPM2 || CONFIG_8xx_GPIO */