// SPDX-License-Identifier: GPL-2.0 /* smp.c: Sparc SMP support. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org) */ #include <asm/head.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/threads.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/cache.h> #include <linux/delay.h> #include <linux/profile.h> #include <linux/cpu.h> #include <asm/ptrace.h> #include <linux/atomic.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/oplib.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/cpudata.h> #include <asm/timer.h> #include <asm/leon.h> #include "kernel.h" #include "irq.h" volatile unsigned long cpu_callin_map[NR_CPUS] = {0,}; cpumask_t smp_commenced_mask = CPU_MASK_NONE; const struct sparc32_ipi_ops *sparc32_ipi_ops; /* The only guaranteed locking primitive available on all Sparc * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically * places the current byte at the effective address into dest_reg and * places 0xff there afterwards. Pretty lame locking primitive * compared to the Alpha and the Intel no? Most Sparcs have 'swap' * instruction which is much better... */ void smp_store_cpu_info(int id) { int cpu_node; int mid; cpu_data(id).udelay_val = loops_per_jiffy; cpu_find_by_mid(id, &cpu_node); cpu_data(id).clock_tick = prom_getintdefault(cpu_node, "clock-frequency", 0); cpu_data(id).prom_node = cpu_node; mid = cpu_get_hwmid(cpu_node); if (mid < 0) { printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08x", id, cpu_node); mid = 0; } cpu_data(id).mid = mid; } void __init smp_cpus_done(unsigned int max_cpus) { unsigned long bogosum = 0; int cpu, num = 0; for_each_online_cpu(cpu) { num++; bogosum += cpu_data(cpu).udelay_val; } printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n", num, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); switch(sparc_cpu_model) { case sun4m: smp4m_smp_done(); break; case sun4d: smp4d_smp_done(); break; case sparc_leon: leon_smp_done(); break; case sun4e: printk("SUN4E\n"); BUG(); break; case sun4u: printk("SUN4U\n"); BUG(); break; default: printk("UNKNOWN!\n"); BUG(); break; } } void cpu_panic(void) { printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); panic("SMP bolixed\n"); } struct linux_prom_registers smp_penguin_ctable = { 0 }; void smp_send_reschedule(int cpu) { /* * CPU model dependent way of implementing IPI generation targeting * a single CPU. The trap handler needs only to do trap entry/return * to call schedule. */ sparc32_ipi_ops->resched(cpu); } void smp_send_stop(void) { } void arch_send_call_function_single_ipi(int cpu) { /* trigger one IPI single call on one CPU */ sparc32_ipi_ops->single(cpu); } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { int cpu; /* trigger IPI mask call on each CPU */ for_each_cpu(cpu, mask) sparc32_ipi_ops->mask_one(cpu); } void smp_resched_interrupt(void) { irq_enter(); scheduler_ipi(); local_cpu_data().irq_resched_count++; irq_exit(); /* re-schedule routine called by interrupt return code. */ } void smp_call_function_single_interrupt(void) { irq_enter(); generic_smp_call_function_single_interrupt(); local_cpu_data().irq_call_count++; irq_exit(); } void smp_call_function_interrupt(void) { irq_enter(); generic_smp_call_function_interrupt(); local_cpu_data().irq_call_count++; irq_exit(); } int setup_profiling_timer(unsigned int multiplier) { return -EINVAL; } void __init smp_prepare_cpus(unsigned int max_cpus) { int i, cpuid, extra; printk("Entering SMP Mode...\n"); extra = 0; for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) { if (cpuid >= NR_CPUS) extra++; } /* i = number of cpus */ if (extra && max_cpus > i - extra) printk("Warning: NR_CPUS is too low to start all cpus\n"); smp_store_cpu_info(boot_cpu_id); switch(sparc_cpu_model) { case sun4m: smp4m_boot_cpus(); break; case sun4d: smp4d_boot_cpus(); break; case sparc_leon: leon_boot_cpus(); break; case sun4e: printk("SUN4E\n"); BUG(); break; case sun4u: printk("SUN4U\n"); BUG(); break; default: printk("UNKNOWN!\n"); BUG(); break; } } /* Set this up early so that things like the scheduler can init * properly. We use the same cpu mask for both the present and * possible cpu map. */ void __init smp_setup_cpu_possible_map(void) { int instance, mid; instance = 0; while (!cpu_find_by_instance(instance, NULL, &mid)) { if (mid < NR_CPUS) { set_cpu_possible(mid, true); set_cpu_present(mid, true); } instance++; } } void __init smp_prepare_boot_cpu(void) { int cpuid = hard_smp_processor_id(); if (cpuid >= NR_CPUS) { prom_printf("Serious problem, boot cpu id >= NR_CPUS\n"); prom_halt(); } if (cpuid != 0) printk("boot cpu id != 0, this could work but is untested\n"); current_thread_info()->cpu = cpuid; set_cpu_online(cpuid, true); set_cpu_possible(cpuid, true); } int __cpu_up(unsigned int cpu, struct task_struct *tidle) { int ret=0; switch(sparc_cpu_model) { case sun4m: ret = smp4m_boot_one_cpu(cpu, tidle); break; case sun4d: ret = smp4d_boot_one_cpu(cpu, tidle); break; case sparc_leon: ret = leon_boot_one_cpu(cpu, tidle); break; case sun4e: printk("SUN4E\n"); BUG(); break; case sun4u: printk("SUN4U\n"); BUG(); break; default: printk("UNKNOWN!\n"); BUG(); break; } if (!ret) { cpumask_set_cpu(cpu, &smp_commenced_mask); while (!cpu_online(cpu)) mb(); } return ret; } static void arch_cpu_pre_starting(void *arg) { local_ops->cache_all(); local_ops->tlb_all(); switch(sparc_cpu_model) { case sun4m: sun4m_cpu_pre_starting(arg); break; case sun4d: sun4d_cpu_pre_starting(arg); break; case sparc_leon: leon_cpu_pre_starting(arg); break; default: BUG(); } } static void arch_cpu_pre_online(void *arg) { unsigned int cpuid = hard_smp_processor_id(); register_percpu_ce(cpuid); calibrate_delay(); smp_store_cpu_info(cpuid); local_ops->cache_all(); local_ops->tlb_all(); switch(sparc_cpu_model) { case sun4m: sun4m_cpu_pre_online(arg); break; case sun4d: sun4d_cpu_pre_online(arg); break; case sparc_leon: leon_cpu_pre_online(arg); break; default: BUG(); } } static void sparc_start_secondary(void *arg) { unsigned int cpu; /* * SMP booting is extremely fragile in some architectures. So run * the cpu initialization code first before anything else. */ arch_cpu_pre_starting(arg); preempt_disable(); cpu = smp_processor_id(); notify_cpu_starting(cpu); arch_cpu_pre_online(arg); /* Set the CPU in the cpu_online_mask */ set_cpu_online(cpu, true); /* Enable local interrupts now */ local_irq_enable(); wmb(); cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); /* We should never reach here! */ BUG(); } void smp_callin(void) { sparc_start_secondary(NULL); } void smp_bogo(struct seq_file *m) { int i; for_each_online_cpu(i) { seq_printf(m, "Cpu%dBogo\t: %lu.%02lu\n", i, cpu_data(i).udelay_val/(500000/HZ), (cpu_data(i).udelay_val/(5000/HZ))%100); } } void smp_info(struct seq_file *m) { int i; seq_printf(m, "State:\n"); for_each_online_cpu(i) seq_printf(m, "CPU%d\t\t: online\n", i); }