/* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs * * Pentium III FXSR, SSE support * Gareth Hughes , May 2000 */ /* * Handle hardware traps and faults. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_64 #include #include #include #else #include #include #include #endif DECLARE_BITMAP(system_vectors, NR_VECTORS); static inline void cond_local_irq_enable(struct pt_regs *regs) { if (regs->flags & X86_EFLAGS_IF) local_irq_enable(); } static inline void cond_local_irq_disable(struct pt_regs *regs) { if (regs->flags & X86_EFLAGS_IF) local_irq_disable(); } __always_inline int is_valid_bugaddr(unsigned long addr) { if (addr < TASK_SIZE_MAX) return 0; /* * We got #UD, if the text isn't readable we'd have gotten * a different exception. */ return *(unsigned short *)addr == INSN_UD2; } static nokprobe_inline int do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, struct pt_regs *regs, long error_code) { if (v8086_mode(regs)) { /* * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. * On nmi (interrupt 2), do_trap should not be called. */ if (trapnr < X86_TRAP_UD) { if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr)) return 0; } } else if (!user_mode(regs)) { if (fixup_exception(regs, trapnr, error_code, 0)) return 0; tsk->thread.error_code = error_code; tsk->thread.trap_nr = trapnr; die(str, regs, error_code); } /* * We want error_code and trap_nr set for userspace faults and * kernelspace faults which result in die(), but not * kernelspace faults which are fixed up. die() gives the * process no chance to handle the signal and notice the * kernel fault information, so that won't result in polluting * the information about previously queued, but not yet * delivered, faults. See also exc_general_protection below. */ tsk->thread.error_code = error_code; tsk->thread.trap_nr = trapnr; return -1; } static void show_signal(struct task_struct *tsk, int signr, const char *type, const char *desc, struct pt_regs *regs, long error_code) { if (show_unhandled_signals && unhandled_signal(tsk, signr) && printk_ratelimit()) { pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", tsk->comm, task_pid_nr(tsk), type, desc, regs->ip, regs->sp, error_code); print_vma_addr(KERN_CONT " in ", regs->ip); pr_cont("\n"); } } static void do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, long error_code, int sicode, void __user *addr) { struct task_struct *tsk = current; if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) return; show_signal(tsk, signr, "trap ", str, regs, error_code); if (!sicode) force_sig(signr); else force_sig_fault(signr, sicode, addr); } NOKPROBE_SYMBOL(do_trap); static void do_error_trap(struct pt_regs *regs, long error_code, char *str, unsigned long trapnr, int signr, int sicode, void __user *addr) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != NOTIFY_STOP) { cond_local_irq_enable(regs); do_trap(trapnr, signr, str, regs, error_code, sicode, addr); cond_local_irq_disable(regs); } } /* * Posix requires to provide the address of the faulting instruction for * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. * * This address is usually regs->ip, but when an uprobe moved the code out * of line then regs->ip points to the XOL code which would confuse * anything which analyzes the fault address vs. the unmodified binary. If * a trap happened in XOL code then uprobe maps regs->ip back to the * original instruction address. */ static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) { return (void __user *)uprobe_get_trap_addr(regs); } DEFINE_IDTENTRY(exc_divide_error) { do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE, FPE_INTDIV, error_get_trap_addr(regs)); } DEFINE_IDTENTRY(exc_overflow) { do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); } #ifdef CONFIG_X86_F00F_BUG void handle_invalid_op(struct pt_regs *regs) #else static inline void handle_invalid_op(struct pt_regs *regs) #endif { do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, ILL_ILLOPN, error_get_trap_addr(regs)); } static noinstr bool handle_bug(struct pt_regs *regs) { bool handled = false; if (!is_valid_bugaddr(regs->ip)) return handled; /* * All lies, just get the WARN/BUG out. */ instrumentation_begin(); /* * Since we're emulating a CALL with exceptions, restore the interrupt * state to what it was at the exception site. */ if (regs->flags & X86_EFLAGS_IF) raw_local_irq_enable(); if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { regs->ip += LEN_UD2; handled = true; } if (regs->flags & X86_EFLAGS_IF) raw_local_irq_disable(); instrumentation_end(); return handled; } DEFINE_IDTENTRY_RAW(exc_invalid_op) { bool rcu_exit; /* * We use UD2 as a short encoding for 'CALL __WARN', as such * handle it before exception entry to avoid recursive WARN * in case exception entry is the one triggering WARNs. */ if (!user_mode(regs) && handle_bug(regs)) return; rcu_exit = idtentry_enter_cond_rcu(regs); instrumentation_begin(); handle_invalid_op(regs); instrumentation_end(); idtentry_exit_cond_rcu(regs, rcu_exit); } DEFINE_IDTENTRY(exc_coproc_segment_overrun) { do_error_trap(regs, 0, "coprocessor segment overrun", X86_TRAP_OLD_MF, SIGFPE, 0, NULL); } DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) { do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 0, NULL); } DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) { do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, SIGBUS, 0, NULL); } DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) { do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 0, NULL); } DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) { char *str = "alignment check"; if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) return; if (!user_mode(regs)) die("Split lock detected\n", regs, error_code); local_irq_enable(); if (handle_user_split_lock(regs, error_code)) return; do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, error_code, BUS_ADRALN, NULL); local_irq_disable(); } #ifdef CONFIG_VMAP_STACK __visible void __noreturn handle_stack_overflow(const char *message, struct pt_regs *regs, unsigned long fault_address) { printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", (void *)fault_address, current->stack, (char *)current->stack + THREAD_SIZE - 1); die(message, regs, 0); /* Be absolutely certain we don't return. */ panic("%s", message); } #endif /* * Runs on an IST stack for x86_64 and on a special task stack for x86_32. * * On x86_64, this is more or less a normal kernel entry. Notwithstanding the * SDM's warnings about double faults being unrecoverable, returning works as * expected. Presumably what the SDM actually means is that the CPU may get * the register state wrong on entry, so returning could be a bad idea. * * Various CPU engineers have promised that double faults due to an IRET fault * while the stack is read-only are, in fact, recoverable. * * On x86_32, this is entered through a task gate, and regs are synthesized * from the TSS. Returning is, in principle, okay, but changes to regs will * be lost. If, for some reason, we need to return to a context with modified * regs, the shim code could be adjusted to synchronize the registers. * * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs * to be read before doing anything else. */ DEFINE_IDTENTRY_DF(exc_double_fault) { static const char str[] = "double fault"; struct task_struct *tsk = current; #ifdef CONFIG_VMAP_STACK unsigned long address = read_cr2(); #endif #ifdef CONFIG_X86_ESPFIX64 extern unsigned char native_irq_return_iret[]; /* * If IRET takes a non-IST fault on the espfix64 stack, then we * end up promoting it to a doublefault. In that case, take * advantage of the fact that we're not using the normal (TSS.sp0) * stack right now. We can write a fake #GP(0) frame at TSS.sp0 * and then modify our own IRET frame so that, when we return, * we land directly at the #GP(0) vector with the stack already * set up according to its expectations. * * The net result is that our #GP handler will think that we * entered from usermode with the bad user context. * * No need for nmi_enter() here because we don't use RCU. */ if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && regs->cs == __KERNEL_CS && regs->ip == (unsigned long)native_irq_return_iret) { struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; unsigned long *p = (unsigned long *)regs->sp; /* * regs->sp points to the failing IRET frame on the * ESPFIX64 stack. Copy it to the entry stack. This fills * in gpregs->ss through gpregs->ip. * */ gpregs->ip = p[0]; gpregs->cs = p[1]; gpregs->flags = p[2]; gpregs->sp = p[3]; gpregs->ss = p[4]; gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ /* * Adjust our frame so that we return straight to the #GP * vector with the expected RSP value. This is safe because * we won't enable interupts or schedule before we invoke * general_protection, so nothing will clobber the stack * frame we just set up. * * We will enter general_protection with kernel GSBASE, * which is what the stub expects, given that the faulting * RIP will be the IRET instruction. */ regs->ip = (unsigned long)asm_exc_general_protection; regs->sp = (unsigned long)&gpregs->orig_ax; return; } #endif nmi_enter(); instrumentation_begin(); notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); tsk->thread.error_code = error_code; tsk->thread.trap_nr = X86_TRAP_DF; #ifdef CONFIG_VMAP_STACK /* * If we overflow the stack into a guard page, the CPU will fail * to deliver #PF and will send #DF instead. Similarly, if we * take any non-IST exception while too close to the bottom of * the stack, the processor will get a page fault while * delivering the exception and will generate a double fault. * * According to the SDM (footnote in 6.15 under "Interrupt 14 - * Page-Fault Exception (#PF): * * Processors update CR2 whenever a page fault is detected. If a * second page fault occurs while an earlier page fault is being * delivered, the faulting linear address of the second fault will * overwrite the contents of CR2 (replacing the previous * address). These updates to CR2 occur even if the page fault * results in a double fault or occurs during the delivery of a * double fault. * * The logic below has a small possibility of incorrectly diagnosing * some errors as stack overflows. For example, if the IDT or GDT * gets corrupted such that #GP delivery fails due to a bad descriptor * causing #GP and we hit this condition while CR2 coincidentally * points to the stack guard page, we'll think we overflowed the * stack. Given that we're going to panic one way or another * if this happens, this isn't necessarily worth fixing. * * If necessary, we could improve the test by only diagnosing * a stack overflow if the saved RSP points within 47 bytes of * the bottom of the stack: if RSP == tsk_stack + 48 and we * take an exception, the stack is already aligned and there * will be enough room SS, RSP, RFLAGS, CS, RIP, and a * possible error code, so a stack overflow would *not* double * fault. With any less space left, exception delivery could * fail, and, as a practical matter, we've overflowed the * stack even if the actual trigger for the double fault was * something else. */ if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) { handle_stack_overflow("kernel stack overflow (double-fault)", regs, address); } #endif pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); die("double fault", regs, error_code); panic("Machine halted."); instrumentation_end(); } DEFINE_IDTENTRY(exc_bounds) { if (notify_die(DIE_TRAP, "bounds", regs, 0, X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) return; cond_local_irq_enable(regs); if (!user_mode(regs)) die("bounds", regs, 0); do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); cond_local_irq_disable(regs); } enum kernel_gp_hint { GP_NO_HINT, GP_NON_CANONICAL, GP_CANONICAL }; /* * When an uncaught #GP occurs, try to determine the memory address accessed by * the instruction and return that address to the caller. Also, try to figure * out whether any part of the access to that address was non-canonical. */ static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, unsigned long *addr) { u8 insn_buf[MAX_INSN_SIZE]; struct insn insn; if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, MAX_INSN_SIZE)) return GP_NO_HINT; kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE); insn_get_modrm(&insn); insn_get_sib(&insn); *addr = (unsigned long)insn_get_addr_ref(&insn, regs); if (*addr == -1UL) return GP_NO_HINT; #ifdef CONFIG_X86_64 /* * Check that: * - the operand is not in the kernel half * - the last byte of the operand is not in the user canonical half */ if (*addr < ~__VIRTUAL_MASK && *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) return GP_NON_CANONICAL; #endif return GP_CANONICAL; } #define GPFSTR "general protection fault" DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) { char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; enum kernel_gp_hint hint = GP_NO_HINT; struct task_struct *tsk; unsigned long gp_addr; int ret; cond_local_irq_enable(regs); if (static_cpu_has(X86_FEATURE_UMIP)) { if (user_mode(regs) && fixup_umip_exception(regs)) goto exit; } if (v8086_mode(regs)) { local_irq_enable(); handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); local_irq_disable(); return; } tsk = current; if (user_mode(regs)) { tsk->thread.error_code = error_code; tsk->thread.trap_nr = X86_TRAP_GP; show_signal(tsk, SIGSEGV, "", desc, regs, error_code); force_sig(SIGSEGV); goto exit; } if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) goto exit; tsk->thread.error_code = error_code; tsk->thread.trap_nr = X86_TRAP_GP; /* * To be potentially processing a kprobe fault and to trust the result * from kprobe_running(), we have to be non-preemptible. */ if (!preemptible() && kprobe_running() && kprobe_fault_handler(regs, X86_TRAP_GP)) goto exit; ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); if (ret == NOTIFY_STOP) goto exit; if (error_code) snprintf(desc, sizeof(desc), "segment-related " GPFSTR); else hint = get_kernel_gp_address(regs, &gp_addr); if (hint != GP_NO_HINT) snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" : "maybe for address", gp_addr); /* * KASAN is interested only in the non-canonical case, clear it * otherwise. */ if (hint != GP_NON_CANONICAL) gp_addr = 0; die_addr(desc, regs, error_code, gp_addr); exit: cond_local_irq_disable(regs); } static bool do_int3(struct pt_regs *regs) { int res; #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP) == NOTIFY_STOP) return true; #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ #ifdef CONFIG_KPROBES if (kprobe_int3_handler(regs)) return true; #endif res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); return res == NOTIFY_STOP; } static void do_int3_user(struct pt_regs *regs) { if (do_int3(regs)) return; cond_local_irq_enable(regs); do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); cond_local_irq_disable(regs); } DEFINE_IDTENTRY_RAW(exc_int3) { /* * poke_int3_handler() is completely self contained code; it does (and * must) *NOT* call out to anything, lest it hits upon yet another * INT3. */ if (poke_int3_handler(regs)) return; /* * idtentry_enter_user() uses static_branch_{,un}likely() and therefore * can trigger INT3, hence poke_int3_handler() must be done * before. If the entry came from kernel mode, then use nmi_enter() * because the INT3 could have been hit in any context including * NMI. */ if (user_mode(regs)) { idtentry_enter_user(regs); instrumentation_begin(); do_int3_user(regs); instrumentation_end(); idtentry_exit_user(regs); } else { nmi_enter(); instrumentation_begin(); trace_hardirqs_off_finish(); if (!do_int3(regs)) die("int3", regs, 0); if (regs->flags & X86_EFLAGS_IF) trace_hardirqs_on_prepare(); instrumentation_end(); nmi_exit(); } } #ifdef CONFIG_X86_64 /* * Help handler running on a per-cpu (IST or entry trampoline) stack * to switch to the normal thread stack if the interrupted code was in * user mode. The actual stack switch is done in entry_64.S */ asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) { struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; if (regs != eregs) *regs = *eregs; return regs; } struct bad_iret_stack { void *error_entry_ret; struct pt_regs regs; }; asmlinkage __visible noinstr struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) { /* * This is called from entry_64.S early in handling a fault * caused by a bad iret to user mode. To handle the fault * correctly, we want to move our stack frame to where it would * be had we entered directly on the entry stack (rather than * just below the IRET frame) and we want to pretend that the * exception came from the IRET target. */ struct bad_iret_stack tmp, *new_stack = (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; /* Copy the IRET target to the temporary storage. */ __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8); /* Copy the remainder of the stack from the current stack. */ __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip)); /* Update the entry stack */ __memcpy(new_stack, &tmp, sizeof(tmp)); BUG_ON(!user_mode(&new_stack->regs)); return new_stack; } #endif static bool is_sysenter_singlestep(struct pt_regs *regs) { /* * We don't try for precision here. If we're anywhere in the region of * code that can be single-stepped in the SYSENTER entry path, then * assume that this is a useless single-step trap due to SYSENTER * being invoked with TF set. (We don't know in advance exactly * which instructions will be hit because BTF could plausibly * be set.) */ #ifdef CONFIG_X86_32 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < (unsigned long)__end_SYSENTER_singlestep_region - (unsigned long)__begin_SYSENTER_singlestep_region; #elif defined(CONFIG_IA32_EMULATION) return (regs->ip - (unsigned long)entry_SYSENTER_compat) < (unsigned long)__end_entry_SYSENTER_compat - (unsigned long)entry_SYSENTER_compat; #else return false; #endif } static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7) { /* * Disable breakpoints during exception handling; recursive exceptions * are exceedingly 'fun'. * * Since this function is NOKPROBE, and that also applies to * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a * HW_BREAKPOINT_W on our stack) * * Entry text is excluded for HW_BP_X and cpu_entry_area, which * includes the entry stack is excluded for everything. */ *dr7 = local_db_save(); /* * The Intel SDM says: * * Certain debug exceptions may clear bits 0-3. The remaining * contents of the DR6 register are never cleared by the * processor. To avoid confusion in identifying debug * exceptions, debug handlers should clear the register before * returning to the interrupted task. * * Keep it simple: clear DR6 immediately. */ get_debugreg(*dr6, 6); set_debugreg(0, 6); /* Filter out all the reserved bits which are preset to 1 */ *dr6 &= ~DR6_RESERVED; } static __always_inline void debug_exit(unsigned long dr7) { local_db_restore(dr7); } /* * Our handling of the processor debug registers is non-trivial. * We do not clear them on entry and exit from the kernel. Therefore * it is possible to get a watchpoint trap here from inside the kernel. * However, the code in ./ptrace.c has ensured that the user can * only set watchpoints on userspace addresses. Therefore the in-kernel * watchpoint trap can only occur in code which is reading/writing * from user space. Such code must not hold kernel locks (since it * can equally take a page fault), therefore it is safe to call * force_sig_info even though that claims and releases locks. * * Code in ./signal.c ensures that the debug control register * is restored before we deliver any signal, and therefore that * user code runs with the correct debug control register even though * we clear it here. * * Being careful here means that we don't have to be as careful in a * lot of more complicated places (task switching can be a bit lazy * about restoring all the debug state, and ptrace doesn't have to * find every occurrence of the TF bit that could be saved away even * by user code) * * May run on IST stack. */ static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user) { struct task_struct *tsk = current; bool user_icebp; int si_code; /* * The SDM says "The processor clears the BTF flag when it * generates a debug exception." Clear TIF_BLOCKSTEP to keep * TIF_BLOCKSTEP in sync with the hardware BTF flag. */ clear_thread_flag(TIF_BLOCKSTEP); /* * If DR6 is zero, no point in trying to handle it. The kernel is * not using INT1. */ if (!user && !dr6) return; /* * If dr6 has no reason to give us about the origin of this trap, * then it's very likely the result of an icebp/int01 trap. * User wants a sigtrap for that. */ user_icebp = user && !dr6; /* Store the virtualized DR6 value */ tsk->thread.debugreg6 = dr6; #ifdef CONFIG_KPROBES if (kprobe_debug_handler(regs)) { return; } #endif if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0, SIGTRAP) == NOTIFY_STOP) { return; } /* It's safe to allow irq's after DR6 has been saved */ cond_local_irq_enable(regs); if (v8086_mode(regs)) { handle_vm86_trap((struct kernel_vm86_regs *) regs, 0, X86_TRAP_DB); goto out; } if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { /* * Historical junk that used to handle SYSENTER single-stepping. * This should be unreachable now. If we survive for a while * without anyone hitting this warning, we'll turn this into * an oops. */ tsk->thread.debugreg6 &= ~DR_STEP; set_tsk_thread_flag(tsk, TIF_SINGLESTEP); regs->flags &= ~X86_EFLAGS_TF; } si_code = get_si_code(tsk->thread.debugreg6); if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) send_sigtrap(regs, 0, si_code); out: cond_local_irq_disable(regs); } static __always_inline void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6) { nmi_enter(); instrumentation_begin(); trace_hardirqs_off_finish(); /* * If something gets miswired and we end up here for a user mode * #DB, we will malfunction. */ WARN_ON_ONCE(user_mode(regs)); /* * Catch SYSENTER with TF set and clear DR_STEP. If this hit a * watchpoint at the same time then that will still be handled. */ if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) dr6 &= ~DR_STEP; handle_debug(regs, dr6, false); if (regs->flags & X86_EFLAGS_IF) trace_hardirqs_on_prepare(); instrumentation_end(); nmi_exit(); } static __always_inline void exc_debug_user(struct pt_regs *regs, unsigned long dr6) { /* * If something gets miswired and we end up here for a kernel mode * #DB, we will malfunction. */ WARN_ON_ONCE(!user_mode(regs)); idtentry_enter_user(regs); instrumentation_begin(); handle_debug(regs, dr6, true); instrumentation_end(); idtentry_exit_user(regs); } #ifdef CONFIG_X86_64 /* IST stack entry */ DEFINE_IDTENTRY_DEBUG(exc_debug) { unsigned long dr6, dr7; debug_enter(&dr6, &dr7); exc_debug_kernel(regs, dr6); debug_exit(dr7); } /* User entry, runs on regular task stack */ DEFINE_IDTENTRY_DEBUG_USER(exc_debug) { unsigned long dr6, dr7; debug_enter(&dr6, &dr7); exc_debug_user(regs, dr6); debug_exit(dr7); } #else /* 32 bit does not have separate entry points. */ DEFINE_IDTENTRY_RAW(exc_debug) { unsigned long dr6, dr7; debug_enter(&dr6, &dr7); if (user_mode(regs)) exc_debug_user(regs, dr6); else exc_debug_kernel(regs, dr6); debug_exit(dr7); } #endif /* * Note that we play around with the 'TS' bit in an attempt to get * the correct behaviour even in the presence of the asynchronous * IRQ13 behaviour */ static void math_error(struct pt_regs *regs, int trapnr) { struct task_struct *task = current; struct fpu *fpu = &task->thread.fpu; int si_code; char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : "simd exception"; cond_local_irq_enable(regs); if (!user_mode(regs)) { if (fixup_exception(regs, trapnr, 0, 0)) goto exit; task->thread.error_code = 0; task->thread.trap_nr = trapnr; if (notify_die(DIE_TRAP, str, regs, 0, trapnr, SIGFPE) != NOTIFY_STOP) die(str, regs, 0); goto exit; } /* * Save the info for the exception handler and clear the error. */ fpu__save(fpu); task->thread.trap_nr = trapnr; task->thread.error_code = 0; si_code = fpu__exception_code(fpu, trapnr); /* Retry when we get spurious exceptions: */ if (!si_code) goto exit; force_sig_fault(SIGFPE, si_code, (void __user *)uprobe_get_trap_addr(regs)); exit: cond_local_irq_disable(regs); } DEFINE_IDTENTRY(exc_coprocessor_error) { math_error(regs, X86_TRAP_MF); } DEFINE_IDTENTRY(exc_simd_coprocessor_error) { if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ if (!static_cpu_has(X86_FEATURE_XMM)) { __exc_general_protection(regs, 0); return; } } math_error(regs, X86_TRAP_XF); } DEFINE_IDTENTRY(exc_spurious_interrupt_bug) { /* * This addresses a Pentium Pro Erratum: * * PROBLEM: If the APIC subsystem is configured in mixed mode with * Virtual Wire mode implemented through the local APIC, an * interrupt vector of 0Fh (Intel reserved encoding) may be * generated by the local APIC (Int 15). This vector may be * generated upon receipt of a spurious interrupt (an interrupt * which is removed before the system receives the INTA sequence) * instead of the programmed 8259 spurious interrupt vector. * * IMPLICATION: The spurious interrupt vector programmed in the * 8259 is normally handled by an operating system's spurious * interrupt handler. However, a vector of 0Fh is unknown to some * operating systems, which would crash if this erratum occurred. * * In theory this could be limited to 32bit, but the handler is not * hurting and who knows which other CPUs suffer from this. */ } DEFINE_IDTENTRY(exc_device_not_available) { unsigned long cr0 = read_cr0(); #ifdef CONFIG_MATH_EMULATION if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { struct math_emu_info info = { }; cond_local_irq_enable(regs); info.regs = regs; math_emulate(&info); cond_local_irq_disable(regs); return; } #endif /* This should not happen. */ if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { /* Try to fix it up and carry on. */ write_cr0(cr0 & ~X86_CR0_TS); } else { /* * Something terrible happened, and we're better off trying * to kill the task than getting stuck in a never-ending * loop of #NM faults. */ die("unexpected #NM exception", regs, 0); } } #ifdef CONFIG_X86_32 DEFINE_IDTENTRY_SW(iret_error) { local_irq_enable(); if (notify_die(DIE_TRAP, "iret exception", regs, 0, X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, ILL_BADSTK, (void __user *)NULL); } local_irq_disable(); } #endif void __init trap_init(void) { /* Init cpu_entry_area before IST entries are set up */ setup_cpu_entry_areas(); idt_setup_traps(); /* * Should be a barrier for any external CPU state: */ cpu_init(); idt_setup_ist_traps(); }