// SPDX-License-Identifier: GPL-2.0 /* * Functions related to segment and merge handling */ #include #include #include #include #include #include #include #include #include #include "blk.h" #include "blk-mq-sched.h" #include "blk-rq-qos.h" #include "blk-throttle.h" static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) { *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); } static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) { struct bvec_iter iter = bio->bi_iter; int idx; bio_get_first_bvec(bio, bv); if (bv->bv_len == bio->bi_iter.bi_size) return; /* this bio only has a single bvec */ bio_advance_iter(bio, &iter, iter.bi_size); if (!iter.bi_bvec_done) idx = iter.bi_idx - 1; else /* in the middle of bvec */ idx = iter.bi_idx; *bv = bio->bi_io_vec[idx]; /* * iter.bi_bvec_done records actual length of the last bvec * if this bio ends in the middle of one io vector */ if (iter.bi_bvec_done) bv->bv_len = iter.bi_bvec_done; } static inline bool bio_will_gap(struct request_queue *q, struct request *prev_rq, struct bio *prev, struct bio *next) { struct bio_vec pb, nb; if (!bio_has_data(prev) || !queue_virt_boundary(q)) return false; /* * Don't merge if the 1st bio starts with non-zero offset, otherwise it * is quite difficult to respect the sg gap limit. We work hard to * merge a huge number of small single bios in case of mkfs. */ if (prev_rq) bio_get_first_bvec(prev_rq->bio, &pb); else bio_get_first_bvec(prev, &pb); if (pb.bv_offset & queue_virt_boundary(q)) return true; /* * We don't need to worry about the situation that the merged segment * ends in unaligned virt boundary: * * - if 'pb' ends aligned, the merged segment ends aligned * - if 'pb' ends unaligned, the next bio must include * one single bvec of 'nb', otherwise the 'nb' can't * merge with 'pb' */ bio_get_last_bvec(prev, &pb); bio_get_first_bvec(next, &nb); if (biovec_phys_mergeable(q, &pb, &nb)) return false; return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); } static inline bool req_gap_back_merge(struct request *req, struct bio *bio) { return bio_will_gap(req->q, req, req->biotail, bio); } static inline bool req_gap_front_merge(struct request *req, struct bio *bio) { return bio_will_gap(req->q, NULL, bio, req->bio); } /* * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size * is defined as 'unsigned int', meantime it has to be aligned to with the * logical block size, which is the minimum accepted unit by hardware. */ static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) { return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; } static struct bio *bio_submit_split(struct bio *bio, int split_sectors) { if (unlikely(split_sectors < 0)) goto error; if (split_sectors) { struct bio *split; split = bio_split(bio, split_sectors, GFP_NOIO, &bio->bi_bdev->bd_disk->bio_split); if (IS_ERR(split)) { split_sectors = PTR_ERR(split); goto error; } split->bi_opf |= REQ_NOMERGE; blkcg_bio_issue_init(split); bio_chain(split, bio); trace_block_split(split, bio->bi_iter.bi_sector); WARN_ON_ONCE(bio_zone_write_plugging(bio)); submit_bio_noacct(bio); return split; } return bio; error: bio->bi_status = errno_to_blk_status(split_sectors); bio_endio(bio); return NULL; } struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim, unsigned *nsegs) { unsigned int max_discard_sectors, granularity; sector_t tmp; unsigned split_sectors; *nsegs = 1; granularity = max(lim->discard_granularity >> 9, 1U); max_discard_sectors = min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); max_discard_sectors -= max_discard_sectors % granularity; if (unlikely(!max_discard_sectors)) return bio; if (bio_sectors(bio) <= max_discard_sectors) return bio; split_sectors = max_discard_sectors; /* * If the next starting sector would be misaligned, stop the discard at * the previous aligned sector. */ tmp = bio->bi_iter.bi_sector + split_sectors - ((lim->discard_alignment >> 9) % granularity); tmp = sector_div(tmp, granularity); if (split_sectors > tmp) split_sectors -= tmp; return bio_submit_split(bio, split_sectors); } static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim, bool is_atomic) { /* * chunk_sectors must be a multiple of atomic_write_boundary_sectors if * both non-zero. */ if (is_atomic && lim->atomic_write_boundary_sectors) return lim->atomic_write_boundary_sectors; return lim->chunk_sectors; } /* * Return the maximum number of sectors from the start of a bio that may be * submitted as a single request to a block device. If enough sectors remain, * align the end to the physical block size. Otherwise align the end to the * logical block size. This approach minimizes the number of non-aligned * requests that are submitted to a block device if the start of a bio is not * aligned to a physical block boundary. */ static inline unsigned get_max_io_size(struct bio *bio, const struct queue_limits *lim) { unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; bool is_atomic = bio->bi_opf & REQ_ATOMIC; unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic); unsigned max_sectors, start, end; /* * We ignore lim->max_sectors for atomic writes because it may less * than the actual bio size, which we cannot tolerate. */ if (bio_op(bio) == REQ_OP_WRITE_ZEROES) max_sectors = lim->max_write_zeroes_sectors; else if (is_atomic) max_sectors = lim->atomic_write_max_sectors; else max_sectors = lim->max_sectors; if (boundary_sectors) { max_sectors = min(max_sectors, blk_boundary_sectors_left(bio->bi_iter.bi_sector, boundary_sectors)); } start = bio->bi_iter.bi_sector & (pbs - 1); end = (start + max_sectors) & ~(pbs - 1); if (end > start) return end - start; return max_sectors & ~(lbs - 1); } /** * get_max_segment_size() - maximum number of bytes to add as a single segment * @lim: Request queue limits. * @paddr: address of the range to add * @len: maximum length available to add at @paddr * * Returns the maximum number of bytes of the range starting at @paddr that can * be added to a single segment. */ static inline unsigned get_max_segment_size(const struct queue_limits *lim, phys_addr_t paddr, unsigned int len) { /* * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 * after having calculated the minimum. */ return min_t(unsigned long, len, min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr), (unsigned long)lim->max_segment_size - 1) + 1); } /** * bvec_split_segs - verify whether or not a bvec should be split in the middle * @lim: [in] queue limits to split based on * @bv: [in] bvec to examine * @nsegs: [in,out] Number of segments in the bio being built. Incremented * by the number of segments from @bv that may be appended to that * bio without exceeding @max_segs * @bytes: [in,out] Number of bytes in the bio being built. Incremented * by the number of bytes from @bv that may be appended to that * bio without exceeding @max_bytes * @max_segs: [in] upper bound for *@nsegs * @max_bytes: [in] upper bound for *@bytes * * When splitting a bio, it can happen that a bvec is encountered that is too * big to fit in a single segment and hence that it has to be split in the * middle. This function verifies whether or not that should happen. The value * %true is returned if and only if appending the entire @bv to a bio with * *@nsegs segments and *@sectors sectors would make that bio unacceptable for * the block driver. */ static bool bvec_split_segs(const struct queue_limits *lim, const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, unsigned max_segs, unsigned max_bytes) { unsigned max_len = min(max_bytes, UINT_MAX) - *bytes; unsigned len = min(bv->bv_len, max_len); unsigned total_len = 0; unsigned seg_size = 0; while (len && *nsegs < max_segs) { seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len); (*nsegs)++; total_len += seg_size; len -= seg_size; if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) break; } *bytes += total_len; /* tell the caller to split the bvec if it is too big to fit */ return len > 0 || bv->bv_len > max_len; } static unsigned int bio_split_alignment(struct bio *bio, const struct queue_limits *lim) { if (op_is_write(bio_op(bio)) && lim->zone_write_granularity) return lim->zone_write_granularity; return lim->logical_block_size; } /** * bio_split_rw_at - check if and where to split a read/write bio * @bio: [in] bio to be split * @lim: [in] queue limits to split based on * @segs: [out] number of segments in the bio with the first half of the sectors * @max_bytes: [in] maximum number of bytes per bio * * Find out if @bio needs to be split to fit the queue limits in @lim and a * maximum size of @max_bytes. Returns a negative error number if @bio can't be * split, 0 if the bio doesn't have to be split, or a positive sector offset if * @bio needs to be split. */ int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim, unsigned *segs, unsigned max_bytes) { struct bio_vec bv, bvprv, *bvprvp = NULL; struct bvec_iter iter; unsigned nsegs = 0, bytes = 0; bio_for_each_bvec(bv, bio, iter) { /* * If the queue doesn't support SG gaps and adding this * offset would create a gap, disallow it. */ if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) goto split; if (nsegs < lim->max_segments && bytes + bv.bv_len <= max_bytes && bv.bv_offset + bv.bv_len <= PAGE_SIZE) { nsegs++; bytes += bv.bv_len; } else { if (bvec_split_segs(lim, &bv, &nsegs, &bytes, lim->max_segments, max_bytes)) goto split; } bvprv = bv; bvprvp = &bvprv; } *segs = nsegs; return 0; split: if (bio->bi_opf & REQ_ATOMIC) return -EINVAL; /* * We can't sanely support splitting for a REQ_NOWAIT bio. End it * with EAGAIN if splitting is required and return an error pointer. */ if (bio->bi_opf & REQ_NOWAIT) return -EAGAIN; *segs = nsegs; /* * Individual bvecs might not be logical block aligned. Round down the * split size so that each bio is properly block size aligned, even if * we do not use the full hardware limits. */ bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim)); /* * Bio splitting may cause subtle trouble such as hang when doing sync * iopoll in direct IO routine. Given performance gain of iopoll for * big IO can be trival, disable iopoll when split needed. */ bio_clear_polled(bio); return bytes >> SECTOR_SHIFT; } EXPORT_SYMBOL_GPL(bio_split_rw_at); struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, unsigned *nr_segs) { return bio_submit_split(bio, bio_split_rw_at(bio, lim, nr_segs, get_max_io_size(bio, lim) << SECTOR_SHIFT)); } /* * REQ_OP_ZONE_APPEND bios must never be split by the block layer. * * But we want the nr_segs calculation provided by bio_split_rw_at, and having * a good sanity check that the submitter built the bio correctly is nice to * have as well. */ struct bio *bio_split_zone_append(struct bio *bio, const struct queue_limits *lim, unsigned *nr_segs) { int split_sectors; split_sectors = bio_split_rw_at(bio, lim, nr_segs, lim->max_zone_append_sectors << SECTOR_SHIFT); if (WARN_ON_ONCE(split_sectors > 0)) split_sectors = -EINVAL; return bio_submit_split(bio, split_sectors); } struct bio *bio_split_write_zeroes(struct bio *bio, const struct queue_limits *lim, unsigned *nsegs) { unsigned int max_sectors = get_max_io_size(bio, lim); *nsegs = 0; /* * An unset limit should normally not happen, as bio submission is keyed * off having a non-zero limit. But SCSI can clear the limit in the * I/O completion handler, and we can race and see this. Splitting to a * zero limit obviously doesn't make sense, so band-aid it here. */ if (!max_sectors) return bio; if (bio_sectors(bio) <= max_sectors) return bio; return bio_submit_split(bio, max_sectors); } /** * bio_split_to_limits - split a bio to fit the queue limits * @bio: bio to be split * * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and * if so split off a bio fitting the limits from the beginning of @bio and * return it. @bio is shortened to the remainder and re-submitted. * * The split bio is allocated from @q->bio_split, which is provided by the * block layer. */ struct bio *bio_split_to_limits(struct bio *bio) { unsigned int nr_segs; return __bio_split_to_limits(bio, bdev_limits(bio->bi_bdev), &nr_segs); } EXPORT_SYMBOL(bio_split_to_limits); unsigned int blk_recalc_rq_segments(struct request *rq) { unsigned int nr_phys_segs = 0; unsigned int bytes = 0; struct req_iterator iter; struct bio_vec bv; if (!rq->bio) return 0; switch (bio_op(rq->bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: if (queue_max_discard_segments(rq->q) > 1) { struct bio *bio = rq->bio; for_each_bio(bio) nr_phys_segs++; return nr_phys_segs; } return 1; case REQ_OP_WRITE_ZEROES: return 0; default: break; } rq_for_each_bvec(bv, rq, iter) bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, UINT_MAX, UINT_MAX); return nr_phys_segs; } static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, struct scatterlist *sglist) { if (!*sg) return sglist; /* * If the driver previously mapped a shorter list, we could see a * termination bit prematurely unless it fully inits the sg table * on each mapping. We KNOW that there must be more entries here * or the driver would be buggy, so force clear the termination bit * to avoid doing a full sg_init_table() in drivers for each command. */ sg_unmark_end(*sg); return sg_next(*sg); } static unsigned blk_bvec_map_sg(struct request_queue *q, struct bio_vec *bvec, struct scatterlist *sglist, struct scatterlist **sg) { unsigned nbytes = bvec->bv_len; unsigned nsegs = 0, total = 0; while (nbytes > 0) { unsigned offset = bvec->bv_offset + total; unsigned len = get_max_segment_size(&q->limits, bvec_phys(bvec) + total, nbytes); struct page *page = bvec->bv_page; /* * Unfortunately a fair number of drivers barf on scatterlists * that have an offset larger than PAGE_SIZE, despite other * subsystems dealing with that invariant just fine. For now * stick to the legacy format where we never present those from * the block layer, but the code below should be removed once * these offenders (mostly MMC/SD drivers) are fixed. */ page += (offset >> PAGE_SHIFT); offset &= ~PAGE_MASK; *sg = blk_next_sg(sg, sglist); sg_set_page(*sg, page, len, offset); total += len; nbytes -= len; nsegs++; } return nsegs; } static inline int __blk_bvec_map_sg(struct bio_vec bv, struct scatterlist *sglist, struct scatterlist **sg) { *sg = blk_next_sg(sg, sglist); sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); return 1; } /* only try to merge bvecs into one sg if they are from two bios */ static inline bool __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, struct bio_vec *bvprv, struct scatterlist **sg) { int nbytes = bvec->bv_len; if (!*sg) return false; if ((*sg)->length + nbytes > queue_max_segment_size(q)) return false; if (!biovec_phys_mergeable(q, bvprv, bvec)) return false; (*sg)->length += nbytes; return true; } static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, struct scatterlist *sglist, struct scatterlist **sg) { struct bio_vec bvec, bvprv = { NULL }; struct bvec_iter iter; int nsegs = 0; bool new_bio = false; for_each_bio(bio) { bio_for_each_bvec(bvec, bio, iter) { /* * Only try to merge bvecs from two bios given we * have done bio internal merge when adding pages * to bio */ if (new_bio && __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) goto next_bvec; if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) nsegs += __blk_bvec_map_sg(bvec, sglist, sg); else nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); next_bvec: new_bio = false; } if (likely(bio->bi_iter.bi_size)) { bvprv = bvec; new_bio = true; } } return nsegs; } /* * map a request to scatterlist, return number of sg entries setup. Caller * must make sure sg can hold rq->nr_phys_segments entries */ int __blk_rq_map_sg(struct request_queue *q, struct request *rq, struct scatterlist *sglist, struct scatterlist **last_sg) { int nsegs = 0; if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); else if (rq->bio) nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); if (*last_sg) sg_mark_end(*last_sg); /* * Something must have been wrong if the figured number of * segment is bigger than number of req's physical segments */ WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); return nsegs; } EXPORT_SYMBOL(__blk_rq_map_sg); static inline unsigned int blk_rq_get_max_sectors(struct request *rq, sector_t offset) { struct request_queue *q = rq->q; struct queue_limits *lim = &q->limits; unsigned int max_sectors, boundary_sectors; bool is_atomic = rq->cmd_flags & REQ_ATOMIC; if (blk_rq_is_passthrough(rq)) return q->limits.max_hw_sectors; boundary_sectors = blk_boundary_sectors(lim, is_atomic); max_sectors = blk_queue_get_max_sectors(rq); if (!boundary_sectors || req_op(rq) == REQ_OP_DISCARD || req_op(rq) == REQ_OP_SECURE_ERASE) return max_sectors; return min(max_sectors, blk_boundary_sectors_left(offset, boundary_sectors)); } static inline int ll_new_hw_segment(struct request *req, struct bio *bio, unsigned int nr_phys_segs) { if (!blk_cgroup_mergeable(req, bio)) goto no_merge; if (blk_integrity_merge_bio(req->q, req, bio) == false) goto no_merge; /* discard request merge won't add new segment */ if (req_op(req) == REQ_OP_DISCARD) return 1; if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) goto no_merge; /* * This will form the start of a new hw segment. Bump both * counters. */ req->nr_phys_segments += nr_phys_segs; if (bio_integrity(bio)) req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q, bio); return 1; no_merge: req_set_nomerge(req->q, req); return 0; } int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) { if (req_gap_back_merge(req, bio)) return 0; if (blk_integrity_rq(req) && integrity_req_gap_back_merge(req, bio)) return 0; if (!bio_crypt_ctx_back_mergeable(req, bio)) return 0; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) { req_set_nomerge(req->q, req); return 0; } return ll_new_hw_segment(req, bio, nr_segs); } static int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) { if (req_gap_front_merge(req, bio)) return 0; if (blk_integrity_rq(req) && integrity_req_gap_front_merge(req, bio)) return 0; if (!bio_crypt_ctx_front_mergeable(req, bio)) return 0; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { req_set_nomerge(req->q, req); return 0; } return ll_new_hw_segment(req, bio, nr_segs); } static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, struct request *next) { unsigned short segments = blk_rq_nr_discard_segments(req); if (segments >= queue_max_discard_segments(q)) goto no_merge; if (blk_rq_sectors(req) + bio_sectors(next->bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) goto no_merge; req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); return true; no_merge: req_set_nomerge(q, req); return false; } static int ll_merge_requests_fn(struct request_queue *q, struct request *req, struct request *next) { int total_phys_segments; if (req_gap_back_merge(req, next->bio)) return 0; /* * Will it become too large? */ if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) return 0; total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; if (total_phys_segments > blk_rq_get_max_segments(req)) return 0; if (!blk_cgroup_mergeable(req, next->bio)) return 0; if (blk_integrity_merge_rq(q, req, next) == false) return 0; if (!bio_crypt_ctx_merge_rq(req, next)) return 0; /* Merge is OK... */ req->nr_phys_segments = total_phys_segments; req->nr_integrity_segments += next->nr_integrity_segments; return 1; } /** * blk_rq_set_mixed_merge - mark a request as mixed merge * @rq: request to mark as mixed merge * * Description: * @rq is about to be mixed merged. Make sure the attributes * which can be mixed are set in each bio and mark @rq as mixed * merged. */ static void blk_rq_set_mixed_merge(struct request *rq) { blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; struct bio *bio; if (rq->rq_flags & RQF_MIXED_MERGE) return; /* * @rq will no longer represent mixable attributes for all the * contained bios. It will just track those of the first one. * Distributes the attributs to each bio. */ for (bio = rq->bio; bio; bio = bio->bi_next) { WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && (bio->bi_opf & REQ_FAILFAST_MASK) != ff); bio->bi_opf |= ff; } rq->rq_flags |= RQF_MIXED_MERGE; } static inline blk_opf_t bio_failfast(const struct bio *bio) { if (bio->bi_opf & REQ_RAHEAD) return REQ_FAILFAST_MASK; return bio->bi_opf & REQ_FAILFAST_MASK; } /* * After we are marked as MIXED_MERGE, any new RA bio has to be updated * as failfast, and request's failfast has to be updated in case of * front merge. */ static inline void blk_update_mixed_merge(struct request *req, struct bio *bio, bool front_merge) { if (req->rq_flags & RQF_MIXED_MERGE) { if (bio->bi_opf & REQ_RAHEAD) bio->bi_opf |= REQ_FAILFAST_MASK; if (front_merge) { req->cmd_flags &= ~REQ_FAILFAST_MASK; req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK; } } } static void blk_account_io_merge_request(struct request *req) { if (req->rq_flags & RQF_IO_STAT) { part_stat_lock(); part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); part_stat_local_dec(req->part, in_flight[op_is_write(req_op(req))]); part_stat_unlock(); } } static enum elv_merge blk_try_req_merge(struct request *req, struct request *next) { if (blk_discard_mergable(req)) return ELEVATOR_DISCARD_MERGE; else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) return ELEVATOR_BACK_MERGE; return ELEVATOR_NO_MERGE; } static bool blk_atomic_write_mergeable_rq_bio(struct request *rq, struct bio *bio) { return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC); } static bool blk_atomic_write_mergeable_rqs(struct request *rq, struct request *next) { return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC); } /* * For non-mq, this has to be called with the request spinlock acquired. * For mq with scheduling, the appropriate queue wide lock should be held. */ static struct request *attempt_merge(struct request_queue *q, struct request *req, struct request *next) { if (!rq_mergeable(req) || !rq_mergeable(next)) return NULL; if (req_op(req) != req_op(next)) return NULL; if (rq_data_dir(req) != rq_data_dir(next)) return NULL; /* Don't merge requests with different write hints. */ if (req->write_hint != next->write_hint) return NULL; if (req->ioprio != next->ioprio) return NULL; if (!blk_atomic_write_mergeable_rqs(req, next)) return NULL; /* * If we are allowed to merge, then append bio list * from next to rq and release next. merge_requests_fn * will have updated segment counts, update sector * counts here. Handle DISCARDs separately, as they * have separate settings. */ switch (blk_try_req_merge(req, next)) { case ELEVATOR_DISCARD_MERGE: if (!req_attempt_discard_merge(q, req, next)) return NULL; break; case ELEVATOR_BACK_MERGE: if (!ll_merge_requests_fn(q, req, next)) return NULL; break; default: return NULL; } /* * If failfast settings disagree or any of the two is already * a mixed merge, mark both as mixed before proceeding. This * makes sure that all involved bios have mixable attributes * set properly. */ if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || (req->cmd_flags & REQ_FAILFAST_MASK) != (next->cmd_flags & REQ_FAILFAST_MASK)) { blk_rq_set_mixed_merge(req); blk_rq_set_mixed_merge(next); } /* * At this point we have either done a back merge or front merge. We * need the smaller start_time_ns of the merged requests to be the * current request for accounting purposes. */ if (next->start_time_ns < req->start_time_ns) req->start_time_ns = next->start_time_ns; req->biotail->bi_next = next->bio; req->biotail = next->biotail; req->__data_len += blk_rq_bytes(next); if (!blk_discard_mergable(req)) elv_merge_requests(q, req, next); blk_crypto_rq_put_keyslot(next); /* * 'next' is going away, so update stats accordingly */ blk_account_io_merge_request(next); trace_block_rq_merge(next); /* * ownership of bio passed from next to req, return 'next' for * the caller to free */ next->bio = NULL; return next; } static struct request *attempt_back_merge(struct request_queue *q, struct request *rq) { struct request *next = elv_latter_request(q, rq); if (next) return attempt_merge(q, rq, next); return NULL; } static struct request *attempt_front_merge(struct request_queue *q, struct request *rq) { struct request *prev = elv_former_request(q, rq); if (prev) return attempt_merge(q, prev, rq); return NULL; } /* * Try to merge 'next' into 'rq'. Return true if the merge happened, false * otherwise. The caller is responsible for freeing 'next' if the merge * happened. */ bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next) { return attempt_merge(q, rq, next); } bool blk_rq_merge_ok(struct request *rq, struct bio *bio) { if (!rq_mergeable(rq) || !bio_mergeable(bio)) return false; if (req_op(rq) != bio_op(bio)) return false; /* different data direction or already started, don't merge */ if (bio_data_dir(bio) != rq_data_dir(rq)) return false; /* don't merge across cgroup boundaries */ if (!blk_cgroup_mergeable(rq, bio)) return false; /* only merge integrity protected bio into ditto rq */ if (blk_integrity_merge_bio(rq->q, rq, bio) == false) return false; /* Only merge if the crypt contexts are compatible */ if (!bio_crypt_rq_ctx_compatible(rq, bio)) return false; /* Don't merge requests with different write hints. */ if (rq->write_hint != bio->bi_write_hint) return false; if (rq->ioprio != bio_prio(bio)) return false; if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false) return false; return true; } enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) { if (blk_discard_mergable(rq)) return ELEVATOR_DISCARD_MERGE; else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) return ELEVATOR_BACK_MERGE; else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) return ELEVATOR_FRONT_MERGE; return ELEVATOR_NO_MERGE; } static void blk_account_io_merge_bio(struct request *req) { if (req->rq_flags & RQF_IO_STAT) { part_stat_lock(); part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); part_stat_unlock(); } } enum bio_merge_status bio_attempt_back_merge(struct request *req, struct bio *bio, unsigned int nr_segs) { const blk_opf_t ff = bio_failfast(bio); if (!ll_back_merge_fn(req, bio, nr_segs)) return BIO_MERGE_FAILED; trace_block_bio_backmerge(bio); rq_qos_merge(req->q, req, bio); if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) blk_rq_set_mixed_merge(req); blk_update_mixed_merge(req, bio, false); if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) blk_zone_write_plug_bio_merged(bio); req->biotail->bi_next = bio; req->biotail = bio; req->__data_len += bio->bi_iter.bi_size; bio_crypt_free_ctx(bio); blk_account_io_merge_bio(req); return BIO_MERGE_OK; } static enum bio_merge_status bio_attempt_front_merge(struct request *req, struct bio *bio, unsigned int nr_segs) { const blk_opf_t ff = bio_failfast(bio); /* * A front merge for writes to sequential zones of a zoned block device * can happen only if the user submitted writes out of order. Do not * merge such write to let it fail. */ if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) return BIO_MERGE_FAILED; if (!ll_front_merge_fn(req, bio, nr_segs)) return BIO_MERGE_FAILED; trace_block_bio_frontmerge(bio); rq_qos_merge(req->q, req, bio); if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) blk_rq_set_mixed_merge(req); blk_update_mixed_merge(req, bio, true); bio->bi_next = req->bio; req->bio = bio; req->__sector = bio->bi_iter.bi_sector; req->__data_len += bio->bi_iter.bi_size; bio_crypt_do_front_merge(req, bio); blk_account_io_merge_bio(req); return BIO_MERGE_OK; } static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, struct request *req, struct bio *bio) { unsigned short segments = blk_rq_nr_discard_segments(req); if (segments >= queue_max_discard_segments(q)) goto no_merge; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) goto no_merge; rq_qos_merge(q, req, bio); req->biotail->bi_next = bio; req->biotail = bio; req->__data_len += bio->bi_iter.bi_size; req->nr_phys_segments = segments + 1; blk_account_io_merge_bio(req); return BIO_MERGE_OK; no_merge: req_set_nomerge(q, req); return BIO_MERGE_FAILED; } static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, struct request *rq, struct bio *bio, unsigned int nr_segs, bool sched_allow_merge) { if (!blk_rq_merge_ok(rq, bio)) return BIO_MERGE_NONE; switch (blk_try_merge(rq, bio)) { case ELEVATOR_BACK_MERGE: if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) return bio_attempt_back_merge(rq, bio, nr_segs); break; case ELEVATOR_FRONT_MERGE: if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) return bio_attempt_front_merge(rq, bio, nr_segs); break; case ELEVATOR_DISCARD_MERGE: return bio_attempt_discard_merge(q, rq, bio); default: return BIO_MERGE_NONE; } return BIO_MERGE_FAILED; } /** * blk_attempt_plug_merge - try to merge with %current's plugged list * @q: request_queue new bio is being queued at * @bio: new bio being queued * @nr_segs: number of segments in @bio * from the passed in @q already in the plug list * * Determine whether @bio being queued on @q can be merged with the previous * request on %current's plugged list. Returns %true if merge was successful, * otherwise %false. * * Plugging coalesces IOs from the same issuer for the same purpose without * going through @q->queue_lock. As such it's more of an issuing mechanism * than scheduling, and the request, while may have elvpriv data, is not * added on the elevator at this point. In addition, we don't have * reliable access to the elevator outside queue lock. Only check basic * merging parameters without querying the elevator. * * Caller must ensure !blk_queue_nomerges(q) beforehand. */ bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs) { struct blk_plug *plug = current->plug; struct request *rq; if (!plug || rq_list_empty(plug->mq_list)) return false; rq_list_for_each(&plug->mq_list, rq) { if (rq->q == q) { if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == BIO_MERGE_OK) return true; break; } /* * Only keep iterating plug list for merges if we have multiple * queues */ if (!plug->multiple_queues) break; } return false; } /* * Iterate list of requests and see if we can merge this bio with any * of them. */ bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio, unsigned int nr_segs) { struct request *rq; int checked = 8; list_for_each_entry_reverse(rq, list, queuelist) { if (!checked--) break; switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { case BIO_MERGE_NONE: continue; case BIO_MERGE_OK: return true; case BIO_MERGE_FAILED: return false; } } return false; } EXPORT_SYMBOL_GPL(blk_bio_list_merge); bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **merged_request) { struct request *rq; switch (elv_merge(q, &rq, bio)) { case ELEVATOR_BACK_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) return false; *merged_request = attempt_back_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); return true; case ELEVATOR_FRONT_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) return false; *merged_request = attempt_front_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); return true; case ELEVATOR_DISCARD_MERGE: return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; default: return false; } } EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);