// SPDX-License-Identifier: GPL-2.0 /* * cacheinfo support - processor cache information via sysfs * * Based on arch/x86/kernel/cpu/intel_cacheinfo.c * Author: Sudeep Holla */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include /* pointer to per cpu cacheinfo */ static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo); #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu)) #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves) #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list) #define per_cpu_cacheinfo_idx(cpu, idx) \ (per_cpu_cacheinfo(cpu) + (idx)) /* Set if no cache information is found in DT/ACPI. */ static bool use_arch_info; struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu) { return ci_cacheinfo(cpu); } static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, struct cacheinfo *sib_leaf) { /* * For non DT/ACPI systems, assume unique level 1 caches, * system-wide shared caches for all other levels. */ if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) || use_arch_info) return (this_leaf->level != 1) && (sib_leaf->level != 1); if ((sib_leaf->attributes & CACHE_ID) && (this_leaf->attributes & CACHE_ID)) return sib_leaf->id == this_leaf->id; return sib_leaf->fw_token == this_leaf->fw_token; } bool last_level_cache_is_valid(unsigned int cpu) { struct cacheinfo *llc; if (!cache_leaves(cpu)) return false; llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); return (llc->attributes & CACHE_ID) || !!llc->fw_token; } bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y) { struct cacheinfo *llc_x, *llc_y; if (!last_level_cache_is_valid(cpu_x) || !last_level_cache_is_valid(cpu_y)) return false; llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1); llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1); return cache_leaves_are_shared(llc_x, llc_y); } #ifdef CONFIG_OF static bool of_check_cache_nodes(struct device_node *np); /* OF properties to query for a given cache type */ struct cache_type_info { const char *size_prop; const char *line_size_props[2]; const char *nr_sets_prop; }; static const struct cache_type_info cache_type_info[] = { { .size_prop = "cache-size", .line_size_props = { "cache-line-size", "cache-block-size", }, .nr_sets_prop = "cache-sets", }, { .size_prop = "i-cache-size", .line_size_props = { "i-cache-line-size", "i-cache-block-size", }, .nr_sets_prop = "i-cache-sets", }, { .size_prop = "d-cache-size", .line_size_props = { "d-cache-line-size", "d-cache-block-size", }, .nr_sets_prop = "d-cache-sets", }, }; static inline int get_cacheinfo_idx(enum cache_type type) { if (type == CACHE_TYPE_UNIFIED) return 0; return type; } static void cache_size(struct cacheinfo *this_leaf, struct device_node *np) { const char *propname; int ct_idx; ct_idx = get_cacheinfo_idx(this_leaf->type); propname = cache_type_info[ct_idx].size_prop; of_property_read_u32(np, propname, &this_leaf->size); } /* not cache_line_size() because that's a macro in include/linux/cache.h */ static void cache_get_line_size(struct cacheinfo *this_leaf, struct device_node *np) { int i, lim, ct_idx; ct_idx = get_cacheinfo_idx(this_leaf->type); lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props); for (i = 0; i < lim; i++) { int ret; u32 line_size; const char *propname; propname = cache_type_info[ct_idx].line_size_props[i]; ret = of_property_read_u32(np, propname, &line_size); if (!ret) { this_leaf->coherency_line_size = line_size; break; } } } static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np) { const char *propname; int ct_idx; ct_idx = get_cacheinfo_idx(this_leaf->type); propname = cache_type_info[ct_idx].nr_sets_prop; of_property_read_u32(np, propname, &this_leaf->number_of_sets); } static void cache_associativity(struct cacheinfo *this_leaf) { unsigned int line_size = this_leaf->coherency_line_size; unsigned int nr_sets = this_leaf->number_of_sets; unsigned int size = this_leaf->size; /* * If the cache is fully associative, there is no need to * check the other properties. */ if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0)) this_leaf->ways_of_associativity = (size / nr_sets) / line_size; } static bool cache_node_is_unified(struct cacheinfo *this_leaf, struct device_node *np) { return of_property_read_bool(np, "cache-unified"); } static void cache_of_set_props(struct cacheinfo *this_leaf, struct device_node *np) { /* * init_cache_level must setup the cache level correctly * overriding the architecturally specified levels, so * if type is NONE at this stage, it should be unified */ if (this_leaf->type == CACHE_TYPE_NOCACHE && cache_node_is_unified(this_leaf, np)) this_leaf->type = CACHE_TYPE_UNIFIED; cache_size(this_leaf, np); cache_get_line_size(this_leaf, np); cache_nr_sets(this_leaf, np); cache_associativity(this_leaf); } static int cache_setup_of_node(unsigned int cpu) { struct cacheinfo *this_leaf; unsigned int index = 0; struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu); if (!np) { pr_err("Failed to find cpu%d device node\n", cpu); return -ENOENT; } if (!of_check_cache_nodes(np)) { return -ENOENT; } while (index < cache_leaves(cpu)) { this_leaf = per_cpu_cacheinfo_idx(cpu, index); if (this_leaf->level != 1) { struct device_node *prev __free(device_node) = np; np = of_find_next_cache_node(np); if (!np) break; } cache_of_set_props(this_leaf, np); this_leaf->fw_token = np; index++; } if (index != cache_leaves(cpu)) /* not all OF nodes populated */ return -ENOENT; return 0; } static bool of_check_cache_nodes(struct device_node *np) { if (of_property_present(np, "cache-size") || of_property_present(np, "i-cache-size") || of_property_present(np, "d-cache-size") || of_property_present(np, "cache-unified")) return true; struct device_node *next __free(device_node) = of_find_next_cache_node(np); if (next) { return true; } return false; } static int of_count_cache_leaves(struct device_node *np) { unsigned int leaves = 0; if (of_property_present(np, "cache-size")) ++leaves; if (of_property_present(np, "i-cache-size")) ++leaves; if (of_property_present(np, "d-cache-size")) ++leaves; if (!leaves) { /* The '[i-|d-|]cache-size' property is required, but * if absent, fallback on the 'cache-unified' property. */ if (of_property_read_bool(np, "cache-unified")) return 1; else return 2; } return leaves; } int init_of_cache_level(unsigned int cpu) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu); unsigned int levels = 0, leaves, level; if (!of_check_cache_nodes(np)) { return -ENOENT; } leaves = of_count_cache_leaves(np); if (leaves > 0) levels = 1; while (1) { struct device_node *prev __free(device_node) = np; np = of_find_next_cache_node(np); if (!np) break; if (!of_device_is_compatible(np, "cache")) return -EINVAL; if (of_property_read_u32(np, "cache-level", &level)) return -EINVAL; if (level <= levels) return -EINVAL; leaves += of_count_cache_leaves(np); levels = level; } this_cpu_ci->num_levels = levels; this_cpu_ci->num_leaves = leaves; return 0; } #else static inline int cache_setup_of_node(unsigned int cpu) { return 0; } int init_of_cache_level(unsigned int cpu) { return 0; } #endif int __weak cache_setup_acpi(unsigned int cpu) { return -ENOTSUPP; } unsigned int coherency_max_size; static int cache_setup_properties(unsigned int cpu) { int ret = 0; if (of_have_populated_dt()) ret = cache_setup_of_node(cpu); else if (!acpi_disabled) ret = cache_setup_acpi(cpu); // Assume there is no cache information available in DT/ACPI from now. if (ret && use_arch_cache_info()) use_arch_info = true; return ret; } static int cache_shared_cpu_map_setup(unsigned int cpu) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct cacheinfo *this_leaf, *sib_leaf; unsigned int index, sib_index; int ret = 0; if (this_cpu_ci->cpu_map_populated) return 0; /* * skip setting up cache properties if LLC is valid, just need * to update the shared cpu_map if the cache attributes were * populated early before all the cpus are brought online */ if (!last_level_cache_is_valid(cpu) && !use_arch_info) { ret = cache_setup_properties(cpu); if (ret) return ret; } for (index = 0; index < cache_leaves(cpu); index++) { unsigned int i; this_leaf = per_cpu_cacheinfo_idx(cpu, index); cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); for_each_online_cpu(i) { if (i == cpu || !per_cpu_cacheinfo(i)) continue;/* skip if itself or no cacheinfo */ for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) { sib_leaf = per_cpu_cacheinfo_idx(i, sib_index); /* * Comparing cache IDs only makes sense if the leaves * belong to the same cache level of same type. Skip * the check if level and type do not match. */ if (sib_leaf->level != this_leaf->level || sib_leaf->type != this_leaf->type) continue; if (cache_leaves_are_shared(this_leaf, sib_leaf)) { cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map); cpumask_set_cpu(i, &this_leaf->shared_cpu_map); break; } } } /* record the maximum cache line size */ if (this_leaf->coherency_line_size > coherency_max_size) coherency_max_size = this_leaf->coherency_line_size; } /* shared_cpu_map is now populated for the cpu */ this_cpu_ci->cpu_map_populated = true; return 0; } static void cache_shared_cpu_map_remove(unsigned int cpu) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct cacheinfo *this_leaf, *sib_leaf; unsigned int sibling, index, sib_index; for (index = 0; index < cache_leaves(cpu); index++) { this_leaf = per_cpu_cacheinfo_idx(cpu, index); for_each_cpu(sibling, &this_leaf->shared_cpu_map) { if (sibling == cpu || !per_cpu_cacheinfo(sibling)) continue;/* skip if itself or no cacheinfo */ for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) { sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index); /* * Comparing cache IDs only makes sense if the leaves * belong to the same cache level of same type. Skip * the check if level and type do not match. */ if (sib_leaf->level != this_leaf->level || sib_leaf->type != this_leaf->type) continue; if (cache_leaves_are_shared(this_leaf, sib_leaf)) { cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map); cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map); break; } } } } /* cpu is no longer populated in the shared map */ this_cpu_ci->cpu_map_populated = false; } static void free_cache_attributes(unsigned int cpu) { if (!per_cpu_cacheinfo(cpu)) return; cache_shared_cpu_map_remove(cpu); } int __weak early_cache_level(unsigned int cpu) { return -ENOENT; } int __weak init_cache_level(unsigned int cpu) { return -ENOENT; } int __weak populate_cache_leaves(unsigned int cpu) { return -ENOENT; } static inline int allocate_cache_info(int cpu) { per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), sizeof(struct cacheinfo), GFP_ATOMIC); if (!per_cpu_cacheinfo(cpu)) { cache_leaves(cpu) = 0; return -ENOMEM; } return 0; } int fetch_cache_info(unsigned int cpu) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); unsigned int levels = 0, split_levels = 0; int ret; if (acpi_disabled) { ret = init_of_cache_level(cpu); } else { ret = acpi_get_cache_info(cpu, &levels, &split_levels); if (!ret) { this_cpu_ci->num_levels = levels; /* * This assumes that: * - there cannot be any split caches (data/instruction) * above a unified cache * - data/instruction caches come by pair */ this_cpu_ci->num_leaves = levels + split_levels; } } if (ret || !cache_leaves(cpu)) { ret = early_cache_level(cpu); if (ret) return ret; if (!cache_leaves(cpu)) return -ENOENT; this_cpu_ci->early_ci_levels = true; } return allocate_cache_info(cpu); } static inline int init_level_allocate_ci(unsigned int cpu) { unsigned int early_leaves = cache_leaves(cpu); /* Since early initialization/allocation of the cacheinfo is allowed * via fetch_cache_info() and this also gets called as CPU hotplug * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped * as it will happen only once (the cacheinfo memory is never freed). * Just populate the cacheinfo. However, if the cacheinfo has been * allocated early through the arch-specific early_cache_level() call, * there is a chance the info is wrong (this can happen on arm64). In * that case, call init_cache_level() anyway to give the arch-specific * code a chance to make things right. */ if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels) return 0; if (init_cache_level(cpu) || !cache_leaves(cpu)) return -ENOENT; /* * Now that we have properly initialized the cache level info, make * sure we don't try to do that again the next time we are called * (e.g. as CPU hotplug callbacks). */ ci_cacheinfo(cpu)->early_ci_levels = false; if (cache_leaves(cpu) <= early_leaves) return 0; kfree(per_cpu_cacheinfo(cpu)); return allocate_cache_info(cpu); } int detect_cache_attributes(unsigned int cpu) { int ret; ret = init_level_allocate_ci(cpu); if (ret) return ret; /* * If LLC is valid the cache leaves were already populated so just go to * update the cpu map. */ if (!last_level_cache_is_valid(cpu)) { /* * populate_cache_leaves() may completely setup the cache leaves and * shared_cpu_map or it may leave it partially setup. */ ret = populate_cache_leaves(cpu); if (ret) goto free_ci; } /* * For systems using DT for cache hierarchy, fw_token * and shared_cpu_map will be set up here only if they are * not populated already */ ret = cache_shared_cpu_map_setup(cpu); if (ret) { pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu); goto free_ci; } return 0; free_ci: free_cache_attributes(cpu); return ret; } /* pointer to cpuX/cache device */ static DEFINE_PER_CPU(struct device *, ci_cache_dev); #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu)) static cpumask_t cache_dev_map; /* pointer to array of devices for cpuX/cache/indexY */ static DEFINE_PER_CPU(struct device **, ci_index_dev); #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu)) #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx]) #define show_one(file_name, object) \ static ssize_t file_name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ return sysfs_emit(buf, "%u\n", this_leaf->object); \ } show_one(id, id); show_one(level, level); show_one(coherency_line_size, coherency_line_size); show_one(number_of_sets, number_of_sets); show_one(physical_line_partition, physical_line_partition); show_one(ways_of_associativity, ways_of_associativity); static ssize_t size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cacheinfo *this_leaf = dev_get_drvdata(dev); return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10); } static ssize_t shared_cpu_map_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cacheinfo *this_leaf = dev_get_drvdata(dev); const struct cpumask *mask = &this_leaf->shared_cpu_map; return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask); } static ssize_t shared_cpu_list_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cacheinfo *this_leaf = dev_get_drvdata(dev); const struct cpumask *mask = &this_leaf->shared_cpu_map; return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask); } static ssize_t type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cacheinfo *this_leaf = dev_get_drvdata(dev); const char *output; switch (this_leaf->type) { case CACHE_TYPE_DATA: output = "Data"; break; case CACHE_TYPE_INST: output = "Instruction"; break; case CACHE_TYPE_UNIFIED: output = "Unified"; break; default: return -EINVAL; } return sysfs_emit(buf, "%s\n", output); } static ssize_t allocation_policy_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cacheinfo *this_leaf = dev_get_drvdata(dev); unsigned int ci_attr = this_leaf->attributes; const char *output; if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE)) output = "ReadWriteAllocate"; else if (ci_attr & CACHE_READ_ALLOCATE) output = "ReadAllocate"; else if (ci_attr & CACHE_WRITE_ALLOCATE) output = "WriteAllocate"; else return 0; return sysfs_emit(buf, "%s\n", output); } static ssize_t write_policy_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cacheinfo *this_leaf = dev_get_drvdata(dev); unsigned int ci_attr = this_leaf->attributes; int n = 0; if (ci_attr & CACHE_WRITE_THROUGH) n = sysfs_emit(buf, "WriteThrough\n"); else if (ci_attr & CACHE_WRITE_BACK) n = sysfs_emit(buf, "WriteBack\n"); return n; } static DEVICE_ATTR_RO(id); static DEVICE_ATTR_RO(level); static DEVICE_ATTR_RO(type); static DEVICE_ATTR_RO(coherency_line_size); static DEVICE_ATTR_RO(ways_of_associativity); static DEVICE_ATTR_RO(number_of_sets); static DEVICE_ATTR_RO(size); static DEVICE_ATTR_RO(allocation_policy); static DEVICE_ATTR_RO(write_policy); static DEVICE_ATTR_RO(shared_cpu_map); static DEVICE_ATTR_RO(shared_cpu_list); static DEVICE_ATTR_RO(physical_line_partition); static struct attribute *cache_default_attrs[] = { &dev_attr_id.attr, &dev_attr_type.attr, &dev_attr_level.attr, &dev_attr_shared_cpu_map.attr, &dev_attr_shared_cpu_list.attr, &dev_attr_coherency_line_size.attr, &dev_attr_ways_of_associativity.attr, &dev_attr_number_of_sets.attr, &dev_attr_size.attr, &dev_attr_allocation_policy.attr, &dev_attr_write_policy.attr, &dev_attr_physical_line_partition.attr, NULL }; static umode_t cache_default_attrs_is_visible(struct kobject *kobj, struct attribute *attr, int unused) { struct device *dev = kobj_to_dev(kobj); struct cacheinfo *this_leaf = dev_get_drvdata(dev); const struct cpumask *mask = &this_leaf->shared_cpu_map; umode_t mode = attr->mode; if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID)) return mode; if ((attr == &dev_attr_type.attr) && this_leaf->type) return mode; if ((attr == &dev_attr_level.attr) && this_leaf->level) return mode; if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask)) return mode; if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask)) return mode; if ((attr == &dev_attr_coherency_line_size.attr) && this_leaf->coherency_line_size) return mode; if ((attr == &dev_attr_ways_of_associativity.attr) && this_leaf->size) /* allow 0 = full associativity */ return mode; if ((attr == &dev_attr_number_of_sets.attr) && this_leaf->number_of_sets) return mode; if ((attr == &dev_attr_size.attr) && this_leaf->size) return mode; if ((attr == &dev_attr_write_policy.attr) && (this_leaf->attributes & CACHE_WRITE_POLICY_MASK)) return mode; if ((attr == &dev_attr_allocation_policy.attr) && (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK)) return mode; if ((attr == &dev_attr_physical_line_partition.attr) && this_leaf->physical_line_partition) return mode; return 0; } static const struct attribute_group cache_default_group = { .attrs = cache_default_attrs, .is_visible = cache_default_attrs_is_visible, }; static const struct attribute_group *cache_default_groups[] = { &cache_default_group, NULL, }; static const struct attribute_group *cache_private_groups[] = { &cache_default_group, NULL, /* Place holder for private group */ NULL, }; const struct attribute_group * __weak cache_get_priv_group(struct cacheinfo *this_leaf) { return NULL; } static const struct attribute_group ** cache_get_attribute_groups(struct cacheinfo *this_leaf) { const struct attribute_group *priv_group = cache_get_priv_group(this_leaf); if (!priv_group) return cache_default_groups; if (!cache_private_groups[1]) cache_private_groups[1] = priv_group; return cache_private_groups; } /* Add/Remove cache interface for CPU device */ static void cpu_cache_sysfs_exit(unsigned int cpu) { int i; struct device *ci_dev; if (per_cpu_index_dev(cpu)) { for (i = 0; i < cache_leaves(cpu); i++) { ci_dev = per_cache_index_dev(cpu, i); if (!ci_dev) continue; device_unregister(ci_dev); } kfree(per_cpu_index_dev(cpu)); per_cpu_index_dev(cpu) = NULL; } device_unregister(per_cpu_cache_dev(cpu)); per_cpu_cache_dev(cpu) = NULL; } static int cpu_cache_sysfs_init(unsigned int cpu) { struct device *dev = get_cpu_device(cpu); if (per_cpu_cacheinfo(cpu) == NULL) return -ENOENT; per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache"); if (IS_ERR(per_cpu_cache_dev(cpu))) return PTR_ERR(per_cpu_cache_dev(cpu)); /* Allocate all required memory */ per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu), sizeof(struct device *), GFP_KERNEL); if (unlikely(per_cpu_index_dev(cpu) == NULL)) goto err_out; return 0; err_out: cpu_cache_sysfs_exit(cpu); return -ENOMEM; } static int cache_add_dev(unsigned int cpu) { unsigned int i; int rc; struct device *ci_dev, *parent; struct cacheinfo *this_leaf; const struct attribute_group **cache_groups; rc = cpu_cache_sysfs_init(cpu); if (unlikely(rc < 0)) return rc; parent = per_cpu_cache_dev(cpu); for (i = 0; i < cache_leaves(cpu); i++) { this_leaf = per_cpu_cacheinfo_idx(cpu, i); if (this_leaf->disable_sysfs) continue; if (this_leaf->type == CACHE_TYPE_NOCACHE) break; cache_groups = cache_get_attribute_groups(this_leaf); ci_dev = cpu_device_create(parent, this_leaf, cache_groups, "index%1u", i); if (IS_ERR(ci_dev)) { rc = PTR_ERR(ci_dev); goto err; } per_cache_index_dev(cpu, i) = ci_dev; } cpumask_set_cpu(cpu, &cache_dev_map); return 0; err: cpu_cache_sysfs_exit(cpu); return rc; } static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu, cpumask_t **map) { struct cacheinfo *llc, *sib_llc; unsigned int sibling; if (!last_level_cache_is_valid(cpu)) return 0; llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) return 0; if (online) { *map = &llc->shared_cpu_map; return cpumask_weight(*map); } /* shared_cpu_map of offlined CPU will be cleared, so use sibling map */ for_each_cpu(sibling, &llc->shared_cpu_map) { if (sibling == cpu || !last_level_cache_is_valid(sibling)) continue; sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1); *map = &sib_llc->shared_cpu_map; return cpumask_weight(*map); } return 0; } /* * Calculate the size of the per-CPU data cache slice. This can be * used to estimate the size of the data cache slice that can be used * by one CPU under ideal circumstances. UNIFIED caches are counted * in addition to DATA caches. So, please consider code cache usage * when use the result. * * Because the cache inclusive/non-inclusive information isn't * available, we just use the size of the per-CPU slice of LLC to make * the result more predictable across architectures. */ static void update_per_cpu_data_slice_size_cpu(unsigned int cpu) { struct cpu_cacheinfo *ci; struct cacheinfo *llc; unsigned int nr_shared; if (!last_level_cache_is_valid(cpu)) return; ci = ci_cacheinfo(cpu); llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) return; nr_shared = cpumask_weight(&llc->shared_cpu_map); if (nr_shared) ci->per_cpu_data_slice_size = llc->size / nr_shared; } static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu, cpumask_t *cpu_map) { unsigned int icpu; for_each_cpu(icpu, cpu_map) { if (!cpu_online && icpu == cpu) continue; update_per_cpu_data_slice_size_cpu(icpu); setup_pcp_cacheinfo(icpu); } } static int cacheinfo_cpu_online(unsigned int cpu) { int rc = detect_cache_attributes(cpu); cpumask_t *cpu_map; if (rc) return rc; rc = cache_add_dev(cpu); if (rc) goto err; if (cpu_map_shared_cache(true, cpu, &cpu_map)) update_per_cpu_data_slice_size(true, cpu, cpu_map); return 0; err: free_cache_attributes(cpu); return rc; } static int cacheinfo_cpu_pre_down(unsigned int cpu) { cpumask_t *cpu_map; unsigned int nr_shared; nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map); if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map)) cpu_cache_sysfs_exit(cpu); free_cache_attributes(cpu); if (nr_shared > 1) update_per_cpu_data_slice_size(false, cpu, cpu_map); return 0; } static int __init cacheinfo_sysfs_init(void) { return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE, "base/cacheinfo:online", cacheinfo_cpu_online, cacheinfo_cpu_pre_down); } device_initcall(cacheinfo_sysfs_init);