// SPDX-License-Identifier: GPL-2.0-or-later /* * ECAP Capture driver * * Copyright (C) 2022 Julien Panis */ #include #include #include #include #include #include #include #include #include #include #include #include #define ECAP_DRV_NAME "ecap" /* ECAP event IDs */ #define ECAP_CEVT1 0 #define ECAP_CEVT2 1 #define ECAP_CEVT3 2 #define ECAP_CEVT4 3 #define ECAP_CNTOVF 4 #define ECAP_CEVT_LAST ECAP_CEVT4 #define ECAP_NB_CEVT (ECAP_CEVT_LAST + 1) #define ECAP_EVT_LAST ECAP_CNTOVF #define ECAP_NB_EVT (ECAP_EVT_LAST + 1) /* Registers */ #define ECAP_TSCNT_REG 0x00 #define ECAP_CAP_REG(i) (((i) << 2) + 0x08) #define ECAP_ECCTL_REG 0x28 #define ECAP_CAPPOL_BIT(i) BIT((i) << 1) #define ECAP_EV_MODE_MASK GENMASK(7, 0) #define ECAP_CAPLDEN_BIT BIT(8) #define ECAP_CONT_ONESHT_BIT BIT(16) #define ECAP_STOPVALUE_MASK GENMASK(18, 17) #define ECAP_TSCNTSTP_BIT BIT(20) #define ECAP_SYNCO_DIS_MASK GENMASK(23, 22) #define ECAP_CAP_APWM_BIT BIT(25) #define ECAP_ECCTL_EN_MASK (ECAP_CAPLDEN_BIT | ECAP_TSCNTSTP_BIT) #define ECAP_ECCTL_CFG_MASK (ECAP_SYNCO_DIS_MASK | ECAP_STOPVALUE_MASK \ | ECAP_ECCTL_EN_MASK | ECAP_CAP_APWM_BIT \ | ECAP_CONT_ONESHT_BIT) #define ECAP_ECINT_EN_FLG_REG 0x2c #define ECAP_EVT_EN_MASK GENMASK(ECAP_NB_EVT, ECAP_NB_CEVT) #define ECAP_EVT_FLG_BIT(i) BIT((i) + 17) #define ECAP_ECINT_CLR_FRC_REG 0x30 #define ECAP_INT_CLR_BIT BIT(0) #define ECAP_EVT_CLR_BIT(i) BIT((i) + 1) #define ECAP_EVT_CLR_MASK GENMASK(ECAP_NB_EVT, 0) #define ECAP_PID_REG 0x5c /* ECAP signals */ #define ECAP_CLOCK_SIG 0 #define ECAP_INPUT_SIG 1 static const struct regmap_config ecap_cnt_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = ECAP_PID_REG, }; /** * struct ecap_cnt_dev - device private data structure * @enabled: device state * @lock: synchronization lock to prevent I/O race conditions * @clk: device clock * @regmap: device register map * @nb_ovf: number of overflows since capture start * @pm_ctx: device context for PM operations * @pm_ctx.ev_mode: event mode bits * @pm_ctx.time_cntr: timestamp counter value */ struct ecap_cnt_dev { bool enabled; struct mutex lock; struct clk *clk; struct regmap *regmap; atomic_t nb_ovf; struct { u8 ev_mode; u32 time_cntr; } pm_ctx; }; static u8 ecap_cnt_capture_get_evmode(struct counter_device *counter) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); unsigned int regval; pm_runtime_get_sync(counter->parent); regmap_read(ecap_dev->regmap, ECAP_ECCTL_REG, ®val); pm_runtime_put_sync(counter->parent); return regval; } static void ecap_cnt_capture_set_evmode(struct counter_device *counter, u8 ev_mode) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); pm_runtime_get_sync(counter->parent); regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_EV_MODE_MASK, ev_mode); pm_runtime_put_sync(counter->parent); } static void ecap_cnt_capture_enable(struct counter_device *counter) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); pm_runtime_get_sync(counter->parent); /* Enable interrupts on events */ regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, ECAP_EVT_EN_MASK, ECAP_EVT_EN_MASK); /* Run counter */ regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_ECCTL_CFG_MASK, ECAP_SYNCO_DIS_MASK | ECAP_STOPVALUE_MASK | ECAP_ECCTL_EN_MASK); } static void ecap_cnt_capture_disable(struct counter_device *counter) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); /* Stop counter */ regmap_update_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_ECCTL_EN_MASK, 0); /* Disable interrupts on events */ regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, ECAP_EVT_EN_MASK, 0); pm_runtime_put_sync(counter->parent); } static u32 ecap_cnt_count_get_val(struct counter_device *counter, unsigned int reg) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); unsigned int regval; pm_runtime_get_sync(counter->parent); regmap_read(ecap_dev->regmap, reg, ®val); pm_runtime_put_sync(counter->parent); return regval; } static void ecap_cnt_count_set_val(struct counter_device *counter, unsigned int reg, u32 val) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); pm_runtime_get_sync(counter->parent); regmap_write(ecap_dev->regmap, reg, val); pm_runtime_put_sync(counter->parent); } static int ecap_cnt_count_read(struct counter_device *counter, struct counter_count *count, u64 *val) { *val = ecap_cnt_count_get_val(counter, ECAP_TSCNT_REG); return 0; } static int ecap_cnt_count_write(struct counter_device *counter, struct counter_count *count, u64 val) { if (val > U32_MAX) return -ERANGE; ecap_cnt_count_set_val(counter, ECAP_TSCNT_REG, val); return 0; } static int ecap_cnt_function_read(struct counter_device *counter, struct counter_count *count, enum counter_function *function) { *function = COUNTER_FUNCTION_INCREASE; return 0; } static int ecap_cnt_action_read(struct counter_device *counter, struct counter_count *count, struct counter_synapse *synapse, enum counter_synapse_action *action) { *action = (synapse->signal->id == ECAP_CLOCK_SIG) ? COUNTER_SYNAPSE_ACTION_RISING_EDGE : COUNTER_SYNAPSE_ACTION_NONE; return 0; } static int ecap_cnt_watch_validate(struct counter_device *counter, const struct counter_watch *watch) { if (watch->channel > ECAP_CEVT_LAST) return -EINVAL; switch (watch->event) { case COUNTER_EVENT_CAPTURE: case COUNTER_EVENT_OVERFLOW: return 0; default: return -EINVAL; } } static int ecap_cnt_clk_get_freq(struct counter_device *counter, struct counter_signal *signal, u64 *freq) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); *freq = clk_get_rate(ecap_dev->clk); return 0; } static int ecap_cnt_pol_read(struct counter_device *counter, struct counter_signal *signal, size_t idx, enum counter_signal_polarity *pol) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); int bitval; pm_runtime_get_sync(counter->parent); bitval = regmap_test_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx)); pm_runtime_put_sync(counter->parent); *pol = bitval ? COUNTER_SIGNAL_POLARITY_NEGATIVE : COUNTER_SIGNAL_POLARITY_POSITIVE; return 0; } static int ecap_cnt_pol_write(struct counter_device *counter, struct counter_signal *signal, size_t idx, enum counter_signal_polarity pol) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); pm_runtime_get_sync(counter->parent); if (pol == COUNTER_SIGNAL_POLARITY_NEGATIVE) regmap_set_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx)); else regmap_clear_bits(ecap_dev->regmap, ECAP_ECCTL_REG, ECAP_CAPPOL_BIT(idx)); pm_runtime_put_sync(counter->parent); return 0; } static int ecap_cnt_cap_read(struct counter_device *counter, struct counter_count *count, size_t idx, u64 *cap) { *cap = ecap_cnt_count_get_val(counter, ECAP_CAP_REG(idx)); return 0; } static int ecap_cnt_cap_write(struct counter_device *counter, struct counter_count *count, size_t idx, u64 cap) { if (cap > U32_MAX) return -ERANGE; ecap_cnt_count_set_val(counter, ECAP_CAP_REG(idx), cap); return 0; } static int ecap_cnt_nb_ovf_read(struct counter_device *counter, struct counter_count *count, u64 *val) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); *val = atomic_read(&ecap_dev->nb_ovf); return 0; } static int ecap_cnt_nb_ovf_write(struct counter_device *counter, struct counter_count *count, u64 val) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); if (val > U32_MAX) return -ERANGE; atomic_set(&ecap_dev->nb_ovf, val); return 0; } static int ecap_cnt_ceiling_read(struct counter_device *counter, struct counter_count *count, u64 *val) { *val = U32_MAX; return 0; } static int ecap_cnt_enable_read(struct counter_device *counter, struct counter_count *count, u8 *enable) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); *enable = ecap_dev->enabled; return 0; } static int ecap_cnt_enable_write(struct counter_device *counter, struct counter_count *count, u8 enable) { struct ecap_cnt_dev *ecap_dev = counter_priv(counter); mutex_lock(&ecap_dev->lock); if (enable == ecap_dev->enabled) goto out; if (enable) ecap_cnt_capture_enable(counter); else ecap_cnt_capture_disable(counter); ecap_dev->enabled = enable; out: mutex_unlock(&ecap_dev->lock); return 0; } static const struct counter_ops ecap_cnt_ops = { .count_read = ecap_cnt_count_read, .count_write = ecap_cnt_count_write, .function_read = ecap_cnt_function_read, .action_read = ecap_cnt_action_read, .watch_validate = ecap_cnt_watch_validate, }; static const enum counter_function ecap_cnt_functions[] = { COUNTER_FUNCTION_INCREASE, }; static const enum counter_synapse_action ecap_cnt_clock_actions[] = { COUNTER_SYNAPSE_ACTION_RISING_EDGE, }; static const enum counter_synapse_action ecap_cnt_input_actions[] = { COUNTER_SYNAPSE_ACTION_NONE, }; static struct counter_comp ecap_cnt_clock_ext[] = { COUNTER_COMP_FREQUENCY(ecap_cnt_clk_get_freq), }; static const enum counter_signal_polarity ecap_cnt_pol_avail[] = { COUNTER_SIGNAL_POLARITY_POSITIVE, COUNTER_SIGNAL_POLARITY_NEGATIVE, }; static DEFINE_COUNTER_AVAILABLE(ecap_cnt_pol_available, ecap_cnt_pol_avail); static DEFINE_COUNTER_ARRAY_POLARITY(ecap_cnt_pol_array, ecap_cnt_pol_available, ECAP_NB_CEVT); static struct counter_comp ecap_cnt_signal_ext[] = { COUNTER_COMP_ARRAY_POLARITY(ecap_cnt_pol_read, ecap_cnt_pol_write, ecap_cnt_pol_array), }; static struct counter_signal ecap_cnt_signals[] = { { .id = ECAP_CLOCK_SIG, .name = "Clock Signal", .ext = ecap_cnt_clock_ext, .num_ext = ARRAY_SIZE(ecap_cnt_clock_ext), }, { .id = ECAP_INPUT_SIG, .name = "Input Signal", .ext = ecap_cnt_signal_ext, .num_ext = ARRAY_SIZE(ecap_cnt_signal_ext), }, }; static struct counter_synapse ecap_cnt_synapses[] = { { .actions_list = ecap_cnt_clock_actions, .num_actions = ARRAY_SIZE(ecap_cnt_clock_actions), .signal = &ecap_cnt_signals[ECAP_CLOCK_SIG], }, { .actions_list = ecap_cnt_input_actions, .num_actions = ARRAY_SIZE(ecap_cnt_input_actions), .signal = &ecap_cnt_signals[ECAP_INPUT_SIG], }, }; static DEFINE_COUNTER_ARRAY_CAPTURE(ecap_cnt_cap_array, ECAP_NB_CEVT); static struct counter_comp ecap_cnt_count_ext[] = { COUNTER_COMP_ARRAY_CAPTURE(ecap_cnt_cap_read, ecap_cnt_cap_write, ecap_cnt_cap_array), COUNTER_COMP_COUNT_U64("num_overflows", ecap_cnt_nb_ovf_read, ecap_cnt_nb_ovf_write), COUNTER_COMP_CEILING(ecap_cnt_ceiling_read, NULL), COUNTER_COMP_ENABLE(ecap_cnt_enable_read, ecap_cnt_enable_write), }; static struct counter_count ecap_cnt_counts[] = { { .name = "Timestamp Counter", .functions_list = ecap_cnt_functions, .num_functions = ARRAY_SIZE(ecap_cnt_functions), .synapses = ecap_cnt_synapses, .num_synapses = ARRAY_SIZE(ecap_cnt_synapses), .ext = ecap_cnt_count_ext, .num_ext = ARRAY_SIZE(ecap_cnt_count_ext), }, }; static irqreturn_t ecap_cnt_isr(int irq, void *dev_id) { struct counter_device *counter_dev = dev_id; struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev); unsigned int clr = 0; unsigned int flg; int i; regmap_read(ecap_dev->regmap, ECAP_ECINT_EN_FLG_REG, &flg); /* Check capture events */ for (i = 0 ; i < ECAP_NB_CEVT ; i++) { if (flg & ECAP_EVT_FLG_BIT(i)) { counter_push_event(counter_dev, COUNTER_EVENT_CAPTURE, i); clr |= ECAP_EVT_CLR_BIT(i); } } /* Check counter overflow */ if (flg & ECAP_EVT_FLG_BIT(ECAP_CNTOVF)) { atomic_inc(&ecap_dev->nb_ovf); for (i = 0 ; i < ECAP_NB_CEVT ; i++) counter_push_event(counter_dev, COUNTER_EVENT_OVERFLOW, i); clr |= ECAP_EVT_CLR_BIT(ECAP_CNTOVF); } clr |= ECAP_INT_CLR_BIT; regmap_update_bits(ecap_dev->regmap, ECAP_ECINT_CLR_FRC_REG, ECAP_EVT_CLR_MASK, clr); return IRQ_HANDLED; } static void ecap_cnt_pm_disable(void *dev) { pm_runtime_disable(dev); } static int ecap_cnt_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ecap_cnt_dev *ecap_dev; struct counter_device *counter_dev; void __iomem *mmio_base; unsigned long clk_rate; int ret; counter_dev = devm_counter_alloc(dev, sizeof(*ecap_dev)); if (!counter_dev) return -ENOMEM; counter_dev->name = ECAP_DRV_NAME; counter_dev->parent = dev; counter_dev->ops = &ecap_cnt_ops; counter_dev->signals = ecap_cnt_signals; counter_dev->num_signals = ARRAY_SIZE(ecap_cnt_signals); counter_dev->counts = ecap_cnt_counts; counter_dev->num_counts = ARRAY_SIZE(ecap_cnt_counts); ecap_dev = counter_priv(counter_dev); mutex_init(&ecap_dev->lock); ecap_dev->clk = devm_clk_get_enabled(dev, "fck"); if (IS_ERR(ecap_dev->clk)) return dev_err_probe(dev, PTR_ERR(ecap_dev->clk), "failed to get clock\n"); clk_rate = clk_get_rate(ecap_dev->clk); if (!clk_rate) { dev_err(dev, "failed to get clock rate\n"); return -EINVAL; } mmio_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mmio_base)) return PTR_ERR(mmio_base); ecap_dev->regmap = devm_regmap_init_mmio(dev, mmio_base, &ecap_cnt_regmap_config); if (IS_ERR(ecap_dev->regmap)) return dev_err_probe(dev, PTR_ERR(ecap_dev->regmap), "failed to init regmap\n"); ret = platform_get_irq(pdev, 0); if (ret < 0) return dev_err_probe(dev, ret, "failed to get irq\n"); ret = devm_request_irq(dev, ret, ecap_cnt_isr, 0, pdev->name, counter_dev); if (ret) return dev_err_probe(dev, ret, "failed to request irq\n"); platform_set_drvdata(pdev, counter_dev); pm_runtime_enable(dev); /* Register a cleanup callback to care for disabling PM */ ret = devm_add_action_or_reset(dev, ecap_cnt_pm_disable, dev); if (ret) return dev_err_probe(dev, ret, "failed to add pm disable action\n"); ret = devm_counter_add(dev, counter_dev); if (ret) return dev_err_probe(dev, ret, "failed to add counter\n"); return 0; } static void ecap_cnt_remove(struct platform_device *pdev) { struct counter_device *counter_dev = platform_get_drvdata(pdev); struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev); if (ecap_dev->enabled) ecap_cnt_capture_disable(counter_dev); } static int ecap_cnt_suspend(struct device *dev) { struct counter_device *counter_dev = dev_get_drvdata(dev); struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev); /* If eCAP is running, stop capture then save timestamp counter */ if (ecap_dev->enabled) { /* * Disabling capture has the following effects: * - interrupts are disabled * - loading of capture registers is disabled * - timebase counter is stopped */ ecap_cnt_capture_disable(counter_dev); ecap_dev->pm_ctx.time_cntr = ecap_cnt_count_get_val(counter_dev, ECAP_TSCNT_REG); } ecap_dev->pm_ctx.ev_mode = ecap_cnt_capture_get_evmode(counter_dev); clk_disable(ecap_dev->clk); return 0; } static int ecap_cnt_resume(struct device *dev) { struct counter_device *counter_dev = dev_get_drvdata(dev); struct ecap_cnt_dev *ecap_dev = counter_priv(counter_dev); int ret; ret = clk_enable(ecap_dev->clk); if (ret) { dev_err(dev, "Cannot enable clock %d\n", ret); return ret; } ecap_cnt_capture_set_evmode(counter_dev, ecap_dev->pm_ctx.ev_mode); /* If eCAP was running, restore timestamp counter then run capture */ if (ecap_dev->enabled) { ecap_cnt_count_set_val(counter_dev, ECAP_TSCNT_REG, ecap_dev->pm_ctx.time_cntr); ecap_cnt_capture_enable(counter_dev); } return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(ecap_cnt_pm_ops, ecap_cnt_suspend, ecap_cnt_resume); static const struct of_device_id ecap_cnt_of_match[] = { { .compatible = "ti,am62-ecap-capture" }, {}, }; MODULE_DEVICE_TABLE(of, ecap_cnt_of_match); static struct platform_driver ecap_cnt_driver = { .probe = ecap_cnt_probe, .remove_new = ecap_cnt_remove, .driver = { .name = "ecap-capture", .of_match_table = ecap_cnt_of_match, .pm = pm_sleep_ptr(&ecap_cnt_pm_ops), }, }; module_platform_driver(ecap_cnt_driver); MODULE_DESCRIPTION("ECAP Capture driver"); MODULE_AUTHOR("Julien Panis "); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(COUNTER);