// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver For Marvell Two-channel DMA Engine * * Copyright: Marvell International Ltd. */ #include <linux/err.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/dmaengine.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/device.h> #include <linux/genalloc.h> #include <linux/of_dma.h> #include "dmaengine.h" /* * Two-Channel DMA registers */ #define TDBCR 0x00 /* Byte Count */ #define TDSAR 0x10 /* Src Addr */ #define TDDAR 0x20 /* Dst Addr */ #define TDNDPR 0x30 /* Next Desc */ #define TDCR 0x40 /* Control */ #define TDCP 0x60 /* Priority*/ #define TDCDPR 0x70 /* Current Desc */ #define TDIMR 0x80 /* Int Mask */ #define TDISR 0xa0 /* Int Status */ /* Two-Channel DMA Control Register */ #define TDCR_SSZ_8_BITS (0x0 << 22) /* Sample Size */ #define TDCR_SSZ_12_BITS (0x1 << 22) #define TDCR_SSZ_16_BITS (0x2 << 22) #define TDCR_SSZ_20_BITS (0x3 << 22) #define TDCR_SSZ_24_BITS (0x4 << 22) #define TDCR_SSZ_32_BITS (0x5 << 22) #define TDCR_SSZ_SHIFT (0x1 << 22) #define TDCR_SSZ_MASK (0x7 << 22) #define TDCR_SSPMOD (0x1 << 21) /* SSP MOD */ #define TDCR_ABR (0x1 << 20) /* Channel Abort */ #define TDCR_CDE (0x1 << 17) /* Close Desc Enable */ #define TDCR_PACKMOD (0x1 << 16) /* Pack Mode (ADMA Only) */ #define TDCR_CHANACT (0x1 << 14) /* Channel Active */ #define TDCR_FETCHND (0x1 << 13) /* Fetch Next Desc */ #define TDCR_CHANEN (0x1 << 12) /* Channel Enable */ #define TDCR_INTMODE (0x1 << 10) /* Interrupt Mode */ #define TDCR_CHAINMOD (0x1 << 9) /* Chain Mode */ #define TDCR_BURSTSZ_MSK (0x7 << 6) /* Burst Size */ #define TDCR_BURSTSZ_4B (0x0 << 6) #define TDCR_BURSTSZ_8B (0x1 << 6) #define TDCR_BURSTSZ_16B (0x3 << 6) #define TDCR_BURSTSZ_32B (0x6 << 6) #define TDCR_BURSTSZ_64B (0x7 << 6) #define TDCR_BURSTSZ_SQU_1B (0x5 << 6) #define TDCR_BURSTSZ_SQU_2B (0x6 << 6) #define TDCR_BURSTSZ_SQU_4B (0x0 << 6) #define TDCR_BURSTSZ_SQU_8B (0x1 << 6) #define TDCR_BURSTSZ_SQU_16B (0x3 << 6) #define TDCR_BURSTSZ_SQU_32B (0x7 << 6) #define TDCR_BURSTSZ_128B (0x5 << 6) #define TDCR_DSTDIR_MSK (0x3 << 4) /* Dst Direction */ #define TDCR_DSTDIR_ADDR_HOLD (0x2 << 4) /* Dst Addr Hold */ #define TDCR_DSTDIR_ADDR_INC (0x0 << 4) /* Dst Addr Increment */ #define TDCR_SRCDIR_MSK (0x3 << 2) /* Src Direction */ #define TDCR_SRCDIR_ADDR_HOLD (0x2 << 2) /* Src Addr Hold */ #define TDCR_SRCDIR_ADDR_INC (0x0 << 2) /* Src Addr Increment */ #define TDCR_DSTDESCCONT (0x1 << 1) #define TDCR_SRCDESTCONT (0x1 << 0) /* Two-Channel DMA Int Mask Register */ #define TDIMR_COMP (0x1 << 0) /* Two-Channel DMA Int Status Register */ #define TDISR_COMP (0x1 << 0) /* * Two-Channel DMA Descriptor Struct * NOTE: desc's buf must be aligned to 16 bytes. */ struct mmp_tdma_desc { u32 byte_cnt; u32 src_addr; u32 dst_addr; u32 nxt_desc; }; enum mmp_tdma_type { MMP_AUD_TDMA = 0, PXA910_SQU, }; #define TDMA_MAX_XFER_BYTES SZ_64K struct mmp_tdma_chan { struct device *dev; struct dma_chan chan; struct dma_async_tx_descriptor desc; struct tasklet_struct tasklet; struct mmp_tdma_desc *desc_arr; dma_addr_t desc_arr_phys; int desc_num; enum dma_transfer_direction dir; dma_addr_t dev_addr; u32 burst_sz; enum dma_slave_buswidth buswidth; enum dma_status status; struct dma_slave_config slave_config; int idx; enum mmp_tdma_type type; int irq; void __iomem *reg_base; size_t buf_len; size_t period_len; size_t pos; struct gen_pool *pool; }; #define TDMA_CHANNEL_NUM 2 struct mmp_tdma_device { struct device *dev; void __iomem *base; struct dma_device device; struct mmp_tdma_chan *tdmac[TDMA_CHANNEL_NUM]; }; #define to_mmp_tdma_chan(dchan) container_of(dchan, struct mmp_tdma_chan, chan) static int mmp_tdma_config_write(struct dma_chan *chan, enum dma_transfer_direction dir, struct dma_slave_config *dmaengine_cfg); static void mmp_tdma_chan_set_desc(struct mmp_tdma_chan *tdmac, dma_addr_t phys) { writel(phys, tdmac->reg_base + TDNDPR); writel(readl(tdmac->reg_base + TDCR) | TDCR_FETCHND, tdmac->reg_base + TDCR); } static void mmp_tdma_enable_irq(struct mmp_tdma_chan *tdmac, bool enable) { if (enable) writel(TDIMR_COMP, tdmac->reg_base + TDIMR); else writel(0, tdmac->reg_base + TDIMR); } static void mmp_tdma_enable_chan(struct mmp_tdma_chan *tdmac) { /* enable dma chan */ writel(readl(tdmac->reg_base + TDCR) | TDCR_CHANEN, tdmac->reg_base + TDCR); tdmac->status = DMA_IN_PROGRESS; } static int mmp_tdma_disable_chan(struct dma_chan *chan) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); u32 tdcr; tdcr = readl(tdmac->reg_base + TDCR); tdcr |= TDCR_ABR; tdcr &= ~TDCR_CHANEN; writel(tdcr, tdmac->reg_base + TDCR); tdmac->status = DMA_COMPLETE; return 0; } static int mmp_tdma_resume_chan(struct dma_chan *chan) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); writel(readl(tdmac->reg_base + TDCR) | TDCR_CHANEN, tdmac->reg_base + TDCR); tdmac->status = DMA_IN_PROGRESS; return 0; } static int mmp_tdma_pause_chan(struct dma_chan *chan) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); writel(readl(tdmac->reg_base + TDCR) & ~TDCR_CHANEN, tdmac->reg_base + TDCR); tdmac->status = DMA_PAUSED; return 0; } static int mmp_tdma_config_chan(struct dma_chan *chan) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); unsigned int tdcr = 0; mmp_tdma_disable_chan(chan); if (tdmac->dir == DMA_MEM_TO_DEV) tdcr = TDCR_DSTDIR_ADDR_HOLD | TDCR_SRCDIR_ADDR_INC; else if (tdmac->dir == DMA_DEV_TO_MEM) tdcr = TDCR_SRCDIR_ADDR_HOLD | TDCR_DSTDIR_ADDR_INC; if (tdmac->type == MMP_AUD_TDMA) { tdcr |= TDCR_PACKMOD; switch (tdmac->burst_sz) { case 4: tdcr |= TDCR_BURSTSZ_4B; break; case 8: tdcr |= TDCR_BURSTSZ_8B; break; case 16: tdcr |= TDCR_BURSTSZ_16B; break; case 32: tdcr |= TDCR_BURSTSZ_32B; break; case 64: tdcr |= TDCR_BURSTSZ_64B; break; case 128: tdcr |= TDCR_BURSTSZ_128B; break; default: dev_err(tdmac->dev, "unknown burst size.\n"); return -EINVAL; } switch (tdmac->buswidth) { case DMA_SLAVE_BUSWIDTH_1_BYTE: tdcr |= TDCR_SSZ_8_BITS; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: tdcr |= TDCR_SSZ_16_BITS; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: tdcr |= TDCR_SSZ_32_BITS; break; default: dev_err(tdmac->dev, "unknown bus size.\n"); return -EINVAL; } } else if (tdmac->type == PXA910_SQU) { tdcr |= TDCR_SSPMOD; switch (tdmac->burst_sz) { case 1: tdcr |= TDCR_BURSTSZ_SQU_1B; break; case 2: tdcr |= TDCR_BURSTSZ_SQU_2B; break; case 4: tdcr |= TDCR_BURSTSZ_SQU_4B; break; case 8: tdcr |= TDCR_BURSTSZ_SQU_8B; break; case 16: tdcr |= TDCR_BURSTSZ_SQU_16B; break; case 32: tdcr |= TDCR_BURSTSZ_SQU_32B; break; default: dev_err(tdmac->dev, "unknown burst size.\n"); return -EINVAL; } } writel(tdcr, tdmac->reg_base + TDCR); return 0; } static int mmp_tdma_clear_chan_irq(struct mmp_tdma_chan *tdmac) { u32 reg = readl(tdmac->reg_base + TDISR); if (reg & TDISR_COMP) { /* clear irq */ reg &= ~TDISR_COMP; writel(reg, tdmac->reg_base + TDISR); return 0; } return -EAGAIN; } static size_t mmp_tdma_get_pos(struct mmp_tdma_chan *tdmac) { size_t reg; if (tdmac->idx == 0) { reg = __raw_readl(tdmac->reg_base + TDSAR); reg -= tdmac->desc_arr[0].src_addr; } else if (tdmac->idx == 1) { reg = __raw_readl(tdmac->reg_base + TDDAR); reg -= tdmac->desc_arr[0].dst_addr; } else return -EINVAL; return reg; } static irqreturn_t mmp_tdma_chan_handler(int irq, void *dev_id) { struct mmp_tdma_chan *tdmac = dev_id; if (mmp_tdma_clear_chan_irq(tdmac) == 0) { tasklet_schedule(&tdmac->tasklet); return IRQ_HANDLED; } else return IRQ_NONE; } static irqreturn_t mmp_tdma_int_handler(int irq, void *dev_id) { struct mmp_tdma_device *tdev = dev_id; int i, ret; int irq_num = 0; for (i = 0; i < TDMA_CHANNEL_NUM; i++) { struct mmp_tdma_chan *tdmac = tdev->tdmac[i]; ret = mmp_tdma_chan_handler(irq, tdmac); if (ret == IRQ_HANDLED) irq_num++; } if (irq_num) return IRQ_HANDLED; else return IRQ_NONE; } static void dma_do_tasklet(struct tasklet_struct *t) { struct mmp_tdma_chan *tdmac = from_tasklet(tdmac, t, tasklet); dmaengine_desc_get_callback_invoke(&tdmac->desc, NULL); } static void mmp_tdma_free_descriptor(struct mmp_tdma_chan *tdmac) { struct gen_pool *gpool; int size = tdmac->desc_num * sizeof(struct mmp_tdma_desc); gpool = tdmac->pool; if (gpool && tdmac->desc_arr) gen_pool_free(gpool, (unsigned long)tdmac->desc_arr, size); tdmac->desc_arr = NULL; if (tdmac->status == DMA_ERROR) tdmac->status = DMA_COMPLETE; return; } static dma_cookie_t mmp_tdma_tx_submit(struct dma_async_tx_descriptor *tx) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(tx->chan); mmp_tdma_chan_set_desc(tdmac, tdmac->desc_arr_phys); return 0; } static int mmp_tdma_alloc_chan_resources(struct dma_chan *chan) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); int ret; dma_async_tx_descriptor_init(&tdmac->desc, chan); tdmac->desc.tx_submit = mmp_tdma_tx_submit; if (tdmac->irq) { ret = devm_request_irq(tdmac->dev, tdmac->irq, mmp_tdma_chan_handler, 0, "tdma", tdmac); if (ret) return ret; } return 1; } static void mmp_tdma_free_chan_resources(struct dma_chan *chan) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); if (tdmac->irq) devm_free_irq(tdmac->dev, tdmac->irq, tdmac); mmp_tdma_free_descriptor(tdmac); return; } static struct mmp_tdma_desc *mmp_tdma_alloc_descriptor(struct mmp_tdma_chan *tdmac) { struct gen_pool *gpool; int size = tdmac->desc_num * sizeof(struct mmp_tdma_desc); gpool = tdmac->pool; if (!gpool) return NULL; tdmac->desc_arr = gen_pool_dma_alloc(gpool, size, &tdmac->desc_arr_phys); return tdmac->desc_arr; } static struct dma_async_tx_descriptor *mmp_tdma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); struct mmp_tdma_desc *desc; int num_periods = buf_len / period_len; int i = 0, buf = 0; if (!is_slave_direction(direction)) { dev_err(tdmac->dev, "unsupported transfer direction\n"); return NULL; } if (tdmac->status != DMA_COMPLETE) { dev_err(tdmac->dev, "controller busy"); return NULL; } if (period_len > TDMA_MAX_XFER_BYTES) { dev_err(tdmac->dev, "maximum period size exceeded: %zu > %d\n", period_len, TDMA_MAX_XFER_BYTES); goto err_out; } tdmac->status = DMA_IN_PROGRESS; tdmac->desc_num = num_periods; desc = mmp_tdma_alloc_descriptor(tdmac); if (!desc) goto err_out; if (mmp_tdma_config_write(chan, direction, &tdmac->slave_config)) goto err_out; while (buf < buf_len) { desc = &tdmac->desc_arr[i]; if (i + 1 == num_periods) desc->nxt_desc = tdmac->desc_arr_phys; else desc->nxt_desc = tdmac->desc_arr_phys + sizeof(*desc) * (i + 1); if (direction == DMA_MEM_TO_DEV) { desc->src_addr = dma_addr; desc->dst_addr = tdmac->dev_addr; } else { desc->src_addr = tdmac->dev_addr; desc->dst_addr = dma_addr; } desc->byte_cnt = period_len; dma_addr += period_len; buf += period_len; i++; } /* enable interrupt */ if (flags & DMA_PREP_INTERRUPT) mmp_tdma_enable_irq(tdmac, true); tdmac->buf_len = buf_len; tdmac->period_len = period_len; tdmac->pos = 0; return &tdmac->desc; err_out: tdmac->status = DMA_ERROR; return NULL; } static int mmp_tdma_terminate_all(struct dma_chan *chan) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); mmp_tdma_disable_chan(chan); /* disable interrupt */ mmp_tdma_enable_irq(tdmac, false); return 0; } static int mmp_tdma_config(struct dma_chan *chan, struct dma_slave_config *dmaengine_cfg) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); memcpy(&tdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg)); return 0; } static int mmp_tdma_config_write(struct dma_chan *chan, enum dma_transfer_direction dir, struct dma_slave_config *dmaengine_cfg) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); if (dir == DMA_DEV_TO_MEM) { tdmac->dev_addr = dmaengine_cfg->src_addr; tdmac->burst_sz = dmaengine_cfg->src_maxburst; tdmac->buswidth = dmaengine_cfg->src_addr_width; } else { tdmac->dev_addr = dmaengine_cfg->dst_addr; tdmac->burst_sz = dmaengine_cfg->dst_maxburst; tdmac->buswidth = dmaengine_cfg->dst_addr_width; } tdmac->dir = dir; return mmp_tdma_config_chan(chan); } static enum dma_status mmp_tdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); tdmac->pos = mmp_tdma_get_pos(tdmac); dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, tdmac->buf_len - tdmac->pos); return tdmac->status; } static void mmp_tdma_issue_pending(struct dma_chan *chan) { struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan); mmp_tdma_enable_chan(tdmac); } static void mmp_tdma_remove(struct platform_device *pdev) { if (pdev->dev.of_node) of_dma_controller_free(pdev->dev.of_node); } static int mmp_tdma_chan_init(struct mmp_tdma_device *tdev, int idx, int irq, int type, struct gen_pool *pool) { struct mmp_tdma_chan *tdmac; if (idx >= TDMA_CHANNEL_NUM) { dev_err(tdev->dev, "too many channels for device!\n"); return -EINVAL; } /* alloc channel */ tdmac = devm_kzalloc(tdev->dev, sizeof(*tdmac), GFP_KERNEL); if (!tdmac) return -ENOMEM; if (irq) tdmac->irq = irq; tdmac->dev = tdev->dev; tdmac->chan.device = &tdev->device; tdmac->idx = idx; tdmac->type = type; tdmac->reg_base = tdev->base + idx * 4; tdmac->pool = pool; tdmac->status = DMA_COMPLETE; tdev->tdmac[tdmac->idx] = tdmac; tasklet_setup(&tdmac->tasklet, dma_do_tasklet); /* add the channel to tdma_chan list */ list_add_tail(&tdmac->chan.device_node, &tdev->device.channels); return 0; } struct mmp_tdma_filter_param { unsigned int chan_id; }; static bool mmp_tdma_filter_fn(struct dma_chan *chan, void *fn_param) { struct mmp_tdma_filter_param *param = fn_param; if (chan->chan_id != param->chan_id) return false; return true; } static struct dma_chan *mmp_tdma_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct mmp_tdma_device *tdev = ofdma->of_dma_data; dma_cap_mask_t mask = tdev->device.cap_mask; struct mmp_tdma_filter_param param; if (dma_spec->args_count != 1) return NULL; param.chan_id = dma_spec->args[0]; if (param.chan_id >= TDMA_CHANNEL_NUM) return NULL; return __dma_request_channel(&mask, mmp_tdma_filter_fn, ¶m, ofdma->of_node); } static const struct of_device_id mmp_tdma_dt_ids[] = { { .compatible = "marvell,adma-1.0", .data = (void *)MMP_AUD_TDMA}, { .compatible = "marvell,pxa910-squ", .data = (void *)PXA910_SQU}, {} }; MODULE_DEVICE_TABLE(of, mmp_tdma_dt_ids); static int mmp_tdma_probe(struct platform_device *pdev) { enum mmp_tdma_type type; struct mmp_tdma_device *tdev; int i, ret; int irq = 0, irq_num = 0; int chan_num = TDMA_CHANNEL_NUM; struct gen_pool *pool = NULL; type = (enum mmp_tdma_type)device_get_match_data(&pdev->dev); /* always have couple channels */ tdev = devm_kzalloc(&pdev->dev, sizeof(*tdev), GFP_KERNEL); if (!tdev) return -ENOMEM; tdev->dev = &pdev->dev; for (i = 0; i < chan_num; i++) { if (platform_get_irq(pdev, i) > 0) irq_num++; } tdev->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(tdev->base)) return PTR_ERR(tdev->base); INIT_LIST_HEAD(&tdev->device.channels); pool = of_gen_pool_get(pdev->dev.of_node, "asram", 0); if (!pool) { dev_err(&pdev->dev, "asram pool not available\n"); return -ENOMEM; } if (irq_num != chan_num) { irq = platform_get_irq(pdev, 0); ret = devm_request_irq(&pdev->dev, irq, mmp_tdma_int_handler, IRQF_SHARED, "tdma", tdev); if (ret) return ret; } /* initialize channel parameters */ for (i = 0; i < chan_num; i++) { irq = (irq_num != chan_num) ? 0 : platform_get_irq(pdev, i); ret = mmp_tdma_chan_init(tdev, i, irq, type, pool); if (ret) return ret; } dma_cap_set(DMA_SLAVE, tdev->device.cap_mask); dma_cap_set(DMA_CYCLIC, tdev->device.cap_mask); tdev->device.dev = &pdev->dev; tdev->device.device_alloc_chan_resources = mmp_tdma_alloc_chan_resources; tdev->device.device_free_chan_resources = mmp_tdma_free_chan_resources; tdev->device.device_prep_dma_cyclic = mmp_tdma_prep_dma_cyclic; tdev->device.device_tx_status = mmp_tdma_tx_status; tdev->device.device_issue_pending = mmp_tdma_issue_pending; tdev->device.device_config = mmp_tdma_config; tdev->device.device_pause = mmp_tdma_pause_chan; tdev->device.device_resume = mmp_tdma_resume_chan; tdev->device.device_terminate_all = mmp_tdma_terminate_all; tdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES; tdev->device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); if (type == MMP_AUD_TDMA) { tdev->device.max_burst = SZ_128; tdev->device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); tdev->device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); } else if (type == PXA910_SQU) { tdev->device.max_burst = SZ_32; } tdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; tdev->device.descriptor_reuse = true; dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); platform_set_drvdata(pdev, tdev); ret = dmaenginem_async_device_register(&tdev->device); if (ret) { dev_err(tdev->device.dev, "unable to register\n"); return ret; } ret = of_dma_controller_register(pdev->dev.of_node, mmp_tdma_xlate, tdev); if (ret) { dev_err(tdev->device.dev, "failed to register controller\n"); return ret; } dev_info(tdev->device.dev, "initialized\n"); return 0; } static struct platform_driver mmp_tdma_driver = { .driver = { .name = "mmp-tdma", .of_match_table = mmp_tdma_dt_ids, }, .probe = mmp_tdma_probe, .remove_new = mmp_tdma_remove, }; module_platform_driver(mmp_tdma_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MMP Two-Channel DMA Driver"); MODULE_ALIAS("platform:mmp-tdma"); MODULE_AUTHOR("Leo Yan <leoy@marvell.com>"); MODULE_AUTHOR("Zhangfei Gao <zhangfei.gao@marvell.com>");