// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for OHCI 1394 controllers * * Copyright (C) 2003-2006 Kristian Hoegsberg */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_PPC_PMAC #include #endif #include "core.h" #include "ohci.h" #include "packet-header-definitions.h" #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args) #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args) #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args) #define DESCRIPTOR_OUTPUT_MORE 0 #define DESCRIPTOR_OUTPUT_LAST (1 << 12) #define DESCRIPTOR_INPUT_MORE (2 << 12) #define DESCRIPTOR_INPUT_LAST (3 << 12) #define DESCRIPTOR_STATUS (1 << 11) #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8) #define DESCRIPTOR_PING (1 << 7) #define DESCRIPTOR_YY (1 << 6) #define DESCRIPTOR_NO_IRQ (0 << 4) #define DESCRIPTOR_IRQ_ERROR (1 << 4) #define DESCRIPTOR_IRQ_ALWAYS (3 << 4) #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2) #define DESCRIPTOR_WAIT (3 << 0) #define DESCRIPTOR_CMD (0xf << 12) struct descriptor { __le16 req_count; __le16 control; __le32 data_address; __le32 branch_address; __le16 res_count; __le16 transfer_status; } __attribute__((aligned(16))); #define CONTROL_SET(regs) (regs) #define CONTROL_CLEAR(regs) ((regs) + 4) #define COMMAND_PTR(regs) ((regs) + 12) #define CONTEXT_MATCH(regs) ((regs) + 16) #define AR_BUFFER_SIZE (32*1024) #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE) /* we need at least two pages for proper list management */ #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2) #define MAX_ASYNC_PAYLOAD 4096 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4) #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE) struct ar_context { struct fw_ohci *ohci; struct page *pages[AR_BUFFERS]; void *buffer; struct descriptor *descriptors; dma_addr_t descriptors_bus; void *pointer; unsigned int last_buffer_index; u32 regs; struct tasklet_struct tasklet; }; struct context; typedef int (*descriptor_callback_t)(struct context *ctx, struct descriptor *d, struct descriptor *last); /* * A buffer that contains a block of DMA-able coherent memory used for * storing a portion of a DMA descriptor program. */ struct descriptor_buffer { struct list_head list; dma_addr_t buffer_bus; size_t buffer_size; size_t used; struct descriptor buffer[]; }; struct context { struct fw_ohci *ohci; u32 regs; int total_allocation; u32 current_bus; bool running; bool flushing; /* * List of page-sized buffers for storing DMA descriptors. * Head of list contains buffers in use and tail of list contains * free buffers. */ struct list_head buffer_list; /* * Pointer to a buffer inside buffer_list that contains the tail * end of the current DMA program. */ struct descriptor_buffer *buffer_tail; /* * The descriptor containing the branch address of the first * descriptor that has not yet been filled by the device. */ struct descriptor *last; /* * The last descriptor block in the DMA program. It contains the branch * address that must be updated upon appending a new descriptor. */ struct descriptor *prev; int prev_z; descriptor_callback_t callback; struct tasklet_struct tasklet; }; #define IT_HEADER_SY(v) ((v) << 0) #define IT_HEADER_TCODE(v) ((v) << 4) #define IT_HEADER_CHANNEL(v) ((v) << 8) #define IT_HEADER_TAG(v) ((v) << 14) #define IT_HEADER_SPEED(v) ((v) << 16) #define IT_HEADER_DATA_LENGTH(v) ((v) << 16) struct iso_context { struct fw_iso_context base; struct context context; void *header; size_t header_length; unsigned long flushing_completions; u32 mc_buffer_bus; u16 mc_completed; u16 last_timestamp; u8 sync; u8 tags; }; #define CONFIG_ROM_SIZE 1024 struct fw_ohci { struct fw_card card; __iomem char *registers; int node_id; int generation; int request_generation; /* for timestamping incoming requests */ unsigned quirks; unsigned int pri_req_max; u32 bus_time; bool bus_time_running; bool is_root; bool csr_state_setclear_abdicate; int n_ir; int n_it; /* * Spinlock for accessing fw_ohci data. Never call out of * this driver with this lock held. */ spinlock_t lock; struct mutex phy_reg_mutex; void *misc_buffer; dma_addr_t misc_buffer_bus; struct ar_context ar_request_ctx; struct ar_context ar_response_ctx; struct context at_request_ctx; struct context at_response_ctx; u32 it_context_support; u32 it_context_mask; /* unoccupied IT contexts */ struct iso_context *it_context_list; u64 ir_context_channels; /* unoccupied channels */ u32 ir_context_support; u32 ir_context_mask; /* unoccupied IR contexts */ struct iso_context *ir_context_list; u64 mc_channels; /* channels in use by the multichannel IR context */ bool mc_allocated; __be32 *config_rom; dma_addr_t config_rom_bus; __be32 *next_config_rom; dma_addr_t next_config_rom_bus; __be32 next_header; __le32 *self_id; dma_addr_t self_id_bus; struct work_struct bus_reset_work; u32 self_id_buffer[512]; }; static struct workqueue_struct *selfid_workqueue; static inline struct fw_ohci *fw_ohci(struct fw_card *card) { return container_of(card, struct fw_ohci, card); } #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 #define IR_CONTEXT_BUFFER_FILL 0x80000000 #define IR_CONTEXT_ISOCH_HEADER 0x40000000 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000 #define CONTEXT_RUN 0x8000 #define CONTEXT_WAKE 0x1000 #define CONTEXT_DEAD 0x0800 #define CONTEXT_ACTIVE 0x0400 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 #define OHCI1394_REGISTER_SIZE 0x800 #define OHCI1394_PCI_HCI_Control 0x40 #define SELF_ID_BUF_SIZE 0x800 #define OHCI_TCODE_PHY_PACKET 0x0e #define OHCI_VERSION_1_1 0x010010 static char ohci_driver_name[] = KBUILD_MODNAME; #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd #define PCI_DEVICE_ID_AGERE_FW643 0x5901 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025 #define PCI_DEVICE_ID_VIA_VT630X 0x3044 #define PCI_REV_ID_VIA_VT6306 0x46 #define PCI_DEVICE_ID_VIA_VT6315 0x3403 #define QUIRK_CYCLE_TIMER 0x1 #define QUIRK_RESET_PACKET 0x2 #define QUIRK_BE_HEADERS 0x4 #define QUIRK_NO_1394A 0x8 #define QUIRK_NO_MSI 0x10 #define QUIRK_TI_SLLZ059 0x20 #define QUIRK_IR_WAKE 0x40 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register, // while it is probable due to detection of any type of PCIe error. #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000 #if IS_ENABLED(CONFIG_X86) static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci) { return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ); } #define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev) { const struct pci_dev *pcie_to_pci_bridge; // Detect any type of AMD Ryzen machine. if (!static_cpu_has(X86_FEATURE_ZEN)) return false; // Detect VIA VT6306/6307/6308. if (pdev->vendor != PCI_VENDOR_ID_VIA) return false; if (pdev->device != PCI_DEVICE_ID_VIA_VT630X) return false; // Detect Asmedia ASM1083/1085. pcie_to_pci_bridge = pdev->bus->self; if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA) return false; if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X) return false; return true; } #else #define has_reboot_by_cycle_timer_read_quirk(ohci) false #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false #endif /* In case of multiple matches in ohci_quirks[], only the first one is used. */ static const struct { unsigned short vendor, device, revision, flags; } ohci_quirks[] = { {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID, QUIRK_CYCLE_TIMER}, {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID, QUIRK_BE_HEADERS}, {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6, QUIRK_NO_MSI}, {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID, QUIRK_RESET_PACKET}, {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID, QUIRK_NO_MSI}, {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID, QUIRK_CYCLE_TIMER}, {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID, QUIRK_NO_MSI}, {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID, QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID, QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A}, {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID, QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID, QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID, QUIRK_RESET_PACKET}, {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306, QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE}, {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0, QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI}, {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID, QUIRK_NO_MSI}, {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID, QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, }; /* This overrides anything that was found in ohci_quirks[]. */ static int param_quirks; module_param_named(quirks, param_quirks, int, 0644); MODULE_PARM_DESC(quirks, "Chip quirks (default = 0" ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER) ", reset packet generation = " __stringify(QUIRK_RESET_PACKET) ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS) ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A) ", disable MSI = " __stringify(QUIRK_NO_MSI) ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059) ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE) ")"); #define OHCI_PARAM_DEBUG_AT_AR 1 #define OHCI_PARAM_DEBUG_SELFIDS 2 #define OHCI_PARAM_DEBUG_IRQS 4 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */ static int param_debug; module_param_named(debug, param_debug, int, 0644); MODULE_PARM_DESC(debug, "Verbose logging (default = 0" ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR) ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS) ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS) ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS) ", or a combination, or all = -1)"); static bool param_remote_dma; module_param_named(remote_dma, param_remote_dma, bool, 0444); MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)"); static void log_irqs(struct fw_ohci *ohci, u32 evt) { if (likely(!(param_debug & (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS)))) return; if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) && !(evt & OHCI1394_busReset)) return; ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt, evt & OHCI1394_selfIDComplete ? " selfID" : "", evt & OHCI1394_RQPkt ? " AR_req" : "", evt & OHCI1394_RSPkt ? " AR_resp" : "", evt & OHCI1394_reqTxComplete ? " AT_req" : "", evt & OHCI1394_respTxComplete ? " AT_resp" : "", evt & OHCI1394_isochRx ? " IR" : "", evt & OHCI1394_isochTx ? " IT" : "", evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "", evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "", evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "", evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "", evt & OHCI1394_regAccessFail ? " regAccessFail" : "", evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "", evt & OHCI1394_busReset ? " busReset" : "", evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt | OHCI1394_RSPkt | OHCI1394_reqTxComplete | OHCI1394_respTxComplete | OHCI1394_isochRx | OHCI1394_isochTx | OHCI1394_postedWriteErr | OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds | OHCI1394_cycleInconsistent | OHCI1394_regAccessFail | OHCI1394_busReset) ? " ?" : ""); } static const char *speed[] = { [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta", }; static const char *power[] = { [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W", [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W", }; static const char port[] = { '.', '-', 'p', 'c', }; static char _p(u32 *s, int shift) { return port[*s >> shift & 3]; } static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count) { u32 *s; if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS))) return; ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n", self_id_count, generation, ohci->node_id); for (s = ohci->self_id_buffer; self_id_count--; ++s) if ((*s & 1 << 23) == 0) ohci_notice(ohci, "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n", *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2), speed[*s >> 14 & 3], *s >> 16 & 63, power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "", *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : ""); else ohci_notice(ohci, "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n", *s, *s >> 24 & 63, _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10), _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2)); } static const char *evts[] = { [0x00] = "evt_no_status", [0x01] = "-reserved-", [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack", [0x04] = "evt_underrun", [0x05] = "evt_overrun", [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read", [0x08] = "evt_data_write", [0x09] = "evt_bus_reset", [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err", [0x0c] = "-reserved-", [0x0d] = "-reserved-", [0x0e] = "evt_unknown", [0x0f] = "evt_flushed", [0x10] = "-reserved-", [0x11] = "ack_complete", [0x12] = "ack_pending ", [0x13] = "-reserved-", [0x14] = "ack_busy_X", [0x15] = "ack_busy_A", [0x16] = "ack_busy_B", [0x17] = "-reserved-", [0x18] = "-reserved-", [0x19] = "-reserved-", [0x1a] = "-reserved-", [0x1b] = "ack_tardy", [0x1c] = "-reserved-", [0x1d] = "ack_data_error", [0x1e] = "ack_type_error", [0x1f] = "-reserved-", [0x20] = "pending/cancelled", }; static const char *tcodes[] = { [0x0] = "QW req", [0x1] = "BW req", [0x2] = "W resp", [0x3] = "-reserved-", [0x4] = "QR req", [0x5] = "BR req", [0x6] = "QR resp", [0x7] = "BR resp", [0x8] = "cycle start", [0x9] = "Lk req", [0xa] = "async stream packet", [0xb] = "Lk resp", [0xc] = "-reserved-", [0xd] = "-reserved-", [0xe] = "link internal", [0xf] = "-reserved-", }; static void log_ar_at_event(struct fw_ohci *ohci, char dir, int speed, u32 *header, int evt) { int tcode = async_header_get_tcode(header); char specific[12]; if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR))) return; if (unlikely(evt >= ARRAY_SIZE(evts))) evt = 0x1f; if (evt == OHCI1394_evt_bus_reset) { ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n", dir, (header[2] >> 16) & 0xff); return; } switch (tcode) { case TCODE_WRITE_QUADLET_REQUEST: case TCODE_READ_QUADLET_RESPONSE: case TCODE_CYCLE_START: snprintf(specific, sizeof(specific), " = %08x", be32_to_cpu((__force __be32)header[3])); break; case TCODE_WRITE_BLOCK_REQUEST: case TCODE_READ_BLOCK_REQUEST: case TCODE_READ_BLOCK_RESPONSE: case TCODE_LOCK_REQUEST: case TCODE_LOCK_RESPONSE: snprintf(specific, sizeof(specific), " %x,%x", async_header_get_data_length(header), async_header_get_extended_tcode(header)); break; default: specific[0] = '\0'; } switch (tcode) { case TCODE_STREAM_DATA: ohci_notice(ohci, "A%c %s, %s\n", dir, evts[evt], tcodes[tcode]); break; case 0xe: ohci_notice(ohci, "A%c %s, PHY %08x %08x\n", dir, evts[evt], header[1], header[2]); break; case TCODE_WRITE_QUADLET_REQUEST: case TCODE_WRITE_BLOCK_REQUEST: case TCODE_READ_QUADLET_REQUEST: case TCODE_READ_BLOCK_REQUEST: case TCODE_LOCK_REQUEST: ohci_notice(ohci, "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n", dir, speed, async_header_get_tlabel(header), async_header_get_source(header), async_header_get_destination(header), evts[evt], tcodes[tcode], async_header_get_offset(header), specific); break; default: ohci_notice(ohci, "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n", dir, speed, async_header_get_tlabel(header), async_header_get_source(header), async_header_get_destination(header), evts[evt], tcodes[tcode], specific); } } static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) { writel(data, ohci->registers + offset); } static inline u32 reg_read(const struct fw_ohci *ohci, int offset) { return readl(ohci->registers + offset); } static inline void flush_writes(const struct fw_ohci *ohci) { /* Do a dummy read to flush writes. */ reg_read(ohci, OHCI1394_Version); } /* * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex. * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg() * directly. Exceptions are intrinsically serialized contexts like pci_probe. */ static int read_phy_reg(struct fw_ohci *ohci, int addr) { u32 val; int i; reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); for (i = 0; i < 3 + 100; i++) { val = reg_read(ohci, OHCI1394_PhyControl); if (!~val) return -ENODEV; /* Card was ejected. */ if (val & OHCI1394_PhyControl_ReadDone) return OHCI1394_PhyControl_ReadData(val); /* * Try a few times without waiting. Sleeping is necessary * only when the link/PHY interface is busy. */ if (i >= 3) msleep(1); } ohci_err(ohci, "failed to read phy reg %d\n", addr); dump_stack(); return -EBUSY; } static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val) { int i; reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Write(addr, val)); for (i = 0; i < 3 + 100; i++) { val = reg_read(ohci, OHCI1394_PhyControl); if (!~val) return -ENODEV; /* Card was ejected. */ if (!(val & OHCI1394_PhyControl_WritePending)) return 0; if (i >= 3) msleep(1); } ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val); dump_stack(); return -EBUSY; } static int update_phy_reg(struct fw_ohci *ohci, int addr, int clear_bits, int set_bits) { int ret = read_phy_reg(ohci, addr); if (ret < 0) return ret; /* * The interrupt status bits are cleared by writing a one bit. * Avoid clearing them unless explicitly requested in set_bits. */ if (addr == 5) clear_bits |= PHY_INT_STATUS_BITS; return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits); } static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr) { int ret; ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5); if (ret < 0) return ret; return read_phy_reg(ohci, addr); } static int ohci_read_phy_reg(struct fw_card *card, int addr) { struct fw_ohci *ohci = fw_ohci(card); int ret; mutex_lock(&ohci->phy_reg_mutex); ret = read_phy_reg(ohci, addr); mutex_unlock(&ohci->phy_reg_mutex); return ret; } static int ohci_update_phy_reg(struct fw_card *card, int addr, int clear_bits, int set_bits) { struct fw_ohci *ohci = fw_ohci(card); int ret; mutex_lock(&ohci->phy_reg_mutex); ret = update_phy_reg(ohci, addr, clear_bits, set_bits); mutex_unlock(&ohci->phy_reg_mutex); return ret; } static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i) { return page_private(ctx->pages[i]); } static void ar_context_link_page(struct ar_context *ctx, unsigned int index) { struct descriptor *d; d = &ctx->descriptors[index]; d->branch_address &= cpu_to_le32(~0xf); d->res_count = cpu_to_le16(PAGE_SIZE); d->transfer_status = 0; wmb(); /* finish init of new descriptors before branch_address update */ d = &ctx->descriptors[ctx->last_buffer_index]; d->branch_address |= cpu_to_le32(1); ctx->last_buffer_index = index; reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); } static void ar_context_release(struct ar_context *ctx) { struct device *dev = ctx->ohci->card.device; unsigned int i; if (!ctx->buffer) return; vunmap(ctx->buffer); for (i = 0; i < AR_BUFFERS; i++) { if (ctx->pages[i]) dma_free_pages(dev, PAGE_SIZE, ctx->pages[i], ar_buffer_bus(ctx, i), DMA_FROM_DEVICE); } } static void ar_context_abort(struct ar_context *ctx, const char *error_msg) { struct fw_ohci *ohci = ctx->ohci; if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) { reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); flush_writes(ohci); ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg); } /* FIXME: restart? */ } static inline unsigned int ar_next_buffer_index(unsigned int index) { return (index + 1) % AR_BUFFERS; } static inline unsigned int ar_first_buffer_index(struct ar_context *ctx) { return ar_next_buffer_index(ctx->last_buffer_index); } /* * We search for the buffer that contains the last AR packet DMA data written * by the controller. */ static unsigned int ar_search_last_active_buffer(struct ar_context *ctx, unsigned int *buffer_offset) { unsigned int i, next_i, last = ctx->last_buffer_index; __le16 res_count, next_res_count; i = ar_first_buffer_index(ctx); res_count = READ_ONCE(ctx->descriptors[i].res_count); /* A buffer that is not yet completely filled must be the last one. */ while (i != last && res_count == 0) { /* Peek at the next descriptor. */ next_i = ar_next_buffer_index(i); rmb(); /* read descriptors in order */ next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count); /* * If the next descriptor is still empty, we must stop at this * descriptor. */ if (next_res_count == cpu_to_le16(PAGE_SIZE)) { /* * The exception is when the DMA data for one packet is * split over three buffers; in this case, the middle * buffer's descriptor might be never updated by the * controller and look still empty, and we have to peek * at the third one. */ if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) { next_i = ar_next_buffer_index(next_i); rmb(); next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count); if (next_res_count != cpu_to_le16(PAGE_SIZE)) goto next_buffer_is_active; } break; } next_buffer_is_active: i = next_i; res_count = next_res_count; } rmb(); /* read res_count before the DMA data */ *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count); if (*buffer_offset > PAGE_SIZE) { *buffer_offset = 0; ar_context_abort(ctx, "corrupted descriptor"); } return i; } static void ar_sync_buffers_for_cpu(struct ar_context *ctx, unsigned int end_buffer_index, unsigned int end_buffer_offset) { unsigned int i; i = ar_first_buffer_index(ctx); while (i != end_buffer_index) { dma_sync_single_for_cpu(ctx->ohci->card.device, ar_buffer_bus(ctx, i), PAGE_SIZE, DMA_FROM_DEVICE); i = ar_next_buffer_index(i); } if (end_buffer_offset > 0) dma_sync_single_for_cpu(ctx->ohci->card.device, ar_buffer_bus(ctx, i), end_buffer_offset, DMA_FROM_DEVICE); } #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) #define cond_le32_to_cpu(v) \ (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v)) #else #define cond_le32_to_cpu(v) le32_to_cpu(v) #endif static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer) { struct fw_ohci *ohci = ctx->ohci; struct fw_packet p; u32 status, length, tcode; int evt; p.header[0] = cond_le32_to_cpu(buffer[0]); p.header[1] = cond_le32_to_cpu(buffer[1]); p.header[2] = cond_le32_to_cpu(buffer[2]); tcode = async_header_get_tcode(p.header); switch (tcode) { case TCODE_WRITE_QUADLET_REQUEST: case TCODE_READ_QUADLET_RESPONSE: p.header[3] = (__force __u32) buffer[3]; p.header_length = 16; p.payload_length = 0; break; case TCODE_READ_BLOCK_REQUEST : p.header[3] = cond_le32_to_cpu(buffer[3]); p.header_length = 16; p.payload_length = 0; break; case TCODE_WRITE_BLOCK_REQUEST: case TCODE_READ_BLOCK_RESPONSE: case TCODE_LOCK_REQUEST: case TCODE_LOCK_RESPONSE: p.header[3] = cond_le32_to_cpu(buffer[3]); p.header_length = 16; p.payload_length = async_header_get_data_length(p.header); if (p.payload_length > MAX_ASYNC_PAYLOAD) { ar_context_abort(ctx, "invalid packet length"); return NULL; } break; case TCODE_WRITE_RESPONSE: case TCODE_READ_QUADLET_REQUEST: case OHCI_TCODE_PHY_PACKET: p.header_length = 12; p.payload_length = 0; break; default: ar_context_abort(ctx, "invalid tcode"); return NULL; } p.payload = (void *) buffer + p.header_length; /* FIXME: What to do about evt_* errors? */ length = (p.header_length + p.payload_length + 3) / 4; status = cond_le32_to_cpu(buffer[length]); evt = (status >> 16) & 0x1f; p.ack = evt - 16; p.speed = (status >> 21) & 0x7; p.timestamp = status & 0xffff; p.generation = ohci->request_generation; log_ar_at_event(ohci, 'R', p.speed, p.header, evt); /* * Several controllers, notably from NEC and VIA, forget to * write ack_complete status at PHY packet reception. */ if (evt == OHCI1394_evt_no_status && tcode == OHCI1394_phy_tcode) p.ack = ACK_COMPLETE; /* * The OHCI bus reset handler synthesizes a PHY packet with * the new generation number when a bus reset happens (see * section 8.4.2.3). This helps us determine when a request * was received and make sure we send the response in the same * generation. We only need this for requests; for responses * we use the unique tlabel for finding the matching * request. * * Alas some chips sometimes emit bus reset packets with a * wrong generation. We set the correct generation for these * at a slightly incorrect time (in bus_reset_work). */ if (evt == OHCI1394_evt_bus_reset) { if (!(ohci->quirks & QUIRK_RESET_PACKET)) ohci->request_generation = (p.header[2] >> 16) & 0xff; } else if (ctx == &ohci->ar_request_ctx) { fw_core_handle_request(&ohci->card, &p); } else { fw_core_handle_response(&ohci->card, &p); } return buffer + length + 1; } static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end) { void *next; while (p < end) { next = handle_ar_packet(ctx, p); if (!next) return p; p = next; } return p; } static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer) { unsigned int i; i = ar_first_buffer_index(ctx); while (i != end_buffer) { dma_sync_single_for_device(ctx->ohci->card.device, ar_buffer_bus(ctx, i), PAGE_SIZE, DMA_FROM_DEVICE); ar_context_link_page(ctx, i); i = ar_next_buffer_index(i); } } static void ar_context_tasklet(unsigned long data) { struct ar_context *ctx = (struct ar_context *)data; unsigned int end_buffer_index, end_buffer_offset; void *p, *end; p = ctx->pointer; if (!p) return; end_buffer_index = ar_search_last_active_buffer(ctx, &end_buffer_offset); ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset); end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset; if (end_buffer_index < ar_first_buffer_index(ctx)) { /* * The filled part of the overall buffer wraps around; handle * all packets up to the buffer end here. If the last packet * wraps around, its tail will be visible after the buffer end * because the buffer start pages are mapped there again. */ void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE; p = handle_ar_packets(ctx, p, buffer_end); if (p < buffer_end) goto error; /* adjust p to point back into the actual buffer */ p -= AR_BUFFERS * PAGE_SIZE; } p = handle_ar_packets(ctx, p, end); if (p != end) { if (p > end) ar_context_abort(ctx, "inconsistent descriptor"); goto error; } ctx->pointer = p; ar_recycle_buffers(ctx, end_buffer_index); return; error: ctx->pointer = NULL; } static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, unsigned int descriptors_offset, u32 regs) { struct device *dev = ohci->card.device; unsigned int i; dma_addr_t dma_addr; struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES]; struct descriptor *d; ctx->regs = regs; ctx->ohci = ohci; tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx); for (i = 0; i < AR_BUFFERS; i++) { ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr, DMA_FROM_DEVICE, GFP_KERNEL); if (!ctx->pages[i]) goto out_of_memory; set_page_private(ctx->pages[i], dma_addr); dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); } for (i = 0; i < AR_BUFFERS; i++) pages[i] = ctx->pages[i]; for (i = 0; i < AR_WRAPAROUND_PAGES; i++) pages[AR_BUFFERS + i] = ctx->pages[i]; ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL); if (!ctx->buffer) goto out_of_memory; ctx->descriptors = ohci->misc_buffer + descriptors_offset; ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset; for (i = 0; i < AR_BUFFERS; i++) { d = &ctx->descriptors[i]; d->req_count = cpu_to_le16(PAGE_SIZE); d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | DESCRIPTOR_STATUS | DESCRIPTOR_BRANCH_ALWAYS); d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i)); d->branch_address = cpu_to_le32(ctx->descriptors_bus + ar_next_buffer_index(i) * sizeof(struct descriptor)); } return 0; out_of_memory: ar_context_release(ctx); return -ENOMEM; } static void ar_context_run(struct ar_context *ctx) { unsigned int i; for (i = 0; i < AR_BUFFERS; i++) ar_context_link_page(ctx, i); ctx->pointer = ctx->buffer; reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1); reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN); } static struct descriptor *find_branch_descriptor(struct descriptor *d, int z) { __le16 branch; branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS); /* figure out which descriptor the branch address goes in */ if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) return d; else return d + z - 1; } static void context_tasklet(unsigned long data) { struct context *ctx = (struct context *) data; struct descriptor *d, *last; u32 address; int z; struct descriptor_buffer *desc; desc = list_entry(ctx->buffer_list.next, struct descriptor_buffer, list); last = ctx->last; while (last->branch_address != 0) { struct descriptor_buffer *old_desc = desc; address = le32_to_cpu(last->branch_address); z = address & 0xf; address &= ~0xf; ctx->current_bus = address; /* If the branch address points to a buffer outside of the * current buffer, advance to the next buffer. */ if (address < desc->buffer_bus || address >= desc->buffer_bus + desc->used) desc = list_entry(desc->list.next, struct descriptor_buffer, list); d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d); last = find_branch_descriptor(d, z); if (!ctx->callback(ctx, d, last)) break; if (old_desc != desc) { /* If we've advanced to the next buffer, move the * previous buffer to the free list. */ unsigned long flags; old_desc->used = 0; spin_lock_irqsave(&ctx->ohci->lock, flags); list_move_tail(&old_desc->list, &ctx->buffer_list); spin_unlock_irqrestore(&ctx->ohci->lock, flags); } ctx->last = last; } } /* * Allocate a new buffer and add it to the list of free buffers for this * context. Must be called with ohci->lock held. */ static int context_add_buffer(struct context *ctx) { struct descriptor_buffer *desc; dma_addr_t bus_addr; int offset; /* * 16MB of descriptors should be far more than enough for any DMA * program. This will catch run-away userspace or DoS attacks. */ if (ctx->total_allocation >= 16*1024*1024) return -ENOMEM; desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC); if (!desc) return -ENOMEM; offset = (void *)&desc->buffer - (void *)desc; /* * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads * for descriptors, even 0x10-byte ones. This can cause page faults when * an IOMMU is in use and the oversized read crosses a page boundary. * Work around this by always leaving at least 0x10 bytes of padding. */ desc->buffer_size = PAGE_SIZE - offset - 0x10; desc->buffer_bus = bus_addr + offset; desc->used = 0; list_add_tail(&desc->list, &ctx->buffer_list); ctx->total_allocation += PAGE_SIZE; return 0; } static int context_init(struct context *ctx, struct fw_ohci *ohci, u32 regs, descriptor_callback_t callback) { ctx->ohci = ohci; ctx->regs = regs; ctx->total_allocation = 0; INIT_LIST_HEAD(&ctx->buffer_list); if (context_add_buffer(ctx) < 0) return -ENOMEM; ctx->buffer_tail = list_entry(ctx->buffer_list.next, struct descriptor_buffer, list); tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx); ctx->callback = callback; /* * We put a dummy descriptor in the buffer that has a NULL * branch address and looks like it's been sent. That way we * have a descriptor to append DMA programs to. */ memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer)); ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST); ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011); ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer); ctx->last = ctx->buffer_tail->buffer; ctx->prev = ctx->buffer_tail->buffer; ctx->prev_z = 1; return 0; } static void context_release(struct context *ctx) { struct fw_card *card = &ctx->ohci->card; struct descriptor_buffer *desc, *tmp; list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) { dmam_free_coherent(card->device, PAGE_SIZE, desc, desc->buffer_bus - ((void *)&desc->buffer - (void *)desc)); } } /* Must be called with ohci->lock held */ static struct descriptor *context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus) { struct descriptor *d = NULL; struct descriptor_buffer *desc = ctx->buffer_tail; if (z * sizeof(*d) > desc->buffer_size) return NULL; if (z * sizeof(*d) > desc->buffer_size - desc->used) { /* No room for the descriptor in this buffer, so advance to the * next one. */ if (desc->list.next == &ctx->buffer_list) { /* If there is no free buffer next in the list, * allocate one. */ if (context_add_buffer(ctx) < 0) return NULL; } desc = list_entry(desc->list.next, struct descriptor_buffer, list); ctx->buffer_tail = desc; } d = desc->buffer + desc->used / sizeof(*d); memset(d, 0, z * sizeof(*d)); *d_bus = desc->buffer_bus + desc->used; return d; } static void context_run(struct context *ctx, u32 extra) { struct fw_ohci *ohci = ctx->ohci; reg_write(ohci, COMMAND_PTR(ctx->regs), le32_to_cpu(ctx->last->branch_address)); reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0); reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra); ctx->running = true; flush_writes(ohci); } static void context_append(struct context *ctx, struct descriptor *d, int z, int extra) { dma_addr_t d_bus; struct descriptor_buffer *desc = ctx->buffer_tail; struct descriptor *d_branch; d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d); desc->used += (z + extra) * sizeof(*d); wmb(); /* finish init of new descriptors before branch_address update */ d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z); d_branch->branch_address = cpu_to_le32(d_bus | z); /* * VT6306 incorrectly checks only the single descriptor at the * CommandPtr when the wake bit is written, so if it's a * multi-descriptor block starting with an INPUT_MORE, put a copy of * the branch address in the first descriptor. * * Not doing this for transmit contexts since not sure how it interacts * with skip addresses. */ if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) && d_branch != ctx->prev && (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) == cpu_to_le16(DESCRIPTOR_INPUT_MORE)) { ctx->prev->branch_address = cpu_to_le32(d_bus | z); } ctx->prev = d; ctx->prev_z = z; } static void context_stop(struct context *ctx) { struct fw_ohci *ohci = ctx->ohci; u32 reg; int i; reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); ctx->running = false; for (i = 0; i < 1000; i++) { reg = reg_read(ohci, CONTROL_SET(ctx->regs)); if ((reg & CONTEXT_ACTIVE) == 0) return; if (i) udelay(10); } ohci_err(ohci, "DMA context still active (0x%08x)\n", reg); } struct driver_data { u8 inline_data[8]; struct fw_packet *packet; }; /* * This function apppends a packet to the DMA queue for transmission. * Must always be called with the ochi->lock held to ensure proper * generation handling and locking around packet queue manipulation. */ static int at_context_queue_packet(struct context *ctx, struct fw_packet *packet) { struct fw_ohci *ohci = ctx->ohci; dma_addr_t d_bus, payload_bus; struct driver_data *driver_data; struct descriptor *d, *last; __le32 *header; int z, tcode; d = context_get_descriptors(ctx, 4, &d_bus); if (d == NULL) { packet->ack = RCODE_SEND_ERROR; return -1; } d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); d[0].res_count = cpu_to_le16(packet->timestamp); /* * The DMA format for asynchronous link packets is different * from the IEEE1394 layout, so shift the fields around * accordingly. */ tcode = async_header_get_tcode(packet->header); header = (__le32 *) &d[1]; switch (tcode) { case TCODE_WRITE_QUADLET_REQUEST: case TCODE_WRITE_BLOCK_REQUEST: case TCODE_WRITE_RESPONSE: case TCODE_READ_QUADLET_REQUEST: case TCODE_READ_BLOCK_REQUEST: case TCODE_READ_QUADLET_RESPONSE: case TCODE_READ_BLOCK_RESPONSE: case TCODE_LOCK_REQUEST: case TCODE_LOCK_RESPONSE: header[0] = cpu_to_le32((packet->header[0] & 0xffff) | (packet->speed << 16)); header[1] = cpu_to_le32((packet->header[1] & 0xffff) | (packet->header[0] & 0xffff0000)); header[2] = cpu_to_le32(packet->header[2]); if (tcode_is_block_packet(tcode)) header[3] = cpu_to_le32(packet->header[3]); else header[3] = (__force __le32) packet->header[3]; d[0].req_count = cpu_to_le16(packet->header_length); break; case TCODE_LINK_INTERNAL: header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) | (packet->speed << 16)); header[1] = cpu_to_le32(packet->header[1]); header[2] = cpu_to_le32(packet->header[2]); d[0].req_count = cpu_to_le16(12); if (is_ping_packet(&packet->header[1])) d[0].control |= cpu_to_le16(DESCRIPTOR_PING); break; case TCODE_STREAM_DATA: header[0] = cpu_to_le32((packet->header[0] & 0xffff) | (packet->speed << 16)); header[1] = cpu_to_le32(packet->header[0] & 0xffff0000); d[0].req_count = cpu_to_le16(8); break; default: /* BUG(); */ packet->ack = RCODE_SEND_ERROR; return -1; } BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor)); driver_data = (struct driver_data *) &d[3]; driver_data->packet = packet; packet->driver_data = driver_data; if (packet->payload_length > 0) { if (packet->payload_length > sizeof(driver_data->inline_data)) { payload_bus = dma_map_single(ohci->card.device, packet->payload, packet->payload_length, DMA_TO_DEVICE); if (dma_mapping_error(ohci->card.device, payload_bus)) { packet->ack = RCODE_SEND_ERROR; return -1; } packet->payload_bus = payload_bus; packet->payload_mapped = true; } else { memcpy(driver_data->inline_data, packet->payload, packet->payload_length); payload_bus = d_bus + 3 * sizeof(*d); } d[2].req_count = cpu_to_le16(packet->payload_length); d[2].data_address = cpu_to_le32(payload_bus); last = &d[2]; z = 3; } else { last = &d[0]; z = 2; } last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | DESCRIPTOR_IRQ_ALWAYS | DESCRIPTOR_BRANCH_ALWAYS); /* FIXME: Document how the locking works. */ if (ohci->generation != packet->generation) { if (packet->payload_mapped) dma_unmap_single(ohci->card.device, payload_bus, packet->payload_length, DMA_TO_DEVICE); packet->ack = RCODE_GENERATION; return -1; } context_append(ctx, d, z, 4 - z); if (ctx->running) reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); else context_run(ctx, 0); return 0; } static void at_context_flush(struct context *ctx) { tasklet_disable(&ctx->tasklet); ctx->flushing = true; context_tasklet((unsigned long)ctx); ctx->flushing = false; tasklet_enable(&ctx->tasklet); } static int handle_at_packet(struct context *context, struct descriptor *d, struct descriptor *last) { struct driver_data *driver_data; struct fw_packet *packet; struct fw_ohci *ohci = context->ohci; int evt; if (last->transfer_status == 0 && !context->flushing) /* This descriptor isn't done yet, stop iteration. */ return 0; driver_data = (struct driver_data *) &d[3]; packet = driver_data->packet; if (packet == NULL) /* This packet was cancelled, just continue. */ return 1; if (packet->payload_mapped) dma_unmap_single(ohci->card.device, packet->payload_bus, packet->payload_length, DMA_TO_DEVICE); evt = le16_to_cpu(last->transfer_status) & 0x1f; packet->timestamp = le16_to_cpu(last->res_count); log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt); switch (evt) { case OHCI1394_evt_timeout: /* Async response transmit timed out. */ packet->ack = RCODE_CANCELLED; break; case OHCI1394_evt_flushed: /* * The packet was flushed should give same error as * when we try to use a stale generation count. */ packet->ack = RCODE_GENERATION; break; case OHCI1394_evt_missing_ack: if (context->flushing) packet->ack = RCODE_GENERATION; else { /* * Using a valid (current) generation count, but the * node is not on the bus or not sending acks. */ packet->ack = RCODE_NO_ACK; } break; case ACK_COMPLETE + 0x10: case ACK_PENDING + 0x10: case ACK_BUSY_X + 0x10: case ACK_BUSY_A + 0x10: case ACK_BUSY_B + 0x10: case ACK_DATA_ERROR + 0x10: case ACK_TYPE_ERROR + 0x10: packet->ack = evt - 0x10; break; case OHCI1394_evt_no_status: if (context->flushing) { packet->ack = RCODE_GENERATION; break; } fallthrough; default: packet->ack = RCODE_SEND_ERROR; break; } packet->callback(packet, &ohci->card, packet->ack); return 1; } static u32 get_cycle_time(struct fw_ohci *ohci); static void handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr) { struct fw_packet response; int tcode, length, i; tcode = async_header_get_tcode(packet->header); if (tcode_is_block_packet(tcode)) length = async_header_get_data_length(packet->header); else length = 4; i = csr - CSR_CONFIG_ROM; if (i + length > CONFIG_ROM_SIZE) { fw_fill_response(&response, packet->header, RCODE_ADDRESS_ERROR, NULL, 0); } else if (!tcode_is_read_request(tcode)) { fw_fill_response(&response, packet->header, RCODE_TYPE_ERROR, NULL, 0); } else { fw_fill_response(&response, packet->header, RCODE_COMPLETE, (void *) ohci->config_rom + i, length); } // Timestamping on behalf of the hardware. response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); fw_core_handle_response(&ohci->card, &response); } static void handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr) { struct fw_packet response; int tcode, length, ext_tcode, sel, try; __be32 *payload, lock_old; u32 lock_arg, lock_data; tcode = async_header_get_tcode(packet->header); length = async_header_get_data_length(packet->header); payload = packet->payload; ext_tcode = async_header_get_extended_tcode(packet->header); if (tcode == TCODE_LOCK_REQUEST && ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) { lock_arg = be32_to_cpu(payload[0]); lock_data = be32_to_cpu(payload[1]); } else if (tcode == TCODE_READ_QUADLET_REQUEST) { lock_arg = 0; lock_data = 0; } else { fw_fill_response(&response, packet->header, RCODE_TYPE_ERROR, NULL, 0); goto out; } sel = (csr - CSR_BUS_MANAGER_ID) / 4; reg_write(ohci, OHCI1394_CSRData, lock_data); reg_write(ohci, OHCI1394_CSRCompareData, lock_arg); reg_write(ohci, OHCI1394_CSRControl, sel); for (try = 0; try < 20; try++) if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) { lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData)); fw_fill_response(&response, packet->header, RCODE_COMPLETE, &lock_old, sizeof(lock_old)); goto out; } ohci_err(ohci, "swap not done (CSR lock timeout)\n"); fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0); out: // Timestamping on behalf of the hardware. response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); fw_core_handle_response(&ohci->card, &response); } static void handle_local_request(struct context *ctx, struct fw_packet *packet) { u64 offset, csr; if (ctx == &ctx->ohci->at_request_ctx) { packet->ack = ACK_PENDING; packet->callback(packet, &ctx->ohci->card, packet->ack); } offset = async_header_get_offset(packet->header); csr = offset - CSR_REGISTER_BASE; /* Handle config rom reads. */ if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END) handle_local_rom(ctx->ohci, packet, csr); else switch (csr) { case CSR_BUS_MANAGER_ID: case CSR_BANDWIDTH_AVAILABLE: case CSR_CHANNELS_AVAILABLE_HI: case CSR_CHANNELS_AVAILABLE_LO: handle_local_lock(ctx->ohci, packet, csr); break; default: if (ctx == &ctx->ohci->at_request_ctx) fw_core_handle_request(&ctx->ohci->card, packet); else fw_core_handle_response(&ctx->ohci->card, packet); break; } if (ctx == &ctx->ohci->at_response_ctx) { packet->ack = ACK_COMPLETE; packet->callback(packet, &ctx->ohci->card, packet->ack); } } static void at_context_transmit(struct context *ctx, struct fw_packet *packet) { unsigned long flags; int ret; spin_lock_irqsave(&ctx->ohci->lock, flags); if (async_header_get_destination(packet->header) == ctx->ohci->node_id && ctx->ohci->generation == packet->generation) { spin_unlock_irqrestore(&ctx->ohci->lock, flags); // Timestamping on behalf of the hardware. packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci)); handle_local_request(ctx, packet); return; } ret = at_context_queue_packet(ctx, packet); spin_unlock_irqrestore(&ctx->ohci->lock, flags); if (ret < 0) { // Timestamping on behalf of the hardware. packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci)); packet->callback(packet, &ctx->ohci->card, packet->ack); } } static void detect_dead_context(struct fw_ohci *ohci, const char *name, unsigned int regs) { u32 ctl; ctl = reg_read(ohci, CONTROL_SET(regs)); if (ctl & CONTEXT_DEAD) ohci_err(ohci, "DMA context %s has stopped, error code: %s\n", name, evts[ctl & 0x1f]); } static void handle_dead_contexts(struct fw_ohci *ohci) { unsigned int i; char name[8]; detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase); detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase); detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase); detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase); for (i = 0; i < 32; ++i) { if (!(ohci->it_context_support & (1 << i))) continue; sprintf(name, "IT%u", i); detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i)); } for (i = 0; i < 32; ++i) { if (!(ohci->ir_context_support & (1 << i))) continue; sprintf(name, "IR%u", i); detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i)); } /* TODO: maybe try to flush and restart the dead contexts */ } static u32 cycle_timer_ticks(u32 cycle_timer) { u32 ticks; ticks = cycle_timer & 0xfff; ticks += 3072 * ((cycle_timer >> 12) & 0x1fff); ticks += (3072 * 8000) * (cycle_timer >> 25); return ticks; } /* * Some controllers exhibit one or more of the following bugs when updating the * iso cycle timer register: * - When the lowest six bits are wrapping around to zero, a read that happens * at the same time will return garbage in the lowest ten bits. * - When the cycleOffset field wraps around to zero, the cycleCount field is * not incremented for about 60 ns. * - Occasionally, the entire register reads zero. * * To catch these, we read the register three times and ensure that the * difference between each two consecutive reads is approximately the same, i.e. * less than twice the other. Furthermore, any negative difference indicates an * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to * execute, so we have enough precision to compute the ratio of the differences.) */ static u32 get_cycle_time(struct fw_ohci *ohci) { u32 c0, c1, c2; u32 t0, t1, t2; s32 diff01, diff12; int i; if (has_reboot_by_cycle_timer_read_quirk(ohci)) return 0; c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); if (ohci->quirks & QUIRK_CYCLE_TIMER) { i = 0; c1 = c2; c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); do { c0 = c1; c1 = c2; c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); t0 = cycle_timer_ticks(c0); t1 = cycle_timer_ticks(c1); t2 = cycle_timer_ticks(c2); diff01 = t1 - t0; diff12 = t2 - t1; } while ((diff01 <= 0 || diff12 <= 0 || diff01 / diff12 >= 2 || diff12 / diff01 >= 2) && i++ < 20); } return c2; } /* * This function has to be called at least every 64 seconds. The bus_time * field stores not only the upper 25 bits of the BUS_TIME register but also * the most significant bit of the cycle timer in bit 6 so that we can detect * changes in this bit. */ static u32 update_bus_time(struct fw_ohci *ohci) { u32 cycle_time_seconds = get_cycle_time(ohci) >> 25; if (unlikely(!ohci->bus_time_running)) { reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds); ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) | (cycle_time_seconds & 0x40); ohci->bus_time_running = true; } if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40)) ohci->bus_time += 0x40; return ohci->bus_time | cycle_time_seconds; } static int get_status_for_port(struct fw_ohci *ohci, int port_index) { int reg; mutex_lock(&ohci->phy_reg_mutex); reg = write_phy_reg(ohci, 7, port_index); if (reg >= 0) reg = read_phy_reg(ohci, 8); mutex_unlock(&ohci->phy_reg_mutex); if (reg < 0) return reg; switch (reg & 0x0f) { case 0x06: return 2; /* is child node (connected to parent node) */ case 0x0e: return 3; /* is parent node (connected to child node) */ } return 1; /* not connected */ } static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id, int self_id_count) { int i; u32 entry; for (i = 0; i < self_id_count; i++) { entry = ohci->self_id_buffer[i]; if ((self_id & 0xff000000) == (entry & 0xff000000)) return -1; if ((self_id & 0xff000000) < (entry & 0xff000000)) return i; } return i; } static int initiated_reset(struct fw_ohci *ohci) { int reg; int ret = 0; mutex_lock(&ohci->phy_reg_mutex); reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */ if (reg >= 0) { reg = read_phy_reg(ohci, 8); reg |= 0x40; reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */ if (reg >= 0) { reg = read_phy_reg(ohci, 12); /* read register 12 */ if (reg >= 0) { if ((reg & 0x08) == 0x08) { /* bit 3 indicates "initiated reset" */ ret = 0x2; } } } } mutex_unlock(&ohci->phy_reg_mutex); return ret; } /* * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059. * Construct the selfID from phy register contents. */ static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count) { int reg, i, pos, status; /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */ u32 self_id = 0x8040c800; reg = reg_read(ohci, OHCI1394_NodeID); if (!(reg & OHCI1394_NodeID_idValid)) { ohci_notice(ohci, "node ID not valid, new bus reset in progress\n"); return -EBUSY; } self_id |= ((reg & 0x3f) << 24); /* phy ID */ reg = ohci_read_phy_reg(&ohci->card, 4); if (reg < 0) return reg; self_id |= ((reg & 0x07) << 8); /* power class */ reg = ohci_read_phy_reg(&ohci->card, 1); if (reg < 0) return reg; self_id |= ((reg & 0x3f) << 16); /* gap count */ for (i = 0; i < 3; i++) { status = get_status_for_port(ohci, i); if (status < 0) return status; self_id |= ((status & 0x3) << (6 - (i * 2))); } self_id |= initiated_reset(ohci); pos = get_self_id_pos(ohci, self_id, self_id_count); if (pos >= 0) { memmove(&(ohci->self_id_buffer[pos+1]), &(ohci->self_id_buffer[pos]), (self_id_count - pos) * sizeof(*ohci->self_id_buffer)); ohci->self_id_buffer[pos] = self_id; self_id_count++; } return self_id_count; } static void bus_reset_work(struct work_struct *work) { struct fw_ohci *ohci = container_of(work, struct fw_ohci, bus_reset_work); int self_id_count, generation, new_generation, i, j; u32 reg; void *free_rom = NULL; dma_addr_t free_rom_bus = 0; bool is_new_root; reg = reg_read(ohci, OHCI1394_NodeID); if (!(reg & OHCI1394_NodeID_idValid)) { ohci_notice(ohci, "node ID not valid, new bus reset in progress\n"); return; } if ((reg & OHCI1394_NodeID_nodeNumber) == 63) { ohci_notice(ohci, "malconfigured bus\n"); return; } ohci->node_id = reg & (OHCI1394_NodeID_busNumber | OHCI1394_NodeID_nodeNumber); is_new_root = (reg & OHCI1394_NodeID_root) != 0; if (!(ohci->is_root && is_new_root)) reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_cycleMaster); ohci->is_root = is_new_root; reg = reg_read(ohci, OHCI1394_SelfIDCount); if (reg & OHCI1394_SelfIDCount_selfIDError) { ohci_notice(ohci, "self ID receive error\n"); return; } /* * The count in the SelfIDCount register is the number of * bytes in the self ID receive buffer. Since we also receive * the inverted quadlets and a header quadlet, we shift one * bit extra to get the actual number of self IDs. */ self_id_count = (reg >> 3) & 0xff; if (self_id_count > 252) { ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg); return; } generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff; rmb(); for (i = 1, j = 0; j < self_id_count; i += 2, j++) { u32 id = cond_le32_to_cpu(ohci->self_id[i]); u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]); if (id != ~id2) { /* * If the invalid data looks like a cycle start packet, * it's likely to be the result of the cycle master * having a wrong gap count. In this case, the self IDs * so far are valid and should be processed so that the * bus manager can then correct the gap count. */ if (id == 0xffff008f) { ohci_notice(ohci, "ignoring spurious self IDs\n"); self_id_count = j; break; } ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n", j, self_id_count, id, id2); return; } ohci->self_id_buffer[j] = id; } if (ohci->quirks & QUIRK_TI_SLLZ059) { self_id_count = find_and_insert_self_id(ohci, self_id_count); if (self_id_count < 0) { ohci_notice(ohci, "could not construct local self ID\n"); return; } } if (self_id_count == 0) { ohci_notice(ohci, "no self IDs\n"); return; } rmb(); /* * Check the consistency of the self IDs we just read. The * problem we face is that a new bus reset can start while we * read out the self IDs from the DMA buffer. If this happens, * the DMA buffer will be overwritten with new self IDs and we * will read out inconsistent data. The OHCI specification * (section 11.2) recommends a technique similar to * linux/seqlock.h, where we remember the generation of the * self IDs in the buffer before reading them out and compare * it to the current generation after reading them out. If * the two generations match we know we have a consistent set * of self IDs. */ new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff; if (new_generation != generation) { ohci_notice(ohci, "new bus reset, discarding self ids\n"); return; } /* FIXME: Document how the locking works. */ spin_lock_irq(&ohci->lock); ohci->generation = -1; /* prevent AT packet queueing */ context_stop(&ohci->at_request_ctx); context_stop(&ohci->at_response_ctx); spin_unlock_irq(&ohci->lock); /* * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent * packets in the AT queues and software needs to drain them. * Some OHCI 1.1 controllers (JMicron) apparently require this too. */ at_context_flush(&ohci->at_request_ctx); at_context_flush(&ohci->at_response_ctx); spin_lock_irq(&ohci->lock); ohci->generation = generation; reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS) reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset); if (ohci->quirks & QUIRK_RESET_PACKET) ohci->request_generation = generation; /* * This next bit is unrelated to the AT context stuff but we * have to do it under the spinlock also. If a new config rom * was set up before this reset, the old one is now no longer * in use and we can free it. Update the config rom pointers * to point to the current config rom and clear the * next_config_rom pointer so a new update can take place. */ if (ohci->next_config_rom != NULL) { if (ohci->next_config_rom != ohci->config_rom) { free_rom = ohci->config_rom; free_rom_bus = ohci->config_rom_bus; } ohci->config_rom = ohci->next_config_rom; ohci->config_rom_bus = ohci->next_config_rom_bus; ohci->next_config_rom = NULL; /* * Restore config_rom image and manually update * config_rom registers. Writing the header quadlet * will indicate that the config rom is ready, so we * do that last. */ reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2])); ohci->config_rom[0] = ohci->next_header; reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header)); } if (param_remote_dma) { reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0); reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0); } spin_unlock_irq(&ohci->lock); if (free_rom) dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus); log_selfids(ohci, generation, self_id_count); fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation, self_id_count, ohci->self_id_buffer, ohci->csr_state_setclear_abdicate); ohci->csr_state_setclear_abdicate = false; } static irqreturn_t irq_handler(int irq, void *data) { struct fw_ohci *ohci = data; u32 event, iso_event; int i; event = reg_read(ohci, OHCI1394_IntEventClear); if (!event || !~event) return IRQ_NONE; /* * busReset and postedWriteErr events must not be cleared yet * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1) */ reg_write(ohci, OHCI1394_IntEventClear, event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr)); log_irqs(ohci, event); if (event & OHCI1394_busReset) reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset); if (event & OHCI1394_selfIDComplete) queue_work(selfid_workqueue, &ohci->bus_reset_work); if (event & OHCI1394_RQPkt) tasklet_schedule(&ohci->ar_request_ctx.tasklet); if (event & OHCI1394_RSPkt) tasklet_schedule(&ohci->ar_response_ctx.tasklet); if (event & OHCI1394_reqTxComplete) tasklet_schedule(&ohci->at_request_ctx.tasklet); if (event & OHCI1394_respTxComplete) tasklet_schedule(&ohci->at_response_ctx.tasklet); if (event & OHCI1394_isochRx) { iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear); reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); while (iso_event) { i = ffs(iso_event) - 1; tasklet_schedule( &ohci->ir_context_list[i].context.tasklet); iso_event &= ~(1 << i); } } if (event & OHCI1394_isochTx) { iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear); reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); while (iso_event) { i = ffs(iso_event) - 1; tasklet_schedule( &ohci->it_context_list[i].context.tasklet); iso_event &= ~(1 << i); } } if (unlikely(event & OHCI1394_regAccessFail)) ohci_err(ohci, "register access failure\n"); if (unlikely(event & OHCI1394_postedWriteErr)) { reg_read(ohci, OHCI1394_PostedWriteAddressHi); reg_read(ohci, OHCI1394_PostedWriteAddressLo); reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_postedWriteErr); if (printk_ratelimit()) ohci_err(ohci, "PCI posted write error\n"); } if (unlikely(event & OHCI1394_cycleTooLong)) { if (printk_ratelimit()) ohci_notice(ohci, "isochronous cycle too long\n"); reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_cycleMaster); } if (unlikely(event & OHCI1394_cycleInconsistent)) { /* * We need to clear this event bit in order to make * cycleMatch isochronous I/O work. In theory we should * stop active cycleMatch iso contexts now and restart * them at least two cycles later. (FIXME?) */ if (printk_ratelimit()) ohci_notice(ohci, "isochronous cycle inconsistent\n"); } if (unlikely(event & OHCI1394_unrecoverableError)) handle_dead_contexts(ohci); if (event & OHCI1394_cycle64Seconds) { spin_lock(&ohci->lock); update_bus_time(ohci); spin_unlock(&ohci->lock); } else flush_writes(ohci); return IRQ_HANDLED; } static int software_reset(struct fw_ohci *ohci) { u32 val; int i; reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); for (i = 0; i < 500; i++) { val = reg_read(ohci, OHCI1394_HCControlSet); if (!~val) return -ENODEV; /* Card was ejected. */ if (!(val & OHCI1394_HCControl_softReset)) return 0; msleep(1); } return -EBUSY; } static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length) { size_t size = length * 4; memcpy(dest, src, size); if (size < CONFIG_ROM_SIZE) memset(&dest[length], 0, CONFIG_ROM_SIZE - size); } static int configure_1394a_enhancements(struct fw_ohci *ohci) { bool enable_1394a; int ret, clear, set, offset; /* Check if the driver should configure link and PHY. */ if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_programPhyEnable)) return 0; /* Paranoia: check whether the PHY supports 1394a, too. */ enable_1394a = false; ret = read_phy_reg(ohci, 2); if (ret < 0) return ret; if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) { ret = read_paged_phy_reg(ohci, 1, 8); if (ret < 0) return ret; if (ret >= 1) enable_1394a = true; } if (ohci->quirks & QUIRK_NO_1394A) enable_1394a = false; /* Configure PHY and link consistently. */ if (enable_1394a) { clear = 0; set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; } else { clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; set = 0; } ret = update_phy_reg(ohci, 5, clear, set); if (ret < 0) return ret; if (enable_1394a) offset = OHCI1394_HCControlSet; else offset = OHCI1394_HCControlClear; reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable); /* Clean up: configuration has been taken care of. */ reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_programPhyEnable); return 0; } static int probe_tsb41ba3d(struct fw_ohci *ohci) { /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */ static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, }; int reg, i; reg = read_phy_reg(ohci, 2); if (reg < 0) return reg; if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS) return 0; for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) { reg = read_paged_phy_reg(ohci, 1, i + 10); if (reg < 0) return reg; if (reg != id[i]) return 0; } return 1; } static int ohci_enable(struct fw_card *card, const __be32 *config_rom, size_t length) { struct fw_ohci *ohci = fw_ohci(card); u32 lps, version, irqs; int i, ret; ret = software_reset(ohci); if (ret < 0) { ohci_err(ohci, "failed to reset ohci card\n"); return ret; } /* * Now enable LPS, which we need in order to start accessing * most of the registers. In fact, on some cards (ALI M5251), * accessing registers in the SClk domain without LPS enabled * will lock up the machine. Wait 50msec to make sure we have * full link enabled. However, with some cards (well, at least * a JMicron PCIe card), we have to try again sometimes. * * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but * cannot actually use the phy at that time. These need tens of * millisecods pause between LPS write and first phy access too. */ reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS | OHCI1394_HCControl_postedWriteEnable); flush_writes(ohci); for (lps = 0, i = 0; !lps && i < 3; i++) { msleep(50); lps = reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS; } if (!lps) { ohci_err(ohci, "failed to set Link Power Status\n"); return -EIO; } if (ohci->quirks & QUIRK_TI_SLLZ059) { ret = probe_tsb41ba3d(ohci); if (ret < 0) return ret; if (ret) ohci_notice(ohci, "local TSB41BA3D phy\n"); else ohci->quirks &= ~QUIRK_TI_SLLZ059; } reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwapData); reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_cycleTimerEnable | OHCI1394_LinkControl_cycleMaster); reg_write(ohci, OHCI1394_ATRetries, OHCI1394_MAX_AT_REQ_RETRIES | (OHCI1394_MAX_AT_RESP_RETRIES << 4) | (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) | (200 << 16)); ohci->bus_time_running = false; for (i = 0; i < 32; i++) if (ohci->ir_context_support & (1 << i)) reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i), IR_CONTEXT_MULTI_CHANNEL_MODE); version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; if (version >= OHCI_VERSION_1_1) { reg_write(ohci, OHCI1394_InitialChannelsAvailableHi, 0xfffffffe); card->broadcast_channel_auto_allocated = true; } /* Get implemented bits of the priority arbitration request counter. */ reg_write(ohci, OHCI1394_FairnessControl, 0x3f); ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f; reg_write(ohci, OHCI1394_FairnessControl, 0); card->priority_budget_implemented = ohci->pri_req_max != 0; reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16); reg_write(ohci, OHCI1394_IntEventClear, ~0); reg_write(ohci, OHCI1394_IntMaskClear, ~0); ret = configure_1394a_enhancements(ohci); if (ret < 0) return ret; /* Activate link_on bit and contender bit in our self ID packets.*/ ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER); if (ret < 0) return ret; /* * When the link is not yet enabled, the atomic config rom * update mechanism described below in ohci_set_config_rom() * is not active. We have to update ConfigRomHeader and * BusOptions manually, and the write to ConfigROMmap takes * effect immediately. We tie this to the enabling of the * link, so we have a valid config rom before enabling - the * OHCI requires that ConfigROMhdr and BusOptions have valid * values before enabling. * * However, when the ConfigROMmap is written, some controllers * always read back quadlets 0 and 2 from the config rom to * the ConfigRomHeader and BusOptions registers on bus reset. * They shouldn't do that in this initial case where the link * isn't enabled. This means we have to use the same * workaround here, setting the bus header to 0 and then write * the right values in the bus reset tasklet. */ if (config_rom) { ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, &ohci->next_config_rom_bus, GFP_KERNEL); if (ohci->next_config_rom == NULL) return -ENOMEM; copy_config_rom(ohci->next_config_rom, config_rom, length); } else { /* * In the suspend case, config_rom is NULL, which * means that we just reuse the old config rom. */ ohci->next_config_rom = ohci->config_rom; ohci->next_config_rom_bus = ohci->config_rom_bus; } ohci->next_header = ohci->next_config_rom[0]; ohci->next_config_rom[0] = 0; reg_write(ohci, OHCI1394_ConfigROMhdr, 0); reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->next_config_rom[2])); reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete | OHCI1394_RQPkt | OHCI1394_RSPkt | OHCI1394_isochTx | OHCI1394_isochRx | OHCI1394_postedWriteErr | OHCI1394_selfIDComplete | OHCI1394_regAccessFail | OHCI1394_cycleInconsistent | OHCI1394_unrecoverableError | OHCI1394_cycleTooLong | OHCI1394_masterIntEnable; if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS) irqs |= OHCI1394_busReset; reg_write(ohci, OHCI1394_IntMaskSet, irqs); reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable | OHCI1394_HCControl_BIBimageValid); reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_rcvSelfID | OHCI1394_LinkControl_rcvPhyPkt); ar_context_run(&ohci->ar_request_ctx); ar_context_run(&ohci->ar_response_ctx); flush_writes(ohci); /* We are ready to go, reset bus to finish initialization. */ fw_schedule_bus_reset(&ohci->card, false, true); return 0; } static int ohci_set_config_rom(struct fw_card *card, const __be32 *config_rom, size_t length) { struct fw_ohci *ohci; __be32 *next_config_rom; dma_addr_t next_config_rom_bus; ohci = fw_ohci(card); /* * When the OHCI controller is enabled, the config rom update * mechanism is a bit tricky, but easy enough to use. See * section 5.5.6 in the OHCI specification. * * The OHCI controller caches the new config rom address in a * shadow register (ConfigROMmapNext) and needs a bus reset * for the changes to take place. When the bus reset is * detected, the controller loads the new values for the * ConfigRomHeader and BusOptions registers from the specified * config rom and loads ConfigROMmap from the ConfigROMmapNext * shadow register. All automatically and atomically. * * Now, there's a twist to this story. The automatic load of * ConfigRomHeader and BusOptions doesn't honor the * noByteSwapData bit, so with a be32 config rom, the * controller will load be32 values in to these registers * during the atomic update, even on litte endian * architectures. The workaround we use is to put a 0 in the * header quadlet; 0 is endian agnostic and means that the * config rom isn't ready yet. In the bus reset tasklet we * then set up the real values for the two registers. * * We use ohci->lock to avoid racing with the code that sets * ohci->next_config_rom to NULL (see bus_reset_work). */ next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, &next_config_rom_bus, GFP_KERNEL); if (next_config_rom == NULL) return -ENOMEM; spin_lock_irq(&ohci->lock); /* * If there is not an already pending config_rom update, * push our new allocation into the ohci->next_config_rom * and then mark the local variable as null so that we * won't deallocate the new buffer. * * OTOH, if there is a pending config_rom update, just * use that buffer with the new config_rom data, and * let this routine free the unused DMA allocation. */ if (ohci->next_config_rom == NULL) { ohci->next_config_rom = next_config_rom; ohci->next_config_rom_bus = next_config_rom_bus; next_config_rom = NULL; } copy_config_rom(ohci->next_config_rom, config_rom, length); ohci->next_header = config_rom[0]; ohci->next_config_rom[0] = 0; reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); spin_unlock_irq(&ohci->lock); /* If we didn't use the DMA allocation, delete it. */ if (next_config_rom != NULL) { dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom, next_config_rom_bus); } /* * Now initiate a bus reset to have the changes take * effect. We clean up the old config rom memory and DMA * mappings in the bus reset tasklet, since the OHCI * controller could need to access it before the bus reset * takes effect. */ fw_schedule_bus_reset(&ohci->card, true, true); return 0; } static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) { struct fw_ohci *ohci = fw_ohci(card); at_context_transmit(&ohci->at_request_ctx, packet); } static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) { struct fw_ohci *ohci = fw_ohci(card); at_context_transmit(&ohci->at_response_ctx, packet); } static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet) { struct fw_ohci *ohci = fw_ohci(card); struct context *ctx = &ohci->at_request_ctx; struct driver_data *driver_data = packet->driver_data; int ret = -ENOENT; tasklet_disable_in_atomic(&ctx->tasklet); if (packet->ack != 0) goto out; if (packet->payload_mapped) dma_unmap_single(ohci->card.device, packet->payload_bus, packet->payload_length, DMA_TO_DEVICE); log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20); driver_data->packet = NULL; packet->ack = RCODE_CANCELLED; // Timestamping on behalf of the hardware. packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci)); packet->callback(packet, &ohci->card, packet->ack); ret = 0; out: tasklet_enable(&ctx->tasklet); return ret; } static int ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation) { struct fw_ohci *ohci = fw_ohci(card); unsigned long flags; int n, ret = 0; if (param_remote_dma) return 0; /* * FIXME: Make sure this bitmask is cleared when we clear the busReset * interrupt bit. Clear physReqResourceAllBuses on bus reset. */ spin_lock_irqsave(&ohci->lock, flags); if (ohci->generation != generation) { ret = -ESTALE; goto out; } /* * Note, if the node ID contains a non-local bus ID, physical DMA is * enabled for _all_ nodes on remote buses. */ n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63; if (n < 32) reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n); else reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32)); flush_writes(ohci); out: spin_unlock_irqrestore(&ohci->lock, flags); return ret; } static u32 ohci_read_csr(struct fw_card *card, int csr_offset) { struct fw_ohci *ohci = fw_ohci(card); unsigned long flags; u32 value; switch (csr_offset) { case CSR_STATE_CLEAR: case CSR_STATE_SET: if (ohci->is_root && (reg_read(ohci, OHCI1394_LinkControlSet) & OHCI1394_LinkControl_cycleMaster)) value = CSR_STATE_BIT_CMSTR; else value = 0; if (ohci->csr_state_setclear_abdicate) value |= CSR_STATE_BIT_ABDICATE; return value; case CSR_NODE_IDS: return reg_read(ohci, OHCI1394_NodeID) << 16; case CSR_CYCLE_TIME: return get_cycle_time(ohci); case CSR_BUS_TIME: /* * We might be called just after the cycle timer has wrapped * around but just before the cycle64Seconds handler, so we * better check here, too, if the bus time needs to be updated. */ spin_lock_irqsave(&ohci->lock, flags); value = update_bus_time(ohci); spin_unlock_irqrestore(&ohci->lock, flags); return value; case CSR_BUSY_TIMEOUT: value = reg_read(ohci, OHCI1394_ATRetries); return (value >> 4) & 0x0ffff00f; case CSR_PRIORITY_BUDGET: return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) | (ohci->pri_req_max << 8); default: WARN_ON(1); return 0; } } static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value) { struct fw_ohci *ohci = fw_ohci(card); unsigned long flags; switch (csr_offset) { case CSR_STATE_CLEAR: if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { reg_write(ohci, OHCI1394_LinkControlClear, OHCI1394_LinkControl_cycleMaster); flush_writes(ohci); } if (value & CSR_STATE_BIT_ABDICATE) ohci->csr_state_setclear_abdicate = false; break; case CSR_STATE_SET: if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_cycleMaster); flush_writes(ohci); } if (value & CSR_STATE_BIT_ABDICATE) ohci->csr_state_setclear_abdicate = true; break; case CSR_NODE_IDS: reg_write(ohci, OHCI1394_NodeID, value >> 16); flush_writes(ohci); break; case CSR_CYCLE_TIME: reg_write(ohci, OHCI1394_IsochronousCycleTimer, value); reg_write(ohci, OHCI1394_IntEventSet, OHCI1394_cycleInconsistent); flush_writes(ohci); break; case CSR_BUS_TIME: spin_lock_irqsave(&ohci->lock, flags); ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f); spin_unlock_irqrestore(&ohci->lock, flags); break; case CSR_BUSY_TIMEOUT: value = (value & 0xf) | ((value & 0xf) << 4) | ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4); reg_write(ohci, OHCI1394_ATRetries, value); flush_writes(ohci); break; case CSR_PRIORITY_BUDGET: reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f); flush_writes(ohci); break; default: WARN_ON(1); break; } } static void flush_iso_completions(struct iso_context *ctx) { ctx->base.callback.sc(&ctx->base, ctx->last_timestamp, ctx->header_length, ctx->header, ctx->base.callback_data); ctx->header_length = 0; } static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr) { u32 *ctx_hdr; if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) { if (ctx->base.drop_overflow_headers) return; flush_iso_completions(ctx); } ctx_hdr = ctx->header + ctx->header_length; ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]); /* * The two iso header quadlets are byteswapped to little * endian by the controller, but we want to present them * as big endian for consistency with the bus endianness. */ if (ctx->base.header_size > 0) ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */ if (ctx->base.header_size > 4) ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */ if (ctx->base.header_size > 8) memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8); ctx->header_length += ctx->base.header_size; } static int handle_ir_packet_per_buffer(struct context *context, struct descriptor *d, struct descriptor *last) { struct iso_context *ctx = container_of(context, struct iso_context, context); struct descriptor *pd; u32 buffer_dma; for (pd = d; pd <= last; pd++) if (pd->transfer_status) break; if (pd > last) /* Descriptor(s) not done yet, stop iteration */ return 0; while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) { d++; buffer_dma = le32_to_cpu(d->data_address); dma_sync_single_range_for_cpu(context->ohci->card.device, buffer_dma & PAGE_MASK, buffer_dma & ~PAGE_MASK, le16_to_cpu(d->req_count), DMA_FROM_DEVICE); } copy_iso_headers(ctx, (u32 *) (last + 1)); if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) flush_iso_completions(ctx); return 1; } /* d == last because each descriptor block is only a single descriptor. */ static int handle_ir_buffer_fill(struct context *context, struct descriptor *d, struct descriptor *last) { struct iso_context *ctx = container_of(context, struct iso_context, context); unsigned int req_count, res_count, completed; u32 buffer_dma; req_count = le16_to_cpu(last->req_count); res_count = le16_to_cpu(READ_ONCE(last->res_count)); completed = req_count - res_count; buffer_dma = le32_to_cpu(last->data_address); if (completed > 0) { ctx->mc_buffer_bus = buffer_dma; ctx->mc_completed = completed; } if (res_count != 0) /* Descriptor(s) not done yet, stop iteration */ return 0; dma_sync_single_range_for_cpu(context->ohci->card.device, buffer_dma & PAGE_MASK, buffer_dma & ~PAGE_MASK, completed, DMA_FROM_DEVICE); if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) { ctx->base.callback.mc(&ctx->base, buffer_dma + completed, ctx->base.callback_data); ctx->mc_completed = 0; } return 1; } static void flush_ir_buffer_fill(struct iso_context *ctx) { dma_sync_single_range_for_cpu(ctx->context.ohci->card.device, ctx->mc_buffer_bus & PAGE_MASK, ctx->mc_buffer_bus & ~PAGE_MASK, ctx->mc_completed, DMA_FROM_DEVICE); ctx->base.callback.mc(&ctx->base, ctx->mc_buffer_bus + ctx->mc_completed, ctx->base.callback_data); ctx->mc_completed = 0; } static inline void sync_it_packet_for_cpu(struct context *context, struct descriptor *pd) { __le16 control; u32 buffer_dma; /* only packets beginning with OUTPUT_MORE* have data buffers */ if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) return; /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */ pd += 2; /* * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's * data buffer is in the context program's coherent page and must not * be synced. */ if ((le32_to_cpu(pd->data_address) & PAGE_MASK) == (context->current_bus & PAGE_MASK)) { if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) return; pd++; } do { buffer_dma = le32_to_cpu(pd->data_address); dma_sync_single_range_for_cpu(context->ohci->card.device, buffer_dma & PAGE_MASK, buffer_dma & ~PAGE_MASK, le16_to_cpu(pd->req_count), DMA_TO_DEVICE); control = pd->control; pd++; } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))); } static int handle_it_packet(struct context *context, struct descriptor *d, struct descriptor *last) { struct iso_context *ctx = container_of(context, struct iso_context, context); struct descriptor *pd; __be32 *ctx_hdr; for (pd = d; pd <= last; pd++) if (pd->transfer_status) break; if (pd > last) /* Descriptor(s) not done yet, stop iteration */ return 0; sync_it_packet_for_cpu(context, d); if (ctx->header_length + 4 > PAGE_SIZE) { if (ctx->base.drop_overflow_headers) return 1; flush_iso_completions(ctx); } ctx_hdr = ctx->header + ctx->header_length; ctx->last_timestamp = le16_to_cpu(last->res_count); /* Present this value as big-endian to match the receive code */ *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) | le16_to_cpu(pd->res_count)); ctx->header_length += 4; if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) flush_iso_completions(ctx); return 1; } static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels) { u32 hi = channels >> 32, lo = channels; reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi); reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo); reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi); reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo); ohci->mc_channels = channels; } static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, int type, int channel, size_t header_size) { struct fw_ohci *ohci = fw_ohci(card); struct iso_context *ctx; descriptor_callback_t callback; u64 *channels; u32 *mask, regs; int index, ret = -EBUSY; spin_lock_irq(&ohci->lock); switch (type) { case FW_ISO_CONTEXT_TRANSMIT: mask = &ohci->it_context_mask; callback = handle_it_packet; index = ffs(*mask) - 1; if (index >= 0) { *mask &= ~(1 << index); regs = OHCI1394_IsoXmitContextBase(index); ctx = &ohci->it_context_list[index]; } break; case FW_ISO_CONTEXT_RECEIVE: channels = &ohci->ir_context_channels; mask = &ohci->ir_context_mask; callback = handle_ir_packet_per_buffer; index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1; if (index >= 0) { *channels &= ~(1ULL << channel); *mask &= ~(1 << index); regs = OHCI1394_IsoRcvContextBase(index); ctx = &ohci->ir_context_list[index]; } break; case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: mask = &ohci->ir_context_mask; callback = handle_ir_buffer_fill; index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1; if (index >= 0) { ohci->mc_allocated = true; *mask &= ~(1 << index); regs = OHCI1394_IsoRcvContextBase(index); ctx = &ohci->ir_context_list[index]; } break; default: index = -1; ret = -ENOSYS; } spin_unlock_irq(&ohci->lock); if (index < 0) return ERR_PTR(ret); memset(ctx, 0, sizeof(*ctx)); ctx->header_length = 0; ctx->header = (void *) __get_free_page(GFP_KERNEL); if (ctx->header == NULL) { ret = -ENOMEM; goto out; } ret = context_init(&ctx->context, ohci, regs, callback); if (ret < 0) goto out_with_header; if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) { set_multichannel_mask(ohci, 0); ctx->mc_completed = 0; } return &ctx->base; out_with_header: free_page((unsigned long)ctx->header); out: spin_lock_irq(&ohci->lock); switch (type) { case FW_ISO_CONTEXT_RECEIVE: *channels |= 1ULL << channel; break; case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: ohci->mc_allocated = false; break; } *mask |= 1 << index; spin_unlock_irq(&ohci->lock); return ERR_PTR(ret); } static int ohci_start_iso(struct fw_iso_context *base, s32 cycle, u32 sync, u32 tags) { struct iso_context *ctx = container_of(base, struct iso_context, base); struct fw_ohci *ohci = ctx->context.ohci; u32 control = IR_CONTEXT_ISOCH_HEADER, match; int index; /* the controller cannot start without any queued packets */ if (ctx->context.last->branch_address == 0) return -ENODATA; switch (ctx->base.type) { case FW_ISO_CONTEXT_TRANSMIT: index = ctx - ohci->it_context_list; match = 0; if (cycle >= 0) match = IT_CONTEXT_CYCLE_MATCH_ENABLE | (cycle & 0x7fff) << 16; reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index); reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); context_run(&ctx->context, match); break; case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE; fallthrough; case FW_ISO_CONTEXT_RECEIVE: index = ctx - ohci->ir_context_list; match = (tags << 28) | (sync << 8) | ctx->base.channel; if (cycle >= 0) { match |= (cycle & 0x07fff) << 12; control |= IR_CONTEXT_CYCLE_MATCH_ENABLE; } reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index); reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index); reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match); context_run(&ctx->context, control); ctx->sync = sync; ctx->tags = tags; break; } return 0; } static int ohci_stop_iso(struct fw_iso_context *base) { struct fw_ohci *ohci = fw_ohci(base->card); struct iso_context *ctx = container_of(base, struct iso_context, base); int index; switch (ctx->base.type) { case FW_ISO_CONTEXT_TRANSMIT: index = ctx - ohci->it_context_list; reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); break; case FW_ISO_CONTEXT_RECEIVE: case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: index = ctx - ohci->ir_context_list; reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); break; } flush_writes(ohci); context_stop(&ctx->context); tasklet_kill(&ctx->context.tasklet); return 0; } static void ohci_free_iso_context(struct fw_iso_context *base) { struct fw_ohci *ohci = fw_ohci(base->card); struct iso_context *ctx = container_of(base, struct iso_context, base); unsigned long flags; int index; ohci_stop_iso(base); context_release(&ctx->context); free_page((unsigned long)ctx->header); spin_lock_irqsave(&ohci->lock, flags); switch (base->type) { case FW_ISO_CONTEXT_TRANSMIT: index = ctx - ohci->it_context_list; ohci->it_context_mask |= 1 << index; break; case FW_ISO_CONTEXT_RECEIVE: index = ctx - ohci->ir_context_list; ohci->ir_context_mask |= 1 << index; ohci->ir_context_channels |= 1ULL << base->channel; break; case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: index = ctx - ohci->ir_context_list; ohci->ir_context_mask |= 1 << index; ohci->ir_context_channels |= ohci->mc_channels; ohci->mc_channels = 0; ohci->mc_allocated = false; break; } spin_unlock_irqrestore(&ohci->lock, flags); } static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels) { struct fw_ohci *ohci = fw_ohci(base->card); unsigned long flags; int ret; switch (base->type) { case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: spin_lock_irqsave(&ohci->lock, flags); /* Don't allow multichannel to grab other contexts' channels. */ if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) { *channels = ohci->ir_context_channels; ret = -EBUSY; } else { set_multichannel_mask(ohci, *channels); ret = 0; } spin_unlock_irqrestore(&ohci->lock, flags); break; default: ret = -EINVAL; } return ret; } #ifdef CONFIG_PM static void ohci_resume_iso_dma(struct fw_ohci *ohci) { int i; struct iso_context *ctx; for (i = 0 ; i < ohci->n_ir ; i++) { ctx = &ohci->ir_context_list[i]; if (ctx->context.running) ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); } for (i = 0 ; i < ohci->n_it ; i++) { ctx = &ohci->it_context_list[i]; if (ctx->context.running) ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); } } #endif static int queue_iso_transmit(struct iso_context *ctx, struct fw_iso_packet *packet, struct fw_iso_buffer *buffer, unsigned long payload) { struct descriptor *d, *last, *pd; struct fw_iso_packet *p; __le32 *header; dma_addr_t d_bus, page_bus; u32 z, header_z, payload_z, irq; u32 payload_index, payload_end_index, next_page_index; int page, end_page, i, length, offset; p = packet; payload_index = payload; if (p->skip) z = 1; else z = 2; if (p->header_length > 0) z++; /* Determine the first page the payload isn't contained in. */ end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; if (p->payload_length > 0) payload_z = end_page - (payload_index >> PAGE_SHIFT); else payload_z = 0; z += payload_z; /* Get header size in number of descriptors. */ header_z = DIV_ROUND_UP(p->header_length, sizeof(*d)); d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); if (d == NULL) return -ENOMEM; if (!p->skip) { d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); d[0].req_count = cpu_to_le16(8); /* * Link the skip address to this descriptor itself. This causes * a context to skip a cycle whenever lost cycles or FIFO * overruns occur, without dropping the data. The application * should then decide whether this is an error condition or not. * FIXME: Make the context's cycle-lost behaviour configurable? */ d[0].branch_address = cpu_to_le32(d_bus | z); header = (__le32 *) &d[1]; header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) | IT_HEADER_TAG(p->tag) | IT_HEADER_TCODE(TCODE_STREAM_DATA) | IT_HEADER_CHANNEL(ctx->base.channel) | IT_HEADER_SPEED(ctx->base.speed)); header[1] = cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length + p->payload_length)); } if (p->header_length > 0) { d[2].req_count = cpu_to_le16(p->header_length); d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d)); memcpy(&d[z], p->header, p->header_length); } pd = d + z - payload_z; payload_end_index = payload_index + p->payload_length; for (i = 0; i < payload_z; i++) { page = payload_index >> PAGE_SHIFT; offset = payload_index & ~PAGE_MASK; next_page_index = (page + 1) << PAGE_SHIFT; length = min(next_page_index, payload_end_index) - payload_index; pd[i].req_count = cpu_to_le16(length); page_bus = page_private(buffer->pages[page]); pd[i].data_address = cpu_to_le32(page_bus + offset); dma_sync_single_range_for_device(ctx->context.ohci->card.device, page_bus, offset, length, DMA_TO_DEVICE); payload_index += length; } if (p->interrupt) irq = DESCRIPTOR_IRQ_ALWAYS; else irq = DESCRIPTOR_NO_IRQ; last = z == 2 ? d : d + z - 1; last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | DESCRIPTOR_STATUS | DESCRIPTOR_BRANCH_ALWAYS | irq); context_append(&ctx->context, d, z, header_z); return 0; } static int queue_iso_packet_per_buffer(struct iso_context *ctx, struct fw_iso_packet *packet, struct fw_iso_buffer *buffer, unsigned long payload) { struct device *device = ctx->context.ohci->card.device; struct descriptor *d, *pd; dma_addr_t d_bus, page_bus; u32 z, header_z, rest; int i, j, length; int page, offset, packet_count, header_size, payload_per_buffer; /* * The OHCI controller puts the isochronous header and trailer in the * buffer, so we need at least 8 bytes. */ packet_count = packet->header_length / ctx->base.header_size; header_size = max(ctx->base.header_size, (size_t)8); /* Get header size in number of descriptors. */ header_z = DIV_ROUND_UP(header_size, sizeof(*d)); page = payload >> PAGE_SHIFT; offset = payload & ~PAGE_MASK; payload_per_buffer = packet->payload_length / packet_count; for (i = 0; i < packet_count; i++) { /* d points to the header descriptor */ z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1; d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); if (d == NULL) return -ENOMEM; d->control = cpu_to_le16(DESCRIPTOR_STATUS | DESCRIPTOR_INPUT_MORE); if (packet->skip && i == 0) d->control |= cpu_to_le16(DESCRIPTOR_WAIT); d->req_count = cpu_to_le16(header_size); d->res_count = d->req_count; d->transfer_status = 0; d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d))); rest = payload_per_buffer; pd = d; for (j = 1; j < z; j++) { pd++; pd->control = cpu_to_le16(DESCRIPTOR_STATUS | DESCRIPTOR_INPUT_MORE); if (offset + rest < PAGE_SIZE) length = rest; else length = PAGE_SIZE - offset; pd->req_count = cpu_to_le16(length); pd->res_count = pd->req_count; pd->transfer_status = 0; page_bus = page_private(buffer->pages[page]); pd->data_address = cpu_to_le32(page_bus + offset); dma_sync_single_range_for_device(device, page_bus, offset, length, DMA_FROM_DEVICE); offset = (offset + length) & ~PAGE_MASK; rest -= length; if (offset == 0) page++; } pd->control = cpu_to_le16(DESCRIPTOR_STATUS | DESCRIPTOR_INPUT_LAST | DESCRIPTOR_BRANCH_ALWAYS); if (packet->interrupt && i == packet_count - 1) pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); context_append(&ctx->context, d, z, header_z); } return 0; } static int queue_iso_buffer_fill(struct iso_context *ctx, struct fw_iso_packet *packet, struct fw_iso_buffer *buffer, unsigned long payload) { struct descriptor *d; dma_addr_t d_bus, page_bus; int page, offset, rest, z, i, length; page = payload >> PAGE_SHIFT; offset = payload & ~PAGE_MASK; rest = packet->payload_length; /* We need one descriptor for each page in the buffer. */ z = DIV_ROUND_UP(offset + rest, PAGE_SIZE); if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count)) return -EFAULT; for (i = 0; i < z; i++) { d = context_get_descriptors(&ctx->context, 1, &d_bus); if (d == NULL) return -ENOMEM; d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | DESCRIPTOR_BRANCH_ALWAYS); if (packet->skip && i == 0) d->control |= cpu_to_le16(DESCRIPTOR_WAIT); if (packet->interrupt && i == z - 1) d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); if (offset + rest < PAGE_SIZE) length = rest; else length = PAGE_SIZE - offset; d->req_count = cpu_to_le16(length); d->res_count = d->req_count; d->transfer_status = 0; page_bus = page_private(buffer->pages[page]); d->data_address = cpu_to_le32(page_bus + offset); dma_sync_single_range_for_device(ctx->context.ohci->card.device, page_bus, offset, length, DMA_FROM_DEVICE); rest -= length; offset = 0; page++; context_append(&ctx->context, d, 1, 0); } return 0; } static int ohci_queue_iso(struct fw_iso_context *base, struct fw_iso_packet *packet, struct fw_iso_buffer *buffer, unsigned long payload) { struct iso_context *ctx = container_of(base, struct iso_context, base); unsigned long flags; int ret = -ENOSYS; spin_lock_irqsave(&ctx->context.ohci->lock, flags); switch (base->type) { case FW_ISO_CONTEXT_TRANSMIT: ret = queue_iso_transmit(ctx, packet, buffer, payload); break; case FW_ISO_CONTEXT_RECEIVE: ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload); break; case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: ret = queue_iso_buffer_fill(ctx, packet, buffer, payload); break; } spin_unlock_irqrestore(&ctx->context.ohci->lock, flags); return ret; } static void ohci_flush_queue_iso(struct fw_iso_context *base) { struct context *ctx = &container_of(base, struct iso_context, base)->context; reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); } static int ohci_flush_iso_completions(struct fw_iso_context *base) { struct iso_context *ctx = container_of(base, struct iso_context, base); int ret = 0; tasklet_disable_in_atomic(&ctx->context.tasklet); if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) { context_tasklet((unsigned long)&ctx->context); switch (base->type) { case FW_ISO_CONTEXT_TRANSMIT: case FW_ISO_CONTEXT_RECEIVE: if (ctx->header_length != 0) flush_iso_completions(ctx); break; case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: if (ctx->mc_completed != 0) flush_ir_buffer_fill(ctx); break; default: ret = -ENOSYS; } clear_bit_unlock(0, &ctx->flushing_completions); smp_mb__after_atomic(); } tasklet_enable(&ctx->context.tasklet); return ret; } static const struct fw_card_driver ohci_driver = { .enable = ohci_enable, .read_phy_reg = ohci_read_phy_reg, .update_phy_reg = ohci_update_phy_reg, .set_config_rom = ohci_set_config_rom, .send_request = ohci_send_request, .send_response = ohci_send_response, .cancel_packet = ohci_cancel_packet, .enable_phys_dma = ohci_enable_phys_dma, .read_csr = ohci_read_csr, .write_csr = ohci_write_csr, .allocate_iso_context = ohci_allocate_iso_context, .free_iso_context = ohci_free_iso_context, .set_iso_channels = ohci_set_iso_channels, .queue_iso = ohci_queue_iso, .flush_queue_iso = ohci_flush_queue_iso, .flush_iso_completions = ohci_flush_iso_completions, .start_iso = ohci_start_iso, .stop_iso = ohci_stop_iso, }; #ifdef CONFIG_PPC_PMAC static void pmac_ohci_on(struct pci_dev *dev) { if (machine_is(powermac)) { struct device_node *ofn = pci_device_to_OF_node(dev); if (ofn) { pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1); pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1); } } } static void pmac_ohci_off(struct pci_dev *dev) { if (machine_is(powermac)) { struct device_node *ofn = pci_device_to_OF_node(dev); if (ofn) { pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0); pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0); } } } #else static inline void pmac_ohci_on(struct pci_dev *dev) {} static inline void pmac_ohci_off(struct pci_dev *dev) {} #endif /* CONFIG_PPC_PMAC */ static void release_ohci(struct device *dev, void *data) { struct pci_dev *pdev = to_pci_dev(dev); struct fw_ohci *ohci = pci_get_drvdata(pdev); pmac_ohci_off(pdev); ar_context_release(&ohci->ar_response_ctx); ar_context_release(&ohci->ar_request_ctx); dev_notice(dev, "removed fw-ohci device\n"); } static int pci_probe(struct pci_dev *dev, const struct pci_device_id *ent) { struct fw_ohci *ohci; u32 bus_options, max_receive, link_speed, version; u64 guid; int i, flags, irq, err; size_t size; if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) { dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n"); return -ENOSYS; } ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL); if (ohci == NULL) return -ENOMEM; fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); pci_set_drvdata(dev, ohci); pmac_ohci_on(dev); devres_add(&dev->dev, ohci); err = pcim_enable_device(dev); if (err) { dev_err(&dev->dev, "failed to enable OHCI hardware\n"); return err; } pci_set_master(dev); pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); spin_lock_init(&ohci->lock); mutex_init(&ohci->phy_reg_mutex); INIT_WORK(&ohci->bus_reset_work, bus_reset_work); if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) || pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) { ohci_err(ohci, "invalid MMIO resource\n"); return -ENXIO; } err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name); if (err) { ohci_err(ohci, "request and map MMIO resource unavailable\n"); return -ENXIO; } ohci->registers = pcim_iomap_table(dev)[0]; for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++) if ((ohci_quirks[i].vendor == dev->vendor) && (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID || ohci_quirks[i].device == dev->device) && (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID || ohci_quirks[i].revision >= dev->revision)) { ohci->quirks = ohci_quirks[i].flags; break; } if (param_quirks) ohci->quirks = param_quirks; if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev)) ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ; /* * Because dma_alloc_coherent() allocates at least one page, * we save space by using a common buffer for the AR request/ * response descriptors and the self IDs buffer. */ BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4); BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2); ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus, GFP_KERNEL); if (!ohci->misc_buffer) return -ENOMEM; err = ar_context_init(&ohci->ar_request_ctx, ohci, 0, OHCI1394_AsReqRcvContextControlSet); if (err < 0) return err; err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4, OHCI1394_AsRspRcvContextControlSet); if (err < 0) return err; err = context_init(&ohci->at_request_ctx, ohci, OHCI1394_AsReqTrContextControlSet, handle_at_packet); if (err < 0) return err; err = context_init(&ohci->at_response_ctx, ohci, OHCI1394_AsRspTrContextControlSet, handle_at_packet); if (err < 0) return err; reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); ohci->ir_context_channels = ~0ULL; ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); ohci->ir_context_mask = ohci->ir_context_support; ohci->n_ir = hweight32(ohci->ir_context_mask); size = sizeof(struct iso_context) * ohci->n_ir; ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL); if (!ohci->ir_context_list) return -ENOMEM; reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); /* JMicron JMB38x often shows 0 at first read, just ignore it */ if (!ohci->it_context_support) { ohci_notice(ohci, "overriding IsoXmitIntMask\n"); ohci->it_context_support = 0xf; } reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); ohci->it_context_mask = ohci->it_context_support; ohci->n_it = hweight32(ohci->it_context_mask); size = sizeof(struct iso_context) * ohci->n_it; ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL); if (!ohci->it_context_list) return -ENOMEM; ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2; ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2; bus_options = reg_read(ohci, OHCI1394_BusOptions); max_receive = (bus_options >> 12) & 0xf; link_speed = bus_options & 0x7; guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | reg_read(ohci, OHCI1394_GUIDLo); flags = PCI_IRQ_INTX; if (!(ohci->quirks & QUIRK_NO_MSI)) flags |= PCI_IRQ_MSI; err = pci_alloc_irq_vectors(dev, 1, 1, flags); if (err < 0) return err; irq = pci_irq_vector(dev, 0); if (irq < 0) { err = irq; goto fail_msi; } err = request_threaded_irq(irq, irq_handler, NULL, pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci); if (err < 0) { ohci_err(ohci, "failed to allocate interrupt %d\n", irq); goto fail_msi; } err = fw_card_add(&ohci->card, max_receive, link_speed, guid); if (err) goto fail_irq; version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; ohci_notice(ohci, "added OHCI v%x.%x device as card %d, " "%d IR + %d IT contexts, quirks 0x%x%s\n", version >> 16, version & 0xff, ohci->card.index, ohci->n_ir, ohci->n_it, ohci->quirks, reg_read(ohci, OHCI1394_PhyUpperBound) ? ", physUB" : ""); return 0; fail_irq: free_irq(irq, ohci); fail_msi: pci_free_irq_vectors(dev); return err; } static void pci_remove(struct pci_dev *dev) { struct fw_ohci *ohci = pci_get_drvdata(dev); int irq; /* * If the removal is happening from the suspend state, LPS won't be * enabled and host registers (eg., IntMaskClear) won't be accessible. */ if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) { reg_write(ohci, OHCI1394_IntMaskClear, ~0); flush_writes(ohci); } cancel_work_sync(&ohci->bus_reset_work); fw_core_remove_card(&ohci->card); /* * FIXME: Fail all pending packets here, now that the upper * layers can't queue any more. */ software_reset(ohci); irq = pci_irq_vector(dev, 0); if (irq >= 0) free_irq(irq, ohci); pci_free_irq_vectors(dev); dev_notice(&dev->dev, "removing fw-ohci device\n"); } #ifdef CONFIG_PM static int pci_suspend(struct pci_dev *dev, pm_message_t state) { struct fw_ohci *ohci = pci_get_drvdata(dev); int err; software_reset(ohci); err = pci_save_state(dev); if (err) { ohci_err(ohci, "pci_save_state failed\n"); return err; } err = pci_set_power_state(dev, pci_choose_state(dev, state)); if (err) ohci_err(ohci, "pci_set_power_state failed with %d\n", err); pmac_ohci_off(dev); return 0; } static int pci_resume(struct pci_dev *dev) { struct fw_ohci *ohci = pci_get_drvdata(dev); int err; pmac_ohci_on(dev); pci_set_power_state(dev, PCI_D0); pci_restore_state(dev); err = pci_enable_device(dev); if (err) { ohci_err(ohci, "pci_enable_device failed\n"); return err; } /* Some systems don't setup GUID register on resume from ram */ if (!reg_read(ohci, OHCI1394_GUIDLo) && !reg_read(ohci, OHCI1394_GUIDHi)) { reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid); reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32)); } err = ohci_enable(&ohci->card, NULL, 0); if (err) return err; ohci_resume_iso_dma(ohci); return 0; } #endif static const struct pci_device_id pci_table[] = { { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, { } }; MODULE_DEVICE_TABLE(pci, pci_table); static struct pci_driver fw_ohci_pci_driver = { .name = ohci_driver_name, .id_table = pci_table, .probe = pci_probe, .remove = pci_remove, #ifdef CONFIG_PM .resume = pci_resume, .suspend = pci_suspend, #endif }; static int __init fw_ohci_init(void) { selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0); if (!selfid_workqueue) return -ENOMEM; return pci_register_driver(&fw_ohci_pci_driver); } static void __exit fw_ohci_cleanup(void) { pci_unregister_driver(&fw_ohci_pci_driver); destroy_workqueue(selfid_workqueue); } module_init(fw_ohci_init); module_exit(fw_ohci_cleanup); MODULE_AUTHOR("Kristian Hoegsberg "); MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); MODULE_LICENSE("GPL"); /* Provide a module alias so root-on-sbp2 initrds don't break. */ MODULE_ALIAS("ohci1394");