/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef KFD_PRIV_H_INCLUDED #define KFD_PRIV_H_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "amd_shared.h" #include "amdgpu.h" #define KFD_MAX_RING_ENTRY_SIZE 8 #define KFD_SYSFS_FILE_MODE 0444 /* GPU ID hash width in bits */ #define KFD_GPU_ID_HASH_WIDTH 16 /* Use upper bits of mmap offset to store KFD driver specific information. * BITS[63:62] - Encode MMAP type * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to * BITS[45:0] - MMAP offset value * * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these * defines are w.r.t to PAGE_SIZE */ #define KFD_MMAP_TYPE_SHIFT 62 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) #define KFD_MMAP_GPU_ID_SHIFT 46 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ << KFD_MMAP_GPU_ID_SHIFT) #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ & KFD_MMAP_GPU_ID_MASK) #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ >> KFD_MMAP_GPU_ID_SHIFT) /* * When working with cp scheduler we should assign the HIQ manually or via * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot * definitions for Kaveri. In Kaveri only the first ME queues participates * in the cp scheduling taking that in mind we set the HIQ slot in the * second ME. */ #define KFD_CIK_HIQ_PIPE 4 #define KFD_CIK_HIQ_QUEUE 0 /* Macro for allocating structures */ #define kfd_alloc_struct(ptr_to_struct) \ ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) #define KFD_MAX_NUM_OF_PROCESSES 512 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 /* * Size of the per-process TBA+TMA buffer: 2 pages * * The first page is the TBA used for the CWSR ISA code. The second * page is used as TMA for user-mode trap handler setup in daisy-chain mode. */ #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) #define KFD_CWSR_TMA_OFFSET PAGE_SIZE #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ (KFD_MAX_NUM_OF_PROCESSES * \ KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) #define KFD_KERNEL_QUEUE_SIZE 2048 #define KFD_UNMAP_LATENCY_MS (4000) /* * 512 = 0x200 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. */ #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 /* * Kernel module parameter to specify maximum number of supported queues per * device */ extern int max_num_of_queues_per_device; /* Kernel module parameter to specify the scheduling policy */ extern int sched_policy; /* * Kernel module parameter to specify the maximum process * number per HW scheduler */ extern int hws_max_conc_proc; extern int cwsr_enable; /* * Kernel module parameter to specify whether to send sigterm to HSA process on * unhandled exception */ extern int send_sigterm; /* * This kernel module is used to simulate large bar machine on non-large bar * enabled machines. */ extern int debug_largebar; /* * Ignore CRAT table during KFD initialization, can be used to work around * broken CRAT tables on some AMD systems */ extern int ignore_crat; /* Set sh_mem_config.retry_disable on GFX v9 */ extern int amdgpu_noretry; /* Halt if HWS hang is detected */ extern int halt_if_hws_hang; /* Whether MEC FW support GWS barriers */ extern bool hws_gws_support; /* Queue preemption timeout in ms */ extern int queue_preemption_timeout_ms; /* * Don't evict process queues on vm fault */ extern int amdgpu_no_queue_eviction_on_vm_fault; /* Enable eviction debug messages */ extern bool debug_evictions; enum cache_policy { cache_policy_coherent, cache_policy_noncoherent }; #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0]) #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) struct kfd_event_interrupt_class { bool (*interrupt_isr)(struct kfd_dev *dev, const uint32_t *ih_ring_entry, uint32_t *patched_ihre, bool *patched_flag); void (*interrupt_wq)(struct kfd_dev *dev, const uint32_t *ih_ring_entry); }; struct kfd_device_info { uint32_t gfx_target_version; const struct kfd_event_interrupt_class *event_interrupt_class; unsigned int max_pasid_bits; unsigned int max_no_of_hqd; unsigned int doorbell_size; size_t ih_ring_entry_size; uint8_t num_of_watch_points; uint16_t mqd_size_aligned; bool supports_cwsr; bool needs_iommu_device; bool needs_pci_atomics; uint32_t no_atomic_fw_version; unsigned int num_sdma_queues_per_engine; }; unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev); unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev); struct kfd_mem_obj { uint32_t range_start; uint32_t range_end; uint64_t gpu_addr; uint32_t *cpu_ptr; void *gtt_mem; }; struct kfd_vmid_info { uint32_t first_vmid_kfd; uint32_t last_vmid_kfd; uint32_t vmid_num_kfd; }; struct kfd_dev { struct amdgpu_device *adev; struct kfd_device_info device_info; struct pci_dev *pdev; struct drm_device *ddev; unsigned int id; /* topology stub index */ phys_addr_t doorbell_base; /* Start of actual doorbells used by * KFD. It is aligned for mapping * into user mode */ size_t doorbell_base_dw_offset; /* Offset from the start of the PCI * doorbell BAR to the first KFD * doorbell in dwords. GFX reserves * the segment before this offset. */ u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells * page used by kernel queue */ struct kgd2kfd_shared_resources shared_resources; struct kfd_vmid_info vm_info; const struct kfd2kgd_calls *kfd2kgd; struct mutex doorbell_mutex; DECLARE_BITMAP(doorbell_available_index, KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); void *gtt_mem; uint64_t gtt_start_gpu_addr; void *gtt_start_cpu_ptr; void *gtt_sa_bitmap; struct mutex gtt_sa_lock; unsigned int gtt_sa_chunk_size; unsigned int gtt_sa_num_of_chunks; /* Interrupts */ struct kfifo ih_fifo; struct workqueue_struct *ih_wq; struct work_struct interrupt_work; spinlock_t interrupt_lock; /* QCM Device instance */ struct device_queue_manager *dqm; bool init_complete; /* * Interrupts of interest to KFD are copied * from the HW ring into a SW ring. */ bool interrupts_active; /* Debug manager */ struct kfd_dbgmgr *dbgmgr; /* Firmware versions */ uint16_t mec_fw_version; uint16_t mec2_fw_version; uint16_t sdma_fw_version; /* Maximum process number mapped to HW scheduler */ unsigned int max_proc_per_quantum; /* CWSR */ bool cwsr_enabled; const void *cwsr_isa; unsigned int cwsr_isa_size; /* xGMI */ uint64_t hive_id; bool pci_atomic_requested; /* Use IOMMU v2 flag */ bool use_iommu_v2; /* SRAM ECC flag */ atomic_t sram_ecc_flag; /* Compute Profile ref. count */ atomic_t compute_profile; /* Global GWS resource shared between processes */ void *gws; /* Clients watching SMI events */ struct list_head smi_clients; spinlock_t smi_lock; uint32_t reset_seq_num; struct ida doorbell_ida; unsigned int max_doorbell_slices; int noretry; /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */ struct dev_pagemap pgmap; }; enum kfd_mempool { KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, KFD_MEMPOOL_FRAMEBUFFER = 3, }; /* Character device interface */ int kfd_chardev_init(void); void kfd_chardev_exit(void); struct device *kfd_chardev(void); /** * enum kfd_unmap_queues_filter - Enum for queue filters. * * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue. * * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the * running queues list. * * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to * specific process. * */ enum kfd_unmap_queues_filter { KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, KFD_UNMAP_QUEUES_FILTER_BY_PASID }; /** * enum kfd_queue_type - Enum for various queue types. * * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. * * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. * * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. * * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. * * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. */ enum kfd_queue_type { KFD_QUEUE_TYPE_COMPUTE, KFD_QUEUE_TYPE_SDMA, KFD_QUEUE_TYPE_HIQ, KFD_QUEUE_TYPE_DIQ, KFD_QUEUE_TYPE_SDMA_XGMI }; enum kfd_queue_format { KFD_QUEUE_FORMAT_PM4, KFD_QUEUE_FORMAT_AQL }; enum KFD_QUEUE_PRIORITY { KFD_QUEUE_PRIORITY_MINIMUM = 0, KFD_QUEUE_PRIORITY_MAXIMUM = 15 }; /** * struct queue_properties * * @type: The queue type. * * @queue_id: Queue identifier. * * @queue_address: Queue ring buffer address. * * @queue_size: Queue ring buffer size. * * @priority: Defines the queue priority relative to other queues in the * process. * This is just an indication and HW scheduling may override the priority as * necessary while keeping the relative prioritization. * the priority granularity is from 0 to f which f is the highest priority. * currently all queues are initialized with the highest priority. * * @queue_percent: This field is partially implemented and currently a zero in * this field defines that the queue is non active. * * @read_ptr: User space address which points to the number of dwords the * cp read from the ring buffer. This field updates automatically by the H/W. * * @write_ptr: Defines the number of dwords written to the ring buffer. * * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring * buffer. This field should be similar to write_ptr and the user should * update this field after updating the write_ptr. * * @doorbell_off: The doorbell offset in the doorbell pci-bar. * * @is_interop: Defines if this is a interop queue. Interop queue means that * the queue can access both graphics and compute resources. * * @is_evicted: Defines if the queue is evicted. Only active queues * are evicted, rendering them inactive. * * @is_active: Defines if the queue is active or not. @is_active and * @is_evicted are protected by the DQM lock. * * @is_gws: Defines if the queue has been updated to be GWS-capable or not. * @is_gws should be protected by the DQM lock, since changing it can yield the * possibility of updating DQM state on number of GWS queues. * * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid * of the queue. * * This structure represents the queue properties for each queue no matter if * it's user mode or kernel mode queue. * */ struct queue_properties { enum kfd_queue_type type; enum kfd_queue_format format; unsigned int queue_id; uint64_t queue_address; uint64_t queue_size; uint32_t priority; uint32_t queue_percent; uint32_t *read_ptr; uint32_t *write_ptr; void __iomem *doorbell_ptr; uint32_t doorbell_off; bool is_interop; bool is_evicted; bool is_active; bool is_gws; /* Not relevant for user mode queues in cp scheduling */ unsigned int vmid; /* Relevant only for sdma queues*/ uint32_t sdma_engine_id; uint32_t sdma_queue_id; uint32_t sdma_vm_addr; /* Relevant only for VI */ uint64_t eop_ring_buffer_address; uint32_t eop_ring_buffer_size; uint64_t ctx_save_restore_area_address; uint32_t ctx_save_restore_area_size; uint32_t ctl_stack_size; uint64_t tba_addr; uint64_t tma_addr; }; #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ (q).queue_address != 0 && \ (q).queue_percent > 0 && \ !(q).is_evicted) enum mqd_update_flag { UPDATE_FLAG_CU_MASK = 0, }; struct mqd_update_info { union { struct { uint32_t count; /* Must be a multiple of 32 */ uint32_t *ptr; } cu_mask; }; enum mqd_update_flag update_flag; }; /** * struct queue * * @list: Queue linked list. * * @mqd: The queue MQD (memory queue descriptor). * * @mqd_mem_obj: The MQD local gpu memory object. * * @gart_mqd_addr: The MQD gart mc address. * * @properties: The queue properties. * * @mec: Used only in no cp scheduling mode and identifies to micro engine id * that the queue should be executed on. * * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe * id. * * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. * * @process: The kfd process that created this queue. * * @device: The kfd device that created this queue. * * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL * otherwise. * * This structure represents user mode compute queues. * It contains all the necessary data to handle such queues. * */ struct queue { struct list_head list; void *mqd; struct kfd_mem_obj *mqd_mem_obj; uint64_t gart_mqd_addr; struct queue_properties properties; uint32_t mec; uint32_t pipe; uint32_t queue; unsigned int sdma_id; unsigned int doorbell_id; struct kfd_process *process; struct kfd_dev *device; void *gws; /* procfs */ struct kobject kobj; }; enum KFD_MQD_TYPE { KFD_MQD_TYPE_HIQ = 0, /* for hiq */ KFD_MQD_TYPE_CP, /* for cp queues and diq */ KFD_MQD_TYPE_SDMA, /* for sdma queues */ KFD_MQD_TYPE_DIQ, /* for diq */ KFD_MQD_TYPE_MAX }; enum KFD_PIPE_PRIORITY { KFD_PIPE_PRIORITY_CS_LOW = 0, KFD_PIPE_PRIORITY_CS_MEDIUM, KFD_PIPE_PRIORITY_CS_HIGH }; struct scheduling_resources { unsigned int vmid_mask; enum kfd_queue_type type; uint64_t queue_mask; uint64_t gws_mask; uint32_t oac_mask; uint32_t gds_heap_base; uint32_t gds_heap_size; }; struct process_queue_manager { /* data */ struct kfd_process *process; struct list_head queues; unsigned long *queue_slot_bitmap; }; struct qcm_process_device { /* The Device Queue Manager that owns this data */ struct device_queue_manager *dqm; struct process_queue_manager *pqm; /* Queues list */ struct list_head queues_list; struct list_head priv_queue_list; unsigned int queue_count; unsigned int vmid; bool is_debug; unsigned int evicted; /* eviction counter, 0=active */ /* This flag tells if we should reset all wavefronts on * process termination */ bool reset_wavefronts; /* This flag tells us if this process has a GWS-capable * queue that will be mapped into the runlist. It's * possible to request a GWS BO, but not have the queue * currently mapped, and this changes how the MAP_PROCESS * PM4 packet is configured. */ bool mapped_gws_queue; /* All the memory management data should be here too */ uint64_t gds_context_area; /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ uint64_t page_table_base; uint32_t sh_mem_config; uint32_t sh_mem_bases; uint32_t sh_mem_ape1_base; uint32_t sh_mem_ape1_limit; uint32_t gds_size; uint32_t num_gws; uint32_t num_oac; uint32_t sh_hidden_private_base; /* CWSR memory */ struct kgd_mem *cwsr_mem; void *cwsr_kaddr; uint64_t cwsr_base; uint64_t tba_addr; uint64_t tma_addr; /* IB memory */ struct kgd_mem *ib_mem; uint64_t ib_base; void *ib_kaddr; /* doorbell resources per process per device */ unsigned long *doorbell_bitmap; }; /* KFD Memory Eviction */ /* Approx. wait time before attempting to restore evicted BOs */ #define PROCESS_RESTORE_TIME_MS 100 /* Approx. back off time if restore fails due to lack of memory */ #define PROCESS_BACK_OFF_TIME_MS 100 /* Approx. time before evicting the process again */ #define PROCESS_ACTIVE_TIME_MS 10 /* 8 byte handle containing GPU ID in the most significant 4 bytes and * idr_handle in the least significant 4 bytes */ #define MAKE_HANDLE(gpu_id, idr_handle) \ (((uint64_t)(gpu_id) << 32) + idr_handle) #define GET_GPU_ID(handle) (handle >> 32) #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) enum kfd_pdd_bound { PDD_UNBOUND = 0, PDD_BOUND, PDD_BOUND_SUSPENDED, }; #define MAX_SYSFS_FILENAME_LEN 15 /* * SDMA counter runs at 100MHz frequency. * We display SDMA activity in microsecond granularity in sysfs. * As a result, the divisor is 100. */ #define SDMA_ACTIVITY_DIVISOR 100 /* Data that is per-process-per device. */ struct kfd_process_device { /* The device that owns this data. */ struct kfd_dev *dev; /* The process that owns this kfd_process_device. */ struct kfd_process *process; /* per-process-per device QCM data structure */ struct qcm_process_device qpd; /*Apertures*/ uint64_t lds_base; uint64_t lds_limit; uint64_t gpuvm_base; uint64_t gpuvm_limit; uint64_t scratch_base; uint64_t scratch_limit; /* VM context for GPUVM allocations */ struct file *drm_file; void *drm_priv; /* GPUVM allocations storage */ struct idr alloc_idr; /* Flag used to tell the pdd has dequeued from the dqm. * This is used to prevent dev->dqm->ops.process_termination() from * being called twice when it is already called in IOMMU callback * function. */ bool already_dequeued; bool runtime_inuse; /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ enum kfd_pdd_bound bound; /* VRAM usage */ uint64_t vram_usage; struct attribute attr_vram; char vram_filename[MAX_SYSFS_FILENAME_LEN]; /* SDMA activity tracking */ uint64_t sdma_past_activity_counter; struct attribute attr_sdma; char sdma_filename[MAX_SYSFS_FILENAME_LEN]; /* Eviction activity tracking */ uint64_t last_evict_timestamp; atomic64_t evict_duration_counter; struct attribute attr_evict; struct kobject *kobj_stats; unsigned int doorbell_index; /* * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process * that is associated with device encoded by "this" struct instance. The * value reflects CU usage by all of the waves launched by this process * on this device. A very important property of occupancy parameter is * that its value is a snapshot of current use. * * Following is to be noted regarding how this parameter is reported: * * The number of waves that a CU can launch is limited by couple of * parameters. These are encoded by struct amdgpu_cu_info instance * that is part of every device definition. For GFX9 devices this * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) * when they do use scratch memory. This could change for future * devices and therefore this example should be considered as a guide. * * All CU's of a device are available for the process. This may not be true * under certain conditions - e.g. CU masking. * * Finally number of CU's that are occupied by a process is affected by both * number of CU's a device has along with number of other competing processes */ struct attribute attr_cu_occupancy; /* sysfs counters for GPU retry fault and page migration tracking */ struct kobject *kobj_counters; struct attribute attr_faults; struct attribute attr_page_in; struct attribute attr_page_out; uint64_t faults; uint64_t page_in; uint64_t page_out; }; #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) struct svm_range_list { struct mutex lock; struct rb_root_cached objects; struct list_head list; struct work_struct deferred_list_work; struct list_head deferred_range_list; spinlock_t deferred_list_lock; atomic_t evicted_ranges; atomic_t drain_pagefaults; struct delayed_work restore_work; DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); struct task_struct *faulting_task; }; /* Process data */ struct kfd_process { /* * kfd_process are stored in an mm_struct*->kfd_process* * hash table (kfd_processes in kfd_process.c) */ struct hlist_node kfd_processes; /* * Opaque pointer to mm_struct. We don't hold a reference to * it so it should never be dereferenced from here. This is * only used for looking up processes by their mm. */ void *mm; struct kref ref; struct work_struct release_work; struct mutex mutex; /* * In any process, the thread that started main() is the lead * thread and outlives the rest. * It is here because amd_iommu_bind_pasid wants a task_struct. * It can also be used for safely getting a reference to the * mm_struct of the process. */ struct task_struct *lead_thread; /* We want to receive a notification when the mm_struct is destroyed */ struct mmu_notifier mmu_notifier; u32 pasid; /* * Array of kfd_process_device pointers, * one for each device the process is using. */ struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; uint32_t n_pdds; struct process_queue_manager pqm; /*Is the user space process 32 bit?*/ bool is_32bit_user_mode; /* Event-related data */ struct mutex event_mutex; /* Event ID allocator and lookup */ struct idr event_idr; /* Event page */ u64 signal_handle; struct kfd_signal_page *signal_page; size_t signal_mapped_size; size_t signal_event_count; bool signal_event_limit_reached; /* Information used for memory eviction */ void *kgd_process_info; /* Eviction fence that is attached to all the BOs of this process. The * fence will be triggered during eviction and new one will be created * during restore */ struct dma_fence *ef; /* Work items for evicting and restoring BOs */ struct delayed_work eviction_work; struct delayed_work restore_work; /* seqno of the last scheduled eviction */ unsigned int last_eviction_seqno; /* Approx. the last timestamp (in jiffies) when the process was * restored after an eviction */ unsigned long last_restore_timestamp; /* Kobj for our procfs */ struct kobject *kobj; struct kobject *kobj_queues; struct attribute attr_pasid; /* shared virtual memory registered by this process */ struct svm_range_list svms; bool xnack_enabled; atomic_t poison; }; #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); extern struct srcu_struct kfd_processes_srcu; /** * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. * * @filep: pointer to file structure. * @p: amdkfd process pointer. * @data: pointer to arg that was copied from user. * * Return: returns ioctl completion code. */ typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, void *data); struct amdkfd_ioctl_desc { unsigned int cmd; int flags; amdkfd_ioctl_t *func; unsigned int cmd_drv; const char *name; }; bool kfd_dev_is_large_bar(struct kfd_dev *dev); int kfd_process_create_wq(void); void kfd_process_destroy_wq(void); struct kfd_process *kfd_create_process(struct file *filep); struct kfd_process *kfd_get_process(const struct task_struct *); struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); int kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev, uint32_t *gpuid, uint32_t *gpuidx); static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, uint32_t gpuidx, uint32_t *gpuid) { return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; } static inline struct kfd_process_device *kfd_process_device_from_gpuidx( struct kfd_process *p, uint32_t gpuidx) { return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; } void kfd_unref_process(struct kfd_process *p); int kfd_process_evict_queues(struct kfd_process *p); int kfd_process_restore_queues(struct kfd_process *p); void kfd_suspend_all_processes(void); int kfd_resume_all_processes(void); int kfd_process_device_init_vm(struct kfd_process_device *pdd, struct file *drm_file); struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, struct kfd_process *p); struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, struct kfd_process *p); struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, struct kfd_process *p); bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, struct vm_area_struct *vma); /* KFD process API for creating and translating handles */ int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, void *mem); void *kfd_process_device_translate_handle(struct kfd_process_device *p, int handle); void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, int handle); /* PASIDs */ int kfd_pasid_init(void); void kfd_pasid_exit(void); bool kfd_set_pasid_limit(unsigned int new_limit); unsigned int kfd_get_pasid_limit(void); u32 kfd_pasid_alloc(void); void kfd_pasid_free(u32 pasid); /* Doorbells */ size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); int kfd_doorbell_init(struct kfd_dev *kfd); void kfd_doorbell_fini(struct kfd_dev *kfd); int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, struct vm_area_struct *vma); void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, unsigned int *doorbell_off); void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); u32 read_kernel_doorbell(u32 __iomem *db); void write_kernel_doorbell(void __iomem *db, u32 value); void write_kernel_doorbell64(void __iomem *db, u64 value); unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, struct kfd_process_device *pdd, unsigned int doorbell_id); phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); int kfd_alloc_process_doorbells(struct kfd_dev *kfd, unsigned int *doorbell_index); void kfd_free_process_doorbells(struct kfd_dev *kfd, unsigned int doorbell_index); /* GTT Sub-Allocator */ int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, struct kfd_mem_obj **mem_obj); int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); extern struct device *kfd_device; /* KFD's procfs */ void kfd_procfs_init(void); void kfd_procfs_shutdown(void); int kfd_procfs_add_queue(struct queue *q); void kfd_procfs_del_queue(struct queue *q); /* Topology */ int kfd_topology_init(void); void kfd_topology_shutdown(void); int kfd_topology_add_device(struct kfd_dev *gpu); int kfd_topology_remove_device(struct kfd_dev *gpu); struct kfd_topology_device *kfd_topology_device_by_proximity_domain( uint32_t proximity_domain); struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev); int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); int kfd_numa_node_to_apic_id(int numa_node_id); void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); /* Interrupts */ int kfd_interrupt_init(struct kfd_dev *dev); void kfd_interrupt_exit(struct kfd_dev *dev); bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry, uint32_t *patched_ihre, bool *flag); /* amdkfd Apertures */ int kfd_init_apertures(struct kfd_process *process); void kfd_process_set_trap_handler(struct qcm_process_device *qpd, uint64_t tba_addr, uint64_t tma_addr); /* Queue Context Management */ int init_queue(struct queue **q, const struct queue_properties *properties); void uninit_queue(struct queue *q); void print_queue_properties(struct queue_properties *q); void print_queue(struct queue *q); struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, struct kfd_dev *dev); struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, struct kfd_dev *dev); struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, struct kfd_dev *dev); struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, struct kfd_dev *dev); struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, struct kfd_dev *dev); struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, struct kfd_dev *dev); struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); void device_queue_manager_uninit(struct device_queue_manager *dqm); struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, enum kfd_queue_type type); void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid); /* Process Queue Manager */ struct process_queue_node { struct queue *q; struct kernel_queue *kq; struct list_head process_queue_list; }; void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); void kfd_process_dequeue_from_all_devices(struct kfd_process *p); int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); void pqm_uninit(struct process_queue_manager *pqm); int pqm_create_queue(struct process_queue_manager *pqm, struct kfd_dev *dev, struct file *f, struct queue_properties *properties, unsigned int *qid, uint32_t *p_doorbell_offset_in_process); int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, struct queue_properties *p); int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, struct mqd_update_info *minfo); int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, void *gws); struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, unsigned int qid); struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, unsigned int qid); int pqm_get_wave_state(struct process_queue_manager *pqm, unsigned int qid, void __user *ctl_stack, u32 *ctl_stack_used_size, u32 *save_area_used_size); int amdkfd_fence_wait_timeout(uint64_t *fence_addr, uint64_t fence_value, unsigned int timeout_ms); /* Packet Manager */ #define KFD_FENCE_COMPLETED (100) #define KFD_FENCE_INIT (10) struct packet_manager { struct device_queue_manager *dqm; struct kernel_queue *priv_queue; struct mutex lock; bool allocated; struct kfd_mem_obj *ib_buffer_obj; unsigned int ib_size_bytes; bool is_over_subscription; const struct packet_manager_funcs *pmf; }; struct packet_manager_funcs { /* Support ASIC-specific packet formats for PM4 packets */ int (*map_process)(struct packet_manager *pm, uint32_t *buffer, struct qcm_process_device *qpd); int (*runlist)(struct packet_manager *pm, uint32_t *buffer, uint64_t ib, size_t ib_size_in_dwords, bool chain); int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, struct scheduling_resources *res); int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, struct queue *q, bool is_static); int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, enum kfd_queue_type type, enum kfd_unmap_queues_filter mode, uint32_t filter_param, bool reset, unsigned int sdma_engine); int (*query_status)(struct packet_manager *pm, uint32_t *buffer, uint64_t fence_address, uint64_t fence_value); int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); /* Packet sizes */ int map_process_size; int runlist_size; int set_resources_size; int map_queues_size; int unmap_queues_size; int query_status_size; int release_mem_size; }; extern const struct packet_manager_funcs kfd_vi_pm_funcs; extern const struct packet_manager_funcs kfd_v9_pm_funcs; extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); void pm_uninit(struct packet_manager *pm, bool hanging); int pm_send_set_resources(struct packet_manager *pm, struct scheduling_resources *res); int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, uint64_t fence_value); int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type, enum kfd_unmap_queues_filter mode, uint32_t filter_param, bool reset, unsigned int sdma_engine); void pm_release_ib(struct packet_manager *pm); /* Following PM funcs can be shared among VI and AI */ unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); uint64_t kfd_get_number_elems(struct kfd_dev *kfd); /* Events */ extern const struct kfd_event_interrupt_class event_interrupt_class_cik; extern const struct kfd_event_interrupt_class event_interrupt_class_v9; extern const struct kfd_device_global_init_class device_global_init_class_cik; void kfd_event_init_process(struct kfd_process *p); void kfd_event_free_process(struct kfd_process *p); int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); int kfd_wait_on_events(struct kfd_process *p, uint32_t num_events, void __user *data, bool all, uint32_t user_timeout_ms, uint32_t *wait_result); void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, uint32_t valid_id_bits); void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid, unsigned long address, bool is_write_requested, bool is_execute_requested); void kfd_signal_hw_exception_event(u32 pasid); int kfd_set_event(struct kfd_process *p, uint32_t event_id); int kfd_reset_event(struct kfd_process *p, uint32_t event_id); int kfd_event_page_set(struct kfd_process *p, void *kernel_address, uint64_t size); int kfd_event_create(struct file *devkfd, struct kfd_process *p, uint32_t event_type, bool auto_reset, uint32_t node_id, uint32_t *event_id, uint32_t *event_trigger_data, uint64_t *event_page_offset, uint32_t *event_slot_index); int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, struct kfd_vm_fault_info *info); void kfd_signal_reset_event(struct kfd_dev *dev); void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid); void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); bool kfd_is_locked(void); /* Compute profile */ void kfd_inc_compute_active(struct kfd_dev *dev); void kfd_dec_compute_active(struct kfd_dev *dev); /* Cgroup Support */ /* Check with device cgroup if @kfd device is accessible */ static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) { #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) struct drm_device *ddev = kfd->ddev; return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, ddev->render->index, DEVCG_ACC_WRITE | DEVCG_ACC_READ); #else return 0; #endif } /* Debugfs */ #if defined(CONFIG_DEBUG_FS) void kfd_debugfs_init(void); void kfd_debugfs_fini(void); int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); int pqm_debugfs_mqds(struct seq_file *m, void *data); int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); int dqm_debugfs_hqds(struct seq_file *m, void *data); int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); int pm_debugfs_runlist(struct seq_file *m, void *data); int kfd_debugfs_hang_hws(struct kfd_dev *dev); int pm_debugfs_hang_hws(struct packet_manager *pm); int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); #else static inline void kfd_debugfs_init(void) {} static inline void kfd_debugfs_fini(void) {} #endif #endif