// SPDX-License-Identifier: GPL-2.0 or MIT /* Copyright 2019 Collabora ltd. */ #include #include #include #include #include #include #include "panthor_devfreq.h" #include "panthor_device.h" /** * struct panthor_devfreq - Device frequency management */ struct panthor_devfreq { /** @devfreq: devfreq device. */ struct devfreq *devfreq; /** @gov_data: Governor data. */ struct devfreq_simple_ondemand_data gov_data; /** @busy_time: Busy time. */ ktime_t busy_time; /** @idle_time: Idle time. */ ktime_t idle_time; /** @time_last_update: Last update time. */ ktime_t time_last_update; /** @last_busy_state: True if the GPU was busy last time we updated the state. */ bool last_busy_state; /** * @lock: Lock used to protect busy_time, idle_time, time_last_update and * last_busy_state. * * These fields can be accessed concurrently by panthor_devfreq_get_dev_status() * and panthor_devfreq_record_{busy,idle}(). */ spinlock_t lock; }; static void panthor_devfreq_update_utilization(struct panthor_devfreq *pdevfreq) { ktime_t now, last; now = ktime_get(); last = pdevfreq->time_last_update; if (pdevfreq->last_busy_state) pdevfreq->busy_time += ktime_sub(now, last); else pdevfreq->idle_time += ktime_sub(now, last); pdevfreq->time_last_update = now; } static int panthor_devfreq_target(struct device *dev, unsigned long *freq, u32 flags) { struct panthor_device *ptdev = dev_get_drvdata(dev); struct dev_pm_opp *opp; int err; opp = devfreq_recommended_opp(dev, freq, flags); if (IS_ERR(opp)) return PTR_ERR(opp); dev_pm_opp_put(opp); err = dev_pm_opp_set_rate(dev, *freq); if (!err) ptdev->current_frequency = *freq; return err; } static void panthor_devfreq_reset(struct panthor_devfreq *pdevfreq) { pdevfreq->busy_time = 0; pdevfreq->idle_time = 0; pdevfreq->time_last_update = ktime_get(); } static int panthor_devfreq_get_dev_status(struct device *dev, struct devfreq_dev_status *status) { struct panthor_device *ptdev = dev_get_drvdata(dev); struct panthor_devfreq *pdevfreq = ptdev->devfreq; unsigned long irqflags; status->current_frequency = clk_get_rate(ptdev->clks.core); spin_lock_irqsave(&pdevfreq->lock, irqflags); panthor_devfreq_update_utilization(pdevfreq); status->total_time = ktime_to_ns(ktime_add(pdevfreq->busy_time, pdevfreq->idle_time)); status->busy_time = ktime_to_ns(pdevfreq->busy_time); panthor_devfreq_reset(pdevfreq); spin_unlock_irqrestore(&pdevfreq->lock, irqflags); drm_dbg(&ptdev->base, "busy %lu total %lu %lu %% freq %lu MHz\n", status->busy_time, status->total_time, status->busy_time / (status->total_time / 100), status->current_frequency / 1000 / 1000); return 0; } static struct devfreq_dev_profile panthor_devfreq_profile = { .timer = DEVFREQ_TIMER_DELAYED, .polling_ms = 50, /* ~3 frames */ .target = panthor_devfreq_target, .get_dev_status = panthor_devfreq_get_dev_status, }; int panthor_devfreq_init(struct panthor_device *ptdev) { /* There's actually 2 regulators (mali and sram), but the OPP core only * supports one. * * We assume the sram regulator is coupled with the mali one and let * the coupling logic deal with voltage updates. */ static const char * const reg_names[] = { "mali", NULL }; struct thermal_cooling_device *cooling; struct device *dev = ptdev->base.dev; struct panthor_devfreq *pdevfreq; struct dev_pm_opp *opp; unsigned long cur_freq; unsigned long freq = ULONG_MAX; int ret; pdevfreq = drmm_kzalloc(&ptdev->base, sizeof(*ptdev->devfreq), GFP_KERNEL); if (!pdevfreq) return -ENOMEM; ptdev->devfreq = pdevfreq; ret = devm_pm_opp_set_regulators(dev, reg_names); if (ret) { if (ret != -EPROBE_DEFER) DRM_DEV_ERROR(dev, "Couldn't set OPP regulators\n"); return ret; } ret = devm_pm_opp_of_add_table(dev); if (ret) return ret; spin_lock_init(&pdevfreq->lock); panthor_devfreq_reset(pdevfreq); cur_freq = clk_get_rate(ptdev->clks.core); /* Regulator coupling only takes care of synchronizing/balancing voltage * updates, but the coupled regulator needs to be enabled manually. * * We use devm_regulator_get_enable_optional() and keep the sram supply * enabled until the device is removed, just like we do for the mali * supply, which is enabled when dev_pm_opp_set_opp(dev, opp) is called, * and disabled when the opp_table is torn down, using the devm action. * * If we really care about disabling regulators on suspend, we should: * - use devm_regulator_get_optional() here * - call dev_pm_opp_set_opp(dev, NULL) before leaving this function * (this disables the regulator passed to the OPP layer) * - call dev_pm_opp_set_opp(dev, NULL) and * regulator_disable(ptdev->regulators.sram) in * panthor_devfreq_suspend() * - call dev_pm_opp_set_opp(dev, default_opp) and * regulator_enable(ptdev->regulators.sram) in * panthor_devfreq_resume() * * But without knowing if it's beneficial or not (in term of power * consumption), or how much it slows down the suspend/resume steps, * let's just keep regulators enabled for the device lifetime. */ ret = devm_regulator_get_enable_optional(dev, "sram"); if (ret && ret != -ENODEV) { if (ret != -EPROBE_DEFER) DRM_DEV_ERROR(dev, "Couldn't retrieve/enable sram supply\n"); return ret; } opp = devfreq_recommended_opp(dev, &cur_freq, 0); if (IS_ERR(opp)) return PTR_ERR(opp); panthor_devfreq_profile.initial_freq = cur_freq; ptdev->current_frequency = cur_freq; /* * Set the recommend OPP this will enable and configure the regulator * if any and will avoid a switch off by regulator_late_cleanup() */ ret = dev_pm_opp_set_opp(dev, opp); dev_pm_opp_put(opp); if (ret) { DRM_DEV_ERROR(dev, "Couldn't set recommended OPP\n"); return ret; } /* Find the fastest defined rate */ opp = dev_pm_opp_find_freq_floor(dev, &freq); if (IS_ERR(opp)) return PTR_ERR(opp); ptdev->fast_rate = freq; dev_pm_opp_put(opp); /* * Setup default thresholds for the simple_ondemand governor. * The values are chosen based on experiments. */ pdevfreq->gov_data.upthreshold = 45; pdevfreq->gov_data.downdifferential = 5; pdevfreq->devfreq = devm_devfreq_add_device(dev, &panthor_devfreq_profile, DEVFREQ_GOV_SIMPLE_ONDEMAND, &pdevfreq->gov_data); if (IS_ERR(pdevfreq->devfreq)) { DRM_DEV_ERROR(dev, "Couldn't initialize GPU devfreq\n"); ret = PTR_ERR(pdevfreq->devfreq); pdevfreq->devfreq = NULL; return ret; } cooling = devfreq_cooling_em_register(pdevfreq->devfreq, NULL); if (IS_ERR(cooling)) DRM_DEV_INFO(dev, "Failed to register cooling device\n"); return 0; } int panthor_devfreq_resume(struct panthor_device *ptdev) { struct panthor_devfreq *pdevfreq = ptdev->devfreq; if (!pdevfreq->devfreq) return 0; panthor_devfreq_reset(pdevfreq); return devfreq_resume_device(pdevfreq->devfreq); } int panthor_devfreq_suspend(struct panthor_device *ptdev) { struct panthor_devfreq *pdevfreq = ptdev->devfreq; if (!pdevfreq->devfreq) return 0; return devfreq_suspend_device(pdevfreq->devfreq); } void panthor_devfreq_record_busy(struct panthor_device *ptdev) { struct panthor_devfreq *pdevfreq = ptdev->devfreq; unsigned long irqflags; if (!pdevfreq->devfreq) return; spin_lock_irqsave(&pdevfreq->lock, irqflags); panthor_devfreq_update_utilization(pdevfreq); pdevfreq->last_busy_state = true; spin_unlock_irqrestore(&pdevfreq->lock, irqflags); } void panthor_devfreq_record_idle(struct panthor_device *ptdev) { struct panthor_devfreq *pdevfreq = ptdev->devfreq; unsigned long irqflags; if (!pdevfreq->devfreq) return; spin_lock_irqsave(&pdevfreq->lock, irqflags); panthor_devfreq_update_utilization(pdevfreq); pdevfreq->last_busy_state = false; spin_unlock_irqrestore(&pdevfreq->lock, irqflags); }