// SPDX-License-Identifier: GPL-2.0+ #include #include #include #include #include #include #include #include #include #include "vkms_drv.h" static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha) { u32 new_color; new_color = (src * 0xffff + dst * (0xffff - alpha)); return DIV_ROUND_CLOSEST(new_color, 0xffff); } /** * pre_mul_alpha_blend - alpha blending equation * @frame_info: Source framebuffer's metadata * @stage_buffer: The line with the pixels from src_plane * @output_buffer: A line buffer that receives all the blends output * * Using the information from the `frame_info`, this blends only the * necessary pixels from the `stage_buffer` to the `output_buffer` * using premultiplied blend formula. * * The current DRM assumption is that pixel color values have been already * pre-multiplied with the alpha channel values. See more * drm_plane_create_blend_mode_property(). Also, this formula assumes a * completely opaque background. */ static void pre_mul_alpha_blend(struct vkms_frame_info *frame_info, struct line_buffer *stage_buffer, struct line_buffer *output_buffer) { int x_dst = frame_info->dst.x1; struct pixel_argb_u16 *out = output_buffer->pixels + x_dst; struct pixel_argb_u16 *in = stage_buffer->pixels; int x_limit = min_t(size_t, drm_rect_width(&frame_info->dst), stage_buffer->n_pixels); for (int x = 0; x < x_limit; x++) { out[x].a = (u16)0xffff; out[x].r = pre_mul_blend_channel(in[x].r, out[x].r, in[x].a); out[x].g = pre_mul_blend_channel(in[x].g, out[x].g, in[x].a); out[x].b = pre_mul_blend_channel(in[x].b, out[x].b, in[x].a); } } static int get_y_pos(struct vkms_frame_info *frame_info, int y) { if (frame_info->rotation & DRM_MODE_REFLECT_Y) return drm_rect_height(&frame_info->rotated) - y - 1; switch (frame_info->rotation & DRM_MODE_ROTATE_MASK) { case DRM_MODE_ROTATE_90: return frame_info->rotated.x2 - y - 1; case DRM_MODE_ROTATE_270: return y + frame_info->rotated.x1; default: return y; } } static bool check_limit(struct vkms_frame_info *frame_info, int pos) { if (drm_rotation_90_or_270(frame_info->rotation)) { if (pos >= 0 && pos < drm_rect_width(&frame_info->rotated)) return true; } else { if (pos >= frame_info->rotated.y1 && pos < frame_info->rotated.y2) return true; } return false; } static void fill_background(const struct pixel_argb_u16 *background_color, struct line_buffer *output_buffer) { for (size_t i = 0; i < output_buffer->n_pixels; i++) output_buffer->pixels[i] = *background_color; } // lerp(a, b, t) = a + (b - a) * t static u16 lerp_u16(u16 a, u16 b, s64 t) { s64 a_fp = drm_int2fixp(a); s64 b_fp = drm_int2fixp(b); s64 delta = drm_fixp_mul(b_fp - a_fp, t); return drm_fixp2int(a_fp + delta); } static s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value) { s64 color_channel_fp = drm_int2fixp(channel_value); return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio); } /* * This enum is related to the positions of the variables inside * `struct drm_color_lut`, so the order of both needs to be the same. */ enum lut_channel { LUT_RED = 0, LUT_GREEN, LUT_BLUE, LUT_RESERVED }; static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value, enum lut_channel channel) { s64 lut_index = get_lut_index(lut, channel_value); u16 *floor_lut_value, *ceil_lut_value; u16 floor_channel_value, ceil_channel_value; /* * This checks if `struct drm_color_lut` has any gap added by the compiler * between the struct fields. */ static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4); floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)]; if (drm_fixp2int(lut_index) == (lut->lut_length - 1)) /* We're at the end of the LUT array, use same value for ceil and floor */ ceil_lut_value = floor_lut_value; else ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)]; floor_channel_value = floor_lut_value[channel]; ceil_channel_value = ceil_lut_value[channel]; return lerp_u16(floor_channel_value, ceil_channel_value, lut_index & DRM_FIXED_DECIMAL_MASK); } static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer) { if (!crtc_state->gamma_lut.base) return; if (!crtc_state->gamma_lut.lut_length) return; for (size_t x = 0; x < output_buffer->n_pixels; x++) { struct pixel_argb_u16 *pixel = &output_buffer->pixels[x]; pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED); pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN); pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE); } } /** * blend - blend the pixels from all planes and compute crc * @wb: The writeback frame buffer metadata * @crtc_state: The crtc state * @crc32: The crc output of the final frame * @output_buffer: A buffer of a row that will receive the result of the blend(s) * @stage_buffer: The line with the pixels from plane being blend to the output * @row_size: The size, in bytes, of a single row * * This function blends the pixels (Using the `pre_mul_alpha_blend`) * from all planes, calculates the crc32 of the output from the former step, * and, if necessary, convert and store the output to the writeback buffer. */ static void blend(struct vkms_writeback_job *wb, struct vkms_crtc_state *crtc_state, u32 *crc32, struct line_buffer *stage_buffer, struct line_buffer *output_buffer, size_t row_size) { struct vkms_plane_state **plane = crtc_state->active_planes; u32 n_active_planes = crtc_state->num_active_planes; int y_pos; const struct pixel_argb_u16 background_color = { .a = 0xffff }; size_t crtc_y_limit = crtc_state->base.crtc->mode.vdisplay; /* * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary * complexity to avoid poor blending performance. * * The function vkms_compose_row() is used to read a line, pixel-by-pixel, into the staging * buffer. */ for (size_t y = 0; y < crtc_y_limit; y++) { fill_background(&background_color, output_buffer); /* The active planes are composed associatively in z-order. */ for (size_t i = 0; i < n_active_planes; i++) { y_pos = get_y_pos(plane[i]->frame_info, y); if (!check_limit(plane[i]->frame_info, y_pos)) continue; vkms_compose_row(stage_buffer, plane[i], y_pos); pre_mul_alpha_blend(plane[i]->frame_info, stage_buffer, output_buffer); } apply_lut(crtc_state, output_buffer); *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size); if (wb) vkms_writeback_row(wb, output_buffer, y_pos); } } static int check_format_funcs(struct vkms_crtc_state *crtc_state, struct vkms_writeback_job *active_wb) { struct vkms_plane_state **planes = crtc_state->active_planes; u32 n_active_planes = crtc_state->num_active_planes; for (size_t i = 0; i < n_active_planes; i++) if (!planes[i]->pixel_read) return -1; if (active_wb && !active_wb->pixel_write) return -1; return 0; } static int check_iosys_map(struct vkms_crtc_state *crtc_state) { struct vkms_plane_state **plane_state = crtc_state->active_planes; u32 n_active_planes = crtc_state->num_active_planes; for (size_t i = 0; i < n_active_planes; i++) if (iosys_map_is_null(&plane_state[i]->frame_info->map[0])) return -1; return 0; } static int compose_active_planes(struct vkms_writeback_job *active_wb, struct vkms_crtc_state *crtc_state, u32 *crc32) { size_t line_width, pixel_size = sizeof(struct pixel_argb_u16); struct line_buffer output_buffer, stage_buffer; int ret = 0; /* * This check exists so we can call `crc32_le` for the entire line * instead doing it for each channel of each pixel in case * `struct `pixel_argb_u16` had any gap added by the compiler * between the struct fields. */ static_assert(sizeof(struct pixel_argb_u16) == 8); if (WARN_ON(check_iosys_map(crtc_state))) return -EINVAL; if (WARN_ON(check_format_funcs(crtc_state, active_wb))) return -EINVAL; line_width = crtc_state->base.crtc->mode.hdisplay; stage_buffer.n_pixels = line_width; output_buffer.n_pixels = line_width; stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); if (!stage_buffer.pixels) { DRM_ERROR("Cannot allocate memory for the output line buffer"); return -ENOMEM; } output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL); if (!output_buffer.pixels) { DRM_ERROR("Cannot allocate memory for intermediate line buffer"); ret = -ENOMEM; goto free_stage_buffer; } blend(active_wb, crtc_state, crc32, &stage_buffer, &output_buffer, line_width * pixel_size); kvfree(output_buffer.pixels); free_stage_buffer: kvfree(stage_buffer.pixels); return ret; } /** * vkms_composer_worker - ordered work_struct to compute CRC * * @work: work_struct * * Work handler for composing and computing CRCs. work_struct scheduled in * an ordered workqueue that's periodically scheduled to run by * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail(). */ void vkms_composer_worker(struct work_struct *work) { struct vkms_crtc_state *crtc_state = container_of(work, struct vkms_crtc_state, composer_work); struct drm_crtc *crtc = crtc_state->base.crtc; struct vkms_writeback_job *active_wb = crtc_state->active_writeback; struct vkms_output *out = drm_crtc_to_vkms_output(crtc); bool crc_pending, wb_pending; u64 frame_start, frame_end; u32 crc32 = 0; int ret; spin_lock_irq(&out->composer_lock); frame_start = crtc_state->frame_start; frame_end = crtc_state->frame_end; crc_pending = crtc_state->crc_pending; wb_pending = crtc_state->wb_pending; crtc_state->frame_start = 0; crtc_state->frame_end = 0; crtc_state->crc_pending = false; if (crtc->state->gamma_lut) { s64 max_lut_index_fp; s64 u16_max_fp = drm_int2fixp(0xffff); crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data; crtc_state->gamma_lut.lut_length = crtc->state->gamma_lut->length / sizeof(struct drm_color_lut); max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1); crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp, u16_max_fp); } else { crtc_state->gamma_lut.base = NULL; } spin_unlock_irq(&out->composer_lock); /* * We raced with the vblank hrtimer and previous work already computed * the crc, nothing to do. */ if (!crc_pending) return; if (wb_pending) ret = compose_active_planes(active_wb, crtc_state, &crc32); else ret = compose_active_planes(NULL, crtc_state, &crc32); if (ret) return; if (wb_pending) { drm_writeback_signal_completion(&out->wb_connector, 0); spin_lock_irq(&out->composer_lock); crtc_state->wb_pending = false; spin_unlock_irq(&out->composer_lock); } /* * The worker can fall behind the vblank hrtimer, make sure we catch up. */ while (frame_start <= frame_end) drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32); } static const char * const pipe_crc_sources[] = {"auto"}; const char *const *vkms_get_crc_sources(struct drm_crtc *crtc, size_t *count) { *count = ARRAY_SIZE(pipe_crc_sources); return pipe_crc_sources; } static int vkms_crc_parse_source(const char *src_name, bool *enabled) { int ret = 0; if (!src_name) { *enabled = false; } else if (strcmp(src_name, "auto") == 0) { *enabled = true; } else { *enabled = false; ret = -EINVAL; } return ret; } int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name, size_t *values_cnt) { bool enabled; if (vkms_crc_parse_source(src_name, &enabled) < 0) { DRM_DEBUG_DRIVER("unknown source %s\n", src_name); return -EINVAL; } *values_cnt = 1; return 0; } void vkms_set_composer(struct vkms_output *out, bool enabled) { bool old_enabled; if (enabled) drm_crtc_vblank_get(&out->crtc); spin_lock_irq(&out->lock); old_enabled = out->composer_enabled; out->composer_enabled = enabled; spin_unlock_irq(&out->lock); if (old_enabled) drm_crtc_vblank_put(&out->crtc); } int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name) { struct vkms_output *out = drm_crtc_to_vkms_output(crtc); bool enabled = false; int ret = 0; ret = vkms_crc_parse_source(src_name, &enabled); vkms_set_composer(out, enabled); return ret; }