// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_gt_pagefault.h" #include #include #include #include #include #include "abi/guc_actions_abi.h" #include "xe_bo.h" #include "xe_gt.h" #include "xe_gt_tlb_invalidation.h" #include "xe_guc.h" #include "xe_guc_ct.h" #include "xe_migrate.h" #include "xe_trace_bo.h" #include "xe_vm.h" struct pagefault { u64 page_addr; u32 asid; u16 pdata; u8 vfid; u8 access_type; u8 fault_type; u8 fault_level; u8 engine_class; u8 engine_instance; u8 fault_unsuccessful; bool trva_fault; }; enum access_type { ACCESS_TYPE_READ = 0, ACCESS_TYPE_WRITE = 1, ACCESS_TYPE_ATOMIC = 2, ACCESS_TYPE_RESERVED = 3, }; enum fault_type { NOT_PRESENT = 0, WRITE_ACCESS_VIOLATION = 1, ATOMIC_ACCESS_VIOLATION = 2, }; struct acc { u64 va_range_base; u32 asid; u32 sub_granularity; u8 granularity; u8 vfid; u8 access_type; u8 engine_class; u8 engine_instance; }; static bool access_is_atomic(enum access_type access_type) { return access_type == ACCESS_TYPE_ATOMIC; } static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma) { return BIT(tile->id) & vma->tile_present && !(BIT(tile->id) & vma->tile_invalidated); } static bool vma_matches(struct xe_vma *vma, u64 page_addr) { if (page_addr > xe_vma_end(vma) - 1 || page_addr + SZ_4K - 1 < xe_vma_start(vma)) return false; return true; } static struct xe_vma *lookup_vma(struct xe_vm *vm, u64 page_addr) { struct xe_vma *vma = NULL; if (vm->usm.last_fault_vma) { /* Fast lookup */ if (vma_matches(vm->usm.last_fault_vma, page_addr)) vma = vm->usm.last_fault_vma; } if (!vma) vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K); return vma; } static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma, bool atomic, unsigned int id) { struct xe_bo *bo = xe_vma_bo(vma); struct xe_vm *vm = xe_vma_vm(vma); int err; err = xe_vm_lock_vma(exec, vma); if (err) return err; if (atomic && IS_DGFX(vm->xe)) { if (xe_vma_is_userptr(vma)) { err = -EACCES; return err; } /* Migrate to VRAM, move should invalidate the VMA first */ err = xe_bo_migrate(bo, XE_PL_VRAM0 + id); if (err) return err; } else if (bo) { /* Create backing store if needed */ err = xe_bo_validate(bo, vm, true); if (err) return err; } return 0; } static int handle_vma_pagefault(struct xe_tile *tile, struct pagefault *pf, struct xe_vma *vma) { struct xe_vm *vm = xe_vma_vm(vma); struct drm_exec exec; struct dma_fence *fence; ktime_t end = 0; int err; bool atomic; trace_xe_vma_pagefault(vma); atomic = access_is_atomic(pf->access_type); /* Check if VMA is valid */ if (vma_is_valid(tile, vma) && !atomic) return 0; retry_userptr: if (xe_vma_is_userptr(vma) && xe_vma_userptr_check_repin(to_userptr_vma(vma))) { struct xe_userptr_vma *uvma = to_userptr_vma(vma); err = xe_vma_userptr_pin_pages(uvma); if (err) return err; } /* Lock VM and BOs dma-resv */ drm_exec_init(&exec, 0, 0); drm_exec_until_all_locked(&exec) { err = xe_pf_begin(&exec, vma, atomic, tile->id); drm_exec_retry_on_contention(&exec); if (xe_vm_validate_should_retry(&exec, err, &end)) err = -EAGAIN; if (err) goto unlock_dma_resv; /* Bind VMA only to the GT that has faulted */ trace_xe_vma_pf_bind(vma); fence = xe_vma_rebind(vm, vma, BIT(tile->id)); if (IS_ERR(fence)) { err = PTR_ERR(fence); if (xe_vm_validate_should_retry(&exec, err, &end)) err = -EAGAIN; goto unlock_dma_resv; } } dma_fence_wait(fence, false); dma_fence_put(fence); vma->tile_invalidated &= ~BIT(tile->id); unlock_dma_resv: drm_exec_fini(&exec); if (err == -EAGAIN) goto retry_userptr; return err; } static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf) { struct xe_device *xe = gt_to_xe(gt); struct xe_tile *tile = gt_to_tile(gt); struct xe_vm *vm; struct xe_vma *vma = NULL; int err; /* SW isn't expected to handle TRTT faults */ if (pf->trva_fault) return -EFAULT; /* ASID to VM */ mutex_lock(&xe->usm.lock); vm = xa_load(&xe->usm.asid_to_vm, pf->asid); if (vm && xe_vm_in_fault_mode(vm)) xe_vm_get(vm); else vm = NULL; mutex_unlock(&xe->usm.lock); if (!vm) return -EINVAL; /* * TODO: Change to read lock? Using write lock for simplicity. */ down_write(&vm->lock); vma = lookup_vma(vm, pf->page_addr); if (!vma) { err = -EINVAL; goto unlock_vm; } err = handle_vma_pagefault(tile, pf, vma); unlock_vm: if (!err) vm->usm.last_fault_vma = vma; up_write(&vm->lock); xe_vm_put(vm); return err; } static int send_pagefault_reply(struct xe_guc *guc, struct xe_guc_pagefault_reply *reply) { u32 action[] = { XE_GUC_ACTION_PAGE_FAULT_RES_DESC, reply->dw0, reply->dw1, }; return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); } static void print_pagefault(struct xe_device *xe, struct pagefault *pf) { drm_dbg(&xe->drm, "\n\tASID: %d\n" "\tVFID: %d\n" "\tPDATA: 0x%04x\n" "\tFaulted Address: 0x%08x%08x\n" "\tFaultType: %d\n" "\tAccessType: %d\n" "\tFaultLevel: %d\n" "\tEngineClass: %d\n" "\tEngineInstance: %d\n", pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr), lower_32_bits(pf->page_addr), pf->fault_type, pf->access_type, pf->fault_level, pf->engine_class, pf->engine_instance); } #define PF_MSG_LEN_DW 4 static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf) { const struct xe_guc_pagefault_desc *desc; bool ret = false; spin_lock_irq(&pf_queue->lock); if (pf_queue->tail != pf_queue->head) { desc = (const struct xe_guc_pagefault_desc *) (pf_queue->data + pf_queue->tail); pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0); pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0); pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0); pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0); pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) << PFD_PDATA_HI_SHIFT; pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0); pf->asid = FIELD_GET(PFD_ASID, desc->dw1); pf->vfid = FIELD_GET(PFD_VFID, desc->dw2); pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2); pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2); pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) << PFD_VIRTUAL_ADDR_HI_SHIFT; pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) << PFD_VIRTUAL_ADDR_LO_SHIFT; pf_queue->tail = (pf_queue->tail + PF_MSG_LEN_DW) % pf_queue->num_dw; ret = true; } spin_unlock_irq(&pf_queue->lock); return ret; } static bool pf_queue_full(struct pf_queue *pf_queue) { lockdep_assert_held(&pf_queue->lock); return CIRC_SPACE(pf_queue->head, pf_queue->tail, pf_queue->num_dw) <= PF_MSG_LEN_DW; } int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len) { struct xe_gt *gt = guc_to_gt(guc); struct xe_device *xe = gt_to_xe(gt); struct pf_queue *pf_queue; unsigned long flags; u32 asid; bool full; if (unlikely(len != PF_MSG_LEN_DW)) return -EPROTO; asid = FIELD_GET(PFD_ASID, msg[1]); pf_queue = gt->usm.pf_queue + (asid % NUM_PF_QUEUE); /* * The below logic doesn't work unless PF_QUEUE_NUM_DW % PF_MSG_LEN_DW == 0 */ xe_gt_assert(gt, !(pf_queue->num_dw % PF_MSG_LEN_DW)); spin_lock_irqsave(&pf_queue->lock, flags); full = pf_queue_full(pf_queue); if (!full) { memcpy(pf_queue->data + pf_queue->head, msg, len * sizeof(u32)); pf_queue->head = (pf_queue->head + len) % pf_queue->num_dw; queue_work(gt->usm.pf_wq, &pf_queue->worker); } else { drm_warn(&xe->drm, "PF Queue full, shouldn't be possible"); } spin_unlock_irqrestore(&pf_queue->lock, flags); return full ? -ENOSPC : 0; } #define USM_QUEUE_MAX_RUNTIME_MS 20 static void pf_queue_work_func(struct work_struct *w) { struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker); struct xe_gt *gt = pf_queue->gt; struct xe_device *xe = gt_to_xe(gt); struct xe_guc_pagefault_reply reply = {}; struct pagefault pf = {}; unsigned long threshold; int ret; threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS); while (get_pagefault(pf_queue, &pf)) { ret = handle_pagefault(gt, &pf); if (unlikely(ret)) { print_pagefault(xe, &pf); pf.fault_unsuccessful = 1; drm_dbg(&xe->drm, "Fault response: Unsuccessful %d\n", ret); } reply.dw0 = FIELD_PREP(PFR_VALID, 1) | FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) | FIELD_PREP(PFR_REPLY, PFR_ACCESS) | FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) | FIELD_PREP(PFR_ASID, pf.asid); reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) | FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) | FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) | FIELD_PREP(PFR_PDATA, pf.pdata); send_pagefault_reply(>->uc.guc, &reply); if (time_after(jiffies, threshold) && pf_queue->tail != pf_queue->head) { queue_work(gt->usm.pf_wq, w); break; } } } static void acc_queue_work_func(struct work_struct *w); static void pagefault_fini(void *arg) { struct xe_gt *gt = arg; struct xe_device *xe = gt_to_xe(gt); if (!xe->info.has_usm) return; destroy_workqueue(gt->usm.acc_wq); destroy_workqueue(gt->usm.pf_wq); } static int xe_alloc_pf_queue(struct xe_gt *gt, struct pf_queue *pf_queue) { struct xe_device *xe = gt_to_xe(gt); xe_dss_mask_t all_dss; int num_dss, num_eus; bitmap_or(all_dss, gt->fuse_topo.g_dss_mask, gt->fuse_topo.c_dss_mask, XE_MAX_DSS_FUSE_BITS); num_dss = bitmap_weight(all_dss, XE_MAX_DSS_FUSE_BITS); num_eus = bitmap_weight(gt->fuse_topo.eu_mask_per_dss, XE_MAX_EU_FUSE_BITS) * num_dss; /* user can issue separate page faults per EU and per CS */ pf_queue->num_dw = (num_eus + XE_NUM_HW_ENGINES) * PF_MSG_LEN_DW; pf_queue->gt = gt; pf_queue->data = devm_kcalloc(xe->drm.dev, pf_queue->num_dw, sizeof(u32), GFP_KERNEL); if (!pf_queue->data) return -ENOMEM; spin_lock_init(&pf_queue->lock); INIT_WORK(&pf_queue->worker, pf_queue_work_func); return 0; } int xe_gt_pagefault_init(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); int i, ret = 0; if (!xe->info.has_usm) return 0; for (i = 0; i < NUM_PF_QUEUE; ++i) { ret = xe_alloc_pf_queue(gt, >->usm.pf_queue[i]); if (ret) return ret; } for (i = 0; i < NUM_ACC_QUEUE; ++i) { gt->usm.acc_queue[i].gt = gt; spin_lock_init(>->usm.acc_queue[i].lock); INIT_WORK(>->usm.acc_queue[i].worker, acc_queue_work_func); } gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue", WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE); if (!gt->usm.pf_wq) return -ENOMEM; gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue", WQ_UNBOUND | WQ_HIGHPRI, NUM_ACC_QUEUE); if (!gt->usm.acc_wq) { destroy_workqueue(gt->usm.pf_wq); return -ENOMEM; } return devm_add_action_or_reset(xe->drm.dev, pagefault_fini, gt); } void xe_gt_pagefault_reset(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); int i; if (!xe->info.has_usm) return; for (i = 0; i < NUM_PF_QUEUE; ++i) { spin_lock_irq(>->usm.pf_queue[i].lock); gt->usm.pf_queue[i].head = 0; gt->usm.pf_queue[i].tail = 0; spin_unlock_irq(>->usm.pf_queue[i].lock); } for (i = 0; i < NUM_ACC_QUEUE; ++i) { spin_lock(>->usm.acc_queue[i].lock); gt->usm.acc_queue[i].head = 0; gt->usm.acc_queue[i].tail = 0; spin_unlock(>->usm.acc_queue[i].lock); } } static int granularity_in_byte(int val) { switch (val) { case 0: return SZ_128K; case 1: return SZ_2M; case 2: return SZ_16M; case 3: return SZ_64M; default: return 0; } } static int sub_granularity_in_byte(int val) { return (granularity_in_byte(val) / 32); } static void print_acc(struct xe_device *xe, struct acc *acc) { drm_warn(&xe->drm, "Access counter request:\n" "\tType: %s\n" "\tASID: %d\n" "\tVFID: %d\n" "\tEngine: %d:%d\n" "\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n" "\tSub_Granularity Vector: 0x%08x\n" "\tVA Range base: 0x%016llx\n", acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL", acc->asid, acc->vfid, acc->engine_class, acc->engine_instance, granularity_in_byte(acc->granularity) / SZ_1K, sub_granularity_in_byte(acc->granularity) / SZ_1K, acc->sub_granularity, acc->va_range_base); } static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc) { u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) * sub_granularity_in_byte(acc->granularity); return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K); } static int handle_acc(struct xe_gt *gt, struct acc *acc) { struct xe_device *xe = gt_to_xe(gt); struct xe_tile *tile = gt_to_tile(gt); struct drm_exec exec; struct xe_vm *vm; struct xe_vma *vma; int ret = 0; /* We only support ACC_TRIGGER at the moment */ if (acc->access_type != ACC_TRIGGER) return -EINVAL; /* ASID to VM */ mutex_lock(&xe->usm.lock); vm = xa_load(&xe->usm.asid_to_vm, acc->asid); if (vm) xe_vm_get(vm); mutex_unlock(&xe->usm.lock); if (!vm || !xe_vm_in_fault_mode(vm)) return -EINVAL; down_read(&vm->lock); /* Lookup VMA */ vma = get_acc_vma(vm, acc); if (!vma) { ret = -EINVAL; goto unlock_vm; } trace_xe_vma_acc(vma); /* Userptr or null can't be migrated, nothing to do */ if (xe_vma_has_no_bo(vma)) goto unlock_vm; /* Lock VM and BOs dma-resv */ drm_exec_init(&exec, 0, 0); drm_exec_until_all_locked(&exec) { ret = xe_pf_begin(&exec, vma, true, tile->id); drm_exec_retry_on_contention(&exec); if (ret) break; } drm_exec_fini(&exec); unlock_vm: up_read(&vm->lock); xe_vm_put(vm); return ret; } #define make_u64(hi__, low__) ((u64)(hi__) << 32 | (u64)(low__)) #define ACC_MSG_LEN_DW 4 static bool get_acc(struct acc_queue *acc_queue, struct acc *acc) { const struct xe_guc_acc_desc *desc; bool ret = false; spin_lock(&acc_queue->lock); if (acc_queue->tail != acc_queue->head) { desc = (const struct xe_guc_acc_desc *) (acc_queue->data + acc_queue->tail); acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2); acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 | FIELD_GET(ACC_SUBG_LO, desc->dw0); acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1); acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1); acc->asid = FIELD_GET(ACC_ASID, desc->dw1); acc->vfid = FIELD_GET(ACC_VFID, desc->dw2); acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0); acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI, desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO); acc_queue->tail = (acc_queue->tail + ACC_MSG_LEN_DW) % ACC_QUEUE_NUM_DW; ret = true; } spin_unlock(&acc_queue->lock); return ret; } static void acc_queue_work_func(struct work_struct *w) { struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker); struct xe_gt *gt = acc_queue->gt; struct xe_device *xe = gt_to_xe(gt); struct acc acc = {}; unsigned long threshold; int ret; threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS); while (get_acc(acc_queue, &acc)) { ret = handle_acc(gt, &acc); if (unlikely(ret)) { print_acc(xe, &acc); drm_warn(&xe->drm, "ACC: Unsuccessful %d\n", ret); } if (time_after(jiffies, threshold) && acc_queue->tail != acc_queue->head) { queue_work(gt->usm.acc_wq, w); break; } } } static bool acc_queue_full(struct acc_queue *acc_queue) { lockdep_assert_held(&acc_queue->lock); return CIRC_SPACE(acc_queue->head, acc_queue->tail, ACC_QUEUE_NUM_DW) <= ACC_MSG_LEN_DW; } int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len) { struct xe_gt *gt = guc_to_gt(guc); struct acc_queue *acc_queue; u32 asid; bool full; /* * The below logic doesn't work unless ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW == 0 */ BUILD_BUG_ON(ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW); if (unlikely(len != ACC_MSG_LEN_DW)) return -EPROTO; asid = FIELD_GET(ACC_ASID, msg[1]); acc_queue = >->usm.acc_queue[asid % NUM_ACC_QUEUE]; spin_lock(&acc_queue->lock); full = acc_queue_full(acc_queue); if (!full) { memcpy(acc_queue->data + acc_queue->head, msg, len * sizeof(u32)); acc_queue->head = (acc_queue->head + len) % ACC_QUEUE_NUM_DW; queue_work(gt->usm.acc_wq, &acc_queue->worker); } else { drm_warn(>_to_xe(gt)->drm, "ACC Queue full, dropping ACC"); } spin_unlock(&acc_queue->lock); return full ? -ENOSPC : 0; }