// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 Invensense, Inc. */ #include #include #include #include #include /* compute jitter, min and max following jitter in per mille */ #define INV_SENSORS_TIMESTAMP_JITTER(_val, _jitter) \ (div_s64((_val) * (_jitter), 1000)) #define INV_SENSORS_TIMESTAMP_MIN(_val, _jitter) \ (((_val) * (1000 - (_jitter))) / 1000) #define INV_SENSORS_TIMESTAMP_MAX(_val, _jitter) \ (((_val) * (1000 + (_jitter))) / 1000) /* Add a new value inside an accumulator and update the estimate value */ static void inv_update_acc(struct inv_sensors_timestamp_acc *acc, uint32_t val) { uint64_t sum = 0; size_t i; acc->values[acc->idx++] = val; if (acc->idx >= ARRAY_SIZE(acc->values)) acc->idx = 0; /* compute the mean of all stored values, use 0 as empty slot */ for (i = 0; i < ARRAY_SIZE(acc->values); ++i) { if (acc->values[i] == 0) break; sum += acc->values[i]; } acc->val = div_u64(sum, i); } void inv_sensors_timestamp_init(struct inv_sensors_timestamp *ts, const struct inv_sensors_timestamp_chip *chip) { memset(ts, 0, sizeof(*ts)); /* save chip parameters and compute min and max clock period */ ts->chip = *chip; ts->min_period = INV_SENSORS_TIMESTAMP_MIN(chip->clock_period, chip->jitter); ts->max_period = INV_SENSORS_TIMESTAMP_MAX(chip->clock_period, chip->jitter); /* current multiplier and period values after reset */ ts->mult = chip->init_period / chip->clock_period; ts->period = chip->init_period; /* use theoretical value for chip period */ inv_update_acc(&ts->chip_period, chip->clock_period); } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_init, IIO_INV_SENSORS_TIMESTAMP); int inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp *ts, uint32_t period, bool fifo) { uint32_t mult; /* when FIFO is on, prevent odr change if one is already pending */ if (fifo && ts->new_mult != 0) return -EAGAIN; mult = period / ts->chip.clock_period; if (mult != ts->mult) ts->new_mult = mult; /* When FIFO is off, directly apply the new ODR */ if (!fifo) inv_sensors_timestamp_apply_odr(ts, 0, 0, 0); return 0; } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_update_odr, IIO_INV_SENSORS_TIMESTAMP); static bool inv_validate_period(struct inv_sensors_timestamp *ts, uint32_t period) { uint32_t period_min, period_max; /* check that period is acceptable */ period_min = ts->min_period * ts->mult; period_max = ts->max_period * ts->mult; if (period > period_min && period < period_max) return true; else return false; } static bool inv_update_chip_period(struct inv_sensors_timestamp *ts, uint32_t period) { uint32_t new_chip_period; if (!inv_validate_period(ts, period)) return false; /* update chip internal period estimation */ new_chip_period = period / ts->mult; inv_update_acc(&ts->chip_period, new_chip_period); ts->period = ts->mult * ts->chip_period.val; return true; } static void inv_align_timestamp_it(struct inv_sensors_timestamp *ts) { const int64_t period_min = ts->min_period * ts->mult; const int64_t period_max = ts->max_period * ts->mult; int64_t add_max, sub_max; int64_t delta, jitter; int64_t adjust; /* delta time between last sample and last interrupt */ delta = ts->it.lo - ts->timestamp; /* adjust timestamp while respecting jitter */ add_max = period_max - (int64_t)ts->period; sub_max = period_min - (int64_t)ts->period; jitter = INV_SENSORS_TIMESTAMP_JITTER((int64_t)ts->period, ts->chip.jitter); if (delta > jitter) adjust = add_max; else if (delta < -jitter) adjust = sub_max; else adjust = 0; ts->timestamp += adjust; } void inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp *ts, size_t sample_nb, int64_t timestamp) { struct inv_sensors_timestamp_interval *it; int64_t delta, interval; uint32_t period; bool valid = false; if (sample_nb == 0) return; /* update interrupt timestamp and compute chip and sensor periods */ it = &ts->it; it->lo = it->up; it->up = timestamp; delta = it->up - it->lo; if (it->lo != 0) { /* compute period: delta time divided by number of samples */ period = div_s64(delta, sample_nb); valid = inv_update_chip_period(ts, period); } /* no previous data, compute theoritical value from interrupt */ if (ts->timestamp == 0) { /* elapsed time: sensor period * sensor samples number */ interval = (int64_t)ts->period * (int64_t)sample_nb; ts->timestamp = it->up - interval; return; } /* if interrupt interval is valid, sync with interrupt timestamp */ if (valid) inv_align_timestamp_it(ts); } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_interrupt, IIO_INV_SENSORS_TIMESTAMP); void inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp *ts, uint32_t fifo_period, size_t fifo_nb, unsigned int fifo_no) { int64_t interval; uint32_t fifo_mult; if (ts->new_mult == 0) return; /* update to new multiplier and update period */ ts->mult = ts->new_mult; ts->new_mult = 0; ts->period = ts->mult * ts->chip_period.val; /* * After ODR change the time interval with the previous sample is * undertermined (depends when the change occures). So we compute the * timestamp from the current interrupt using the new FIFO period, the * total number of samples and the current sample numero. */ if (ts->timestamp != 0) { /* compute measured fifo period */ fifo_mult = fifo_period / ts->chip.clock_period; fifo_period = fifo_mult * ts->chip_period.val; /* computes time interval between interrupt and this sample */ interval = (int64_t)(fifo_nb - fifo_no) * (int64_t)fifo_period; ts->timestamp = ts->it.up - interval; } } EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_apply_odr, IIO_INV_SENSORS_TIMESTAMP); MODULE_AUTHOR("InvenSense, Inc."); MODULE_DESCRIPTION("InvenSense sensors timestamp module"); MODULE_LICENSE("GPL");