// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Samsung Electronics Co., Ltd. * Author: Jacek Anaszewski * * IIO features supported by the driver: * * Read-only raw channels: * - illuminance_clear [lux] * - illuminance_ir * - proximity * * Triggered buffer: * - illuminance_clear * - illuminance_ir * - proximity * * Events: * - illuminance_clear (rising and falling) * - proximity (rising and falling) * - both falling and rising thresholds for the proximity events * must be set to the values greater than 0. * * The driver supports triggered buffers for all the three * channels as well as high and low threshold events for the * illuminance_clear and proxmimity channels. Triggers * can be enabled simultaneously with both illuminance_clear * events. Proximity events cannot be enabled simultaneously * with any triggers or illuminance events. Enabling/disabling * one of the proximity events automatically enables/disables * the other one. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define GP2A_I2C_NAME "gp2ap020a00f" /* Registers */ #define GP2AP020A00F_OP_REG 0x00 /* Basic operations */ #define GP2AP020A00F_ALS_REG 0x01 /* ALS related settings */ #define GP2AP020A00F_PS_REG 0x02 /* PS related settings */ #define GP2AP020A00F_LED_REG 0x03 /* LED reg */ #define GP2AP020A00F_TL_L_REG 0x04 /* ALS: Threshold low LSB */ #define GP2AP020A00F_TL_H_REG 0x05 /* ALS: Threshold low MSB */ #define GP2AP020A00F_TH_L_REG 0x06 /* ALS: Threshold high LSB */ #define GP2AP020A00F_TH_H_REG 0x07 /* ALS: Threshold high MSB */ #define GP2AP020A00F_PL_L_REG 0x08 /* PS: Threshold low LSB */ #define GP2AP020A00F_PL_H_REG 0x09 /* PS: Threshold low MSB */ #define GP2AP020A00F_PH_L_REG 0x0a /* PS: Threshold high LSB */ #define GP2AP020A00F_PH_H_REG 0x0b /* PS: Threshold high MSB */ #define GP2AP020A00F_D0_L_REG 0x0c /* ALS result: Clear/Illuminance LSB */ #define GP2AP020A00F_D0_H_REG 0x0d /* ALS result: Clear/Illuminance MSB */ #define GP2AP020A00F_D1_L_REG 0x0e /* ALS result: IR LSB */ #define GP2AP020A00F_D1_H_REG 0x0f /* ALS result: IR LSB */ #define GP2AP020A00F_D2_L_REG 0x10 /* PS result LSB */ #define GP2AP020A00F_D2_H_REG 0x11 /* PS result MSB */ #define GP2AP020A00F_NUM_REGS 0x12 /* Number of registers */ /* OP_REG bits */ #define GP2AP020A00F_OP3_MASK 0x80 /* Software shutdown */ #define GP2AP020A00F_OP3_SHUTDOWN 0x00 #define GP2AP020A00F_OP3_OPERATION 0x80 #define GP2AP020A00F_OP2_MASK 0x40 /* Auto shutdown/Continuous mode */ #define GP2AP020A00F_OP2_AUTO_SHUTDOWN 0x00 #define GP2AP020A00F_OP2_CONT_OPERATION 0x40 #define GP2AP020A00F_OP_MASK 0x30 /* Operating mode selection */ #define GP2AP020A00F_OP_ALS_AND_PS 0x00 #define GP2AP020A00F_OP_ALS 0x10 #define GP2AP020A00F_OP_PS 0x20 #define GP2AP020A00F_OP_DEBUG 0x30 #define GP2AP020A00F_PROX_MASK 0x08 /* PS: detection/non-detection */ #define GP2AP020A00F_PROX_NON_DETECT 0x00 #define GP2AP020A00F_PROX_DETECT 0x08 #define GP2AP020A00F_FLAG_P 0x04 /* PS: interrupt result */ #define GP2AP020A00F_FLAG_A 0x02 /* ALS: interrupt result */ #define GP2AP020A00F_TYPE_MASK 0x01 /* Output data type selection */ #define GP2AP020A00F_TYPE_MANUAL_CALC 0x00 #define GP2AP020A00F_TYPE_AUTO_CALC 0x01 /* ALS_REG bits */ #define GP2AP020A00F_PRST_MASK 0xc0 /* Number of measurement cycles */ #define GP2AP020A00F_PRST_ONCE 0x00 #define GP2AP020A00F_PRST_4_CYCLES 0x40 #define GP2AP020A00F_PRST_8_CYCLES 0x80 #define GP2AP020A00F_PRST_16_CYCLES 0xc0 #define GP2AP020A00F_RES_A_MASK 0x38 /* ALS: Resolution */ #define GP2AP020A00F_RES_A_800ms 0x00 #define GP2AP020A00F_RES_A_400ms 0x08 #define GP2AP020A00F_RES_A_200ms 0x10 #define GP2AP020A00F_RES_A_100ms 0x18 #define GP2AP020A00F_RES_A_25ms 0x20 #define GP2AP020A00F_RES_A_6_25ms 0x28 #define GP2AP020A00F_RES_A_1_56ms 0x30 #define GP2AP020A00F_RES_A_0_39ms 0x38 #define GP2AP020A00F_RANGE_A_MASK 0x07 /* ALS: Max measurable range */ #define GP2AP020A00F_RANGE_A_x1 0x00 #define GP2AP020A00F_RANGE_A_x2 0x01 #define GP2AP020A00F_RANGE_A_x4 0x02 #define GP2AP020A00F_RANGE_A_x8 0x03 #define GP2AP020A00F_RANGE_A_x16 0x04 #define GP2AP020A00F_RANGE_A_x32 0x05 #define GP2AP020A00F_RANGE_A_x64 0x06 #define GP2AP020A00F_RANGE_A_x128 0x07 /* PS_REG bits */ #define GP2AP020A00F_ALC_MASK 0x80 /* Auto light cancel */ #define GP2AP020A00F_ALC_ON 0x80 #define GP2AP020A00F_ALC_OFF 0x00 #define GP2AP020A00F_INTTYPE_MASK 0x40 /* Interrupt type setting */ #define GP2AP020A00F_INTTYPE_LEVEL 0x00 #define GP2AP020A00F_INTTYPE_PULSE 0x40 #define GP2AP020A00F_RES_P_MASK 0x38 /* PS: Resolution */ #define GP2AP020A00F_RES_P_800ms_x2 0x00 #define GP2AP020A00F_RES_P_400ms_x2 0x08 #define GP2AP020A00F_RES_P_200ms_x2 0x10 #define GP2AP020A00F_RES_P_100ms_x2 0x18 #define GP2AP020A00F_RES_P_25ms_x2 0x20 #define GP2AP020A00F_RES_P_6_25ms_x2 0x28 #define GP2AP020A00F_RES_P_1_56ms_x2 0x30 #define GP2AP020A00F_RES_P_0_39ms_x2 0x38 #define GP2AP020A00F_RANGE_P_MASK 0x07 /* PS: Max measurable range */ #define GP2AP020A00F_RANGE_P_x1 0x00 #define GP2AP020A00F_RANGE_P_x2 0x01 #define GP2AP020A00F_RANGE_P_x4 0x02 #define GP2AP020A00F_RANGE_P_x8 0x03 #define GP2AP020A00F_RANGE_P_x16 0x04 #define GP2AP020A00F_RANGE_P_x32 0x05 #define GP2AP020A00F_RANGE_P_x64 0x06 #define GP2AP020A00F_RANGE_P_x128 0x07 /* LED reg bits */ #define GP2AP020A00F_INTVAL_MASK 0xc0 /* Intermittent operating */ #define GP2AP020A00F_INTVAL_0 0x00 #define GP2AP020A00F_INTVAL_4 0x40 #define GP2AP020A00F_INTVAL_8 0x80 #define GP2AP020A00F_INTVAL_16 0xc0 #define GP2AP020A00F_IS_MASK 0x30 /* ILED drive peak current */ #define GP2AP020A00F_IS_13_8mA 0x00 #define GP2AP020A00F_IS_27_5mA 0x10 #define GP2AP020A00F_IS_55mA 0x20 #define GP2AP020A00F_IS_110mA 0x30 #define GP2AP020A00F_PIN_MASK 0x0c /* INT terminal setting */ #define GP2AP020A00F_PIN_ALS_OR_PS 0x00 #define GP2AP020A00F_PIN_ALS 0x04 #define GP2AP020A00F_PIN_PS 0x08 #define GP2AP020A00F_PIN_PS_DETECT 0x0c #define GP2AP020A00F_FREQ_MASK 0x02 /* LED modulation frequency */ #define GP2AP020A00F_FREQ_327_5kHz 0x00 #define GP2AP020A00F_FREQ_81_8kHz 0x02 #define GP2AP020A00F_RST 0x01 /* Software reset */ #define GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR 0 #define GP2AP020A00F_SCAN_MODE_LIGHT_IR 1 #define GP2AP020A00F_SCAN_MODE_PROXIMITY 2 #define GP2AP020A00F_CHAN_TIMESTAMP 3 #define GP2AP020A00F_DATA_READY_TIMEOUT msecs_to_jiffies(1000) #define GP2AP020A00F_DATA_REG(chan) (GP2AP020A00F_D0_L_REG + \ (chan) * 2) #define GP2AP020A00F_THRESH_REG(th_val_id) (GP2AP020A00F_TL_L_REG + \ (th_val_id) * 2) #define GP2AP020A00F_THRESH_VAL_ID(reg_addr) ((reg_addr - 4) / 2) #define GP2AP020A00F_SUBTRACT_MODE 0 #define GP2AP020A00F_ADD_MODE 1 #define GP2AP020A00F_MAX_CHANNELS 3 enum gp2ap020a00f_opmode { GP2AP020A00F_OPMODE_READ_RAW_CLEAR, GP2AP020A00F_OPMODE_READ_RAW_IR, GP2AP020A00F_OPMODE_READ_RAW_PROXIMITY, GP2AP020A00F_OPMODE_ALS, GP2AP020A00F_OPMODE_PS, GP2AP020A00F_OPMODE_ALS_AND_PS, GP2AP020A00F_OPMODE_PROX_DETECT, GP2AP020A00F_OPMODE_SHUTDOWN, GP2AP020A00F_NUM_OPMODES, }; enum gp2ap020a00f_cmd { GP2AP020A00F_CMD_READ_RAW_CLEAR, GP2AP020A00F_CMD_READ_RAW_IR, GP2AP020A00F_CMD_READ_RAW_PROXIMITY, GP2AP020A00F_CMD_TRIGGER_CLEAR_EN, GP2AP020A00F_CMD_TRIGGER_CLEAR_DIS, GP2AP020A00F_CMD_TRIGGER_IR_EN, GP2AP020A00F_CMD_TRIGGER_IR_DIS, GP2AP020A00F_CMD_TRIGGER_PROX_EN, GP2AP020A00F_CMD_TRIGGER_PROX_DIS, GP2AP020A00F_CMD_ALS_HIGH_EV_EN, GP2AP020A00F_CMD_ALS_HIGH_EV_DIS, GP2AP020A00F_CMD_ALS_LOW_EV_EN, GP2AP020A00F_CMD_ALS_LOW_EV_DIS, GP2AP020A00F_CMD_PROX_HIGH_EV_EN, GP2AP020A00F_CMD_PROX_HIGH_EV_DIS, GP2AP020A00F_CMD_PROX_LOW_EV_EN, GP2AP020A00F_CMD_PROX_LOW_EV_DIS, }; enum gp2ap020a00f_flags { GP2AP020A00F_FLAG_ALS_CLEAR_TRIGGER, GP2AP020A00F_FLAG_ALS_IR_TRIGGER, GP2AP020A00F_FLAG_PROX_TRIGGER, GP2AP020A00F_FLAG_PROX_RISING_EV, GP2AP020A00F_FLAG_PROX_FALLING_EV, GP2AP020A00F_FLAG_ALS_RISING_EV, GP2AP020A00F_FLAG_ALS_FALLING_EV, GP2AP020A00F_FLAG_LUX_MODE_HI, GP2AP020A00F_FLAG_DATA_READY, }; enum gp2ap020a00f_thresh_val_id { GP2AP020A00F_THRESH_TL, GP2AP020A00F_THRESH_TH, GP2AP020A00F_THRESH_PL, GP2AP020A00F_THRESH_PH, }; struct gp2ap020a00f_data { struct i2c_client *client; struct mutex lock; char *buffer; struct regulator *vled_reg; unsigned long flags; enum gp2ap020a00f_opmode cur_opmode; struct iio_trigger *trig; struct regmap *regmap; unsigned int thresh_val[4]; u8 debug_reg_addr; struct irq_work work; wait_queue_head_t data_ready_queue; }; static const u8 gp2ap020a00f_reg_init_tab[] = { [GP2AP020A00F_OP_REG] = GP2AP020A00F_OP3_SHUTDOWN, [GP2AP020A00F_ALS_REG] = GP2AP020A00F_RES_A_25ms | GP2AP020A00F_RANGE_A_x8, [GP2AP020A00F_PS_REG] = GP2AP020A00F_ALC_ON | GP2AP020A00F_RES_P_1_56ms_x2 | GP2AP020A00F_RANGE_P_x4, [GP2AP020A00F_LED_REG] = GP2AP020A00F_INTVAL_0 | GP2AP020A00F_IS_110mA | GP2AP020A00F_FREQ_327_5kHz, [GP2AP020A00F_TL_L_REG] = 0, [GP2AP020A00F_TL_H_REG] = 0, [GP2AP020A00F_TH_L_REG] = 0, [GP2AP020A00F_TH_H_REG] = 0, [GP2AP020A00F_PL_L_REG] = 0, [GP2AP020A00F_PL_H_REG] = 0, [GP2AP020A00F_PH_L_REG] = 0, [GP2AP020A00F_PH_H_REG] = 0, }; static bool gp2ap020a00f_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case GP2AP020A00F_OP_REG: case GP2AP020A00F_D0_L_REG: case GP2AP020A00F_D0_H_REG: case GP2AP020A00F_D1_L_REG: case GP2AP020A00F_D1_H_REG: case GP2AP020A00F_D2_L_REG: case GP2AP020A00F_D2_H_REG: return true; default: return false; } } static const struct regmap_config gp2ap020a00f_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = GP2AP020A00F_D2_H_REG, .cache_type = REGCACHE_RBTREE, .volatile_reg = gp2ap020a00f_is_volatile_reg, }; static const struct gp2ap020a00f_mutable_config_regs { u8 op_reg; u8 als_reg; u8 ps_reg; u8 led_reg; } opmode_regs_settings[GP2AP020A00F_NUM_OPMODES] = { [GP2AP020A00F_OPMODE_READ_RAW_CLEAR] = { GP2AP020A00F_OP_ALS | GP2AP020A00F_OP2_CONT_OPERATION | GP2AP020A00F_OP3_OPERATION | GP2AP020A00F_TYPE_AUTO_CALC, GP2AP020A00F_PRST_ONCE, GP2AP020A00F_INTTYPE_LEVEL, GP2AP020A00F_PIN_ALS }, [GP2AP020A00F_OPMODE_READ_RAW_IR] = { GP2AP020A00F_OP_ALS | GP2AP020A00F_OP2_CONT_OPERATION | GP2AP020A00F_OP3_OPERATION | GP2AP020A00F_TYPE_MANUAL_CALC, GP2AP020A00F_PRST_ONCE, GP2AP020A00F_INTTYPE_LEVEL, GP2AP020A00F_PIN_ALS }, [GP2AP020A00F_OPMODE_READ_RAW_PROXIMITY] = { GP2AP020A00F_OP_PS | GP2AP020A00F_OP2_CONT_OPERATION | GP2AP020A00F_OP3_OPERATION | GP2AP020A00F_TYPE_MANUAL_CALC, GP2AP020A00F_PRST_ONCE, GP2AP020A00F_INTTYPE_LEVEL, GP2AP020A00F_PIN_PS }, [GP2AP020A00F_OPMODE_PROX_DETECT] = { GP2AP020A00F_OP_PS | GP2AP020A00F_OP2_CONT_OPERATION | GP2AP020A00F_OP3_OPERATION | GP2AP020A00F_TYPE_MANUAL_CALC, GP2AP020A00F_PRST_4_CYCLES, GP2AP020A00F_INTTYPE_PULSE, GP2AP020A00F_PIN_PS_DETECT }, [GP2AP020A00F_OPMODE_ALS] = { GP2AP020A00F_OP_ALS | GP2AP020A00F_OP2_CONT_OPERATION | GP2AP020A00F_OP3_OPERATION | GP2AP020A00F_TYPE_AUTO_CALC, GP2AP020A00F_PRST_ONCE, GP2AP020A00F_INTTYPE_LEVEL, GP2AP020A00F_PIN_ALS }, [GP2AP020A00F_OPMODE_PS] = { GP2AP020A00F_OP_PS | GP2AP020A00F_OP2_CONT_OPERATION | GP2AP020A00F_OP3_OPERATION | GP2AP020A00F_TYPE_MANUAL_CALC, GP2AP020A00F_PRST_4_CYCLES, GP2AP020A00F_INTTYPE_LEVEL, GP2AP020A00F_PIN_PS }, [GP2AP020A00F_OPMODE_ALS_AND_PS] = { GP2AP020A00F_OP_ALS_AND_PS | GP2AP020A00F_OP2_CONT_OPERATION | GP2AP020A00F_OP3_OPERATION | GP2AP020A00F_TYPE_AUTO_CALC, GP2AP020A00F_PRST_4_CYCLES, GP2AP020A00F_INTTYPE_LEVEL, GP2AP020A00F_PIN_ALS_OR_PS }, [GP2AP020A00F_OPMODE_SHUTDOWN] = { GP2AP020A00F_OP3_SHUTDOWN, }, }; static int gp2ap020a00f_set_operation_mode(struct gp2ap020a00f_data *data, enum gp2ap020a00f_opmode op) { unsigned int op_reg_val; int err; if (op != GP2AP020A00F_OPMODE_SHUTDOWN) { err = regmap_read(data->regmap, GP2AP020A00F_OP_REG, &op_reg_val); if (err < 0) return err; /* * Shutdown the device if the operation being executed entails * mode transition. */ if ((opmode_regs_settings[op].op_reg & GP2AP020A00F_OP_MASK) != (op_reg_val & GP2AP020A00F_OP_MASK)) { /* set shutdown mode */ err = regmap_update_bits(data->regmap, GP2AP020A00F_OP_REG, GP2AP020A00F_OP3_MASK, GP2AP020A00F_OP3_SHUTDOWN); if (err < 0) return err; } err = regmap_update_bits(data->regmap, GP2AP020A00F_ALS_REG, GP2AP020A00F_PRST_MASK, opmode_regs_settings[op] .als_reg); if (err < 0) return err; err = regmap_update_bits(data->regmap, GP2AP020A00F_PS_REG, GP2AP020A00F_INTTYPE_MASK, opmode_regs_settings[op] .ps_reg); if (err < 0) return err; err = regmap_update_bits(data->regmap, GP2AP020A00F_LED_REG, GP2AP020A00F_PIN_MASK, opmode_regs_settings[op] .led_reg); if (err < 0) return err; } /* Set OP_REG and apply operation mode (power on / off) */ err = regmap_update_bits(data->regmap, GP2AP020A00F_OP_REG, GP2AP020A00F_OP_MASK | GP2AP020A00F_OP2_MASK | GP2AP020A00F_OP3_MASK | GP2AP020A00F_TYPE_MASK, opmode_regs_settings[op].op_reg); if (err < 0) return err; data->cur_opmode = op; return 0; } static bool gp2ap020a00f_als_enabled(struct gp2ap020a00f_data *data) { return test_bit(GP2AP020A00F_FLAG_ALS_CLEAR_TRIGGER, &data->flags) || test_bit(GP2AP020A00F_FLAG_ALS_IR_TRIGGER, &data->flags) || test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags) || test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags); } static bool gp2ap020a00f_prox_detect_enabled(struct gp2ap020a00f_data *data) { return test_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags) || test_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags); } static int gp2ap020a00f_write_event_threshold(struct gp2ap020a00f_data *data, enum gp2ap020a00f_thresh_val_id th_val_id, bool enable) { __le16 thresh_buf = 0; unsigned int thresh_reg_val; if (!enable) thresh_reg_val = 0; else if (test_bit(GP2AP020A00F_FLAG_LUX_MODE_HI, &data->flags) && th_val_id != GP2AP020A00F_THRESH_PL && th_val_id != GP2AP020A00F_THRESH_PH) /* * For the high lux mode ALS threshold has to be scaled down * to allow for proper comparison with the output value. */ thresh_reg_val = data->thresh_val[th_val_id] / 16; else thresh_reg_val = data->thresh_val[th_val_id] > 16000 ? 16000 : data->thresh_val[th_val_id]; thresh_buf = cpu_to_le16(thresh_reg_val); return regmap_bulk_write(data->regmap, GP2AP020A00F_THRESH_REG(th_val_id), (u8 *)&thresh_buf, 2); } static int gp2ap020a00f_alter_opmode(struct gp2ap020a00f_data *data, enum gp2ap020a00f_opmode diff_mode, int add_sub) { enum gp2ap020a00f_opmode new_mode; if (diff_mode != GP2AP020A00F_OPMODE_ALS && diff_mode != GP2AP020A00F_OPMODE_PS) return -EINVAL; if (add_sub == GP2AP020A00F_ADD_MODE) { if (data->cur_opmode == GP2AP020A00F_OPMODE_SHUTDOWN) new_mode = diff_mode; else new_mode = GP2AP020A00F_OPMODE_ALS_AND_PS; } else { if (data->cur_opmode == GP2AP020A00F_OPMODE_ALS_AND_PS) new_mode = (diff_mode == GP2AP020A00F_OPMODE_ALS) ? GP2AP020A00F_OPMODE_PS : GP2AP020A00F_OPMODE_ALS; else new_mode = GP2AP020A00F_OPMODE_SHUTDOWN; } return gp2ap020a00f_set_operation_mode(data, new_mode); } static int gp2ap020a00f_exec_cmd(struct gp2ap020a00f_data *data, enum gp2ap020a00f_cmd cmd) { int err = 0; switch (cmd) { case GP2AP020A00F_CMD_READ_RAW_CLEAR: if (data->cur_opmode != GP2AP020A00F_OPMODE_SHUTDOWN) return -EBUSY; err = gp2ap020a00f_set_operation_mode(data, GP2AP020A00F_OPMODE_READ_RAW_CLEAR); break; case GP2AP020A00F_CMD_READ_RAW_IR: if (data->cur_opmode != GP2AP020A00F_OPMODE_SHUTDOWN) return -EBUSY; err = gp2ap020a00f_set_operation_mode(data, GP2AP020A00F_OPMODE_READ_RAW_IR); break; case GP2AP020A00F_CMD_READ_RAW_PROXIMITY: if (data->cur_opmode != GP2AP020A00F_OPMODE_SHUTDOWN) return -EBUSY; err = gp2ap020a00f_set_operation_mode(data, GP2AP020A00F_OPMODE_READ_RAW_PROXIMITY); break; case GP2AP020A00F_CMD_TRIGGER_CLEAR_EN: if (data->cur_opmode == GP2AP020A00F_OPMODE_PROX_DETECT) return -EBUSY; if (!gp2ap020a00f_als_enabled(data)) err = gp2ap020a00f_alter_opmode(data, GP2AP020A00F_OPMODE_ALS, GP2AP020A00F_ADD_MODE); set_bit(GP2AP020A00F_FLAG_ALS_CLEAR_TRIGGER, &data->flags); break; case GP2AP020A00F_CMD_TRIGGER_CLEAR_DIS: clear_bit(GP2AP020A00F_FLAG_ALS_CLEAR_TRIGGER, &data->flags); if (gp2ap020a00f_als_enabled(data)) break; err = gp2ap020a00f_alter_opmode(data, GP2AP020A00F_OPMODE_ALS, GP2AP020A00F_SUBTRACT_MODE); break; case GP2AP020A00F_CMD_TRIGGER_IR_EN: if (data->cur_opmode == GP2AP020A00F_OPMODE_PROX_DETECT) return -EBUSY; if (!gp2ap020a00f_als_enabled(data)) err = gp2ap020a00f_alter_opmode(data, GP2AP020A00F_OPMODE_ALS, GP2AP020A00F_ADD_MODE); set_bit(GP2AP020A00F_FLAG_ALS_IR_TRIGGER, &data->flags); break; case GP2AP020A00F_CMD_TRIGGER_IR_DIS: clear_bit(GP2AP020A00F_FLAG_ALS_IR_TRIGGER, &data->flags); if (gp2ap020a00f_als_enabled(data)) break; err = gp2ap020a00f_alter_opmode(data, GP2AP020A00F_OPMODE_ALS, GP2AP020A00F_SUBTRACT_MODE); break; case GP2AP020A00F_CMD_TRIGGER_PROX_EN: if (data->cur_opmode == GP2AP020A00F_OPMODE_PROX_DETECT) return -EBUSY; err = gp2ap020a00f_alter_opmode(data, GP2AP020A00F_OPMODE_PS, GP2AP020A00F_ADD_MODE); set_bit(GP2AP020A00F_FLAG_PROX_TRIGGER, &data->flags); break; case GP2AP020A00F_CMD_TRIGGER_PROX_DIS: clear_bit(GP2AP020A00F_FLAG_PROX_TRIGGER, &data->flags); err = gp2ap020a00f_alter_opmode(data, GP2AP020A00F_OPMODE_PS, GP2AP020A00F_SUBTRACT_MODE); break; case GP2AP020A00F_CMD_ALS_HIGH_EV_EN: if (test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags)) return 0; if (data->cur_opmode == GP2AP020A00F_OPMODE_PROX_DETECT) return -EBUSY; if (!gp2ap020a00f_als_enabled(data)) { err = gp2ap020a00f_alter_opmode(data, GP2AP020A00F_OPMODE_ALS, GP2AP020A00F_ADD_MODE); if (err < 0) return err; } set_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags); err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_TH, true); break; case GP2AP020A00F_CMD_ALS_HIGH_EV_DIS: if (!test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags)) return 0; clear_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags); if (!gp2ap020a00f_als_enabled(data)) { err = gp2ap020a00f_alter_opmode(data, GP2AP020A00F_OPMODE_ALS, GP2AP020A00F_SUBTRACT_MODE); if (err < 0) return err; } err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_TH, false); break; case GP2AP020A00F_CMD_ALS_LOW_EV_EN: if (test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags)) return 0; if (data->cur_opmode == GP2AP020A00F_OPMODE_PROX_DETECT) return -EBUSY; if (!gp2ap020a00f_als_enabled(data)) { err = gp2ap020a00f_alter_opmode(data, GP2AP020A00F_OPMODE_ALS, GP2AP020A00F_ADD_MODE); if (err < 0) return err; } set_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags); err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_TL, true); break; case GP2AP020A00F_CMD_ALS_LOW_EV_DIS: if (!test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags)) return 0; clear_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags); if (!gp2ap020a00f_als_enabled(data)) { err = gp2ap020a00f_alter_opmode(data, GP2AP020A00F_OPMODE_ALS, GP2AP020A00F_SUBTRACT_MODE); if (err < 0) return err; } err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_TL, false); break; case GP2AP020A00F_CMD_PROX_HIGH_EV_EN: if (test_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags)) return 0; if (gp2ap020a00f_als_enabled(data) || data->cur_opmode == GP2AP020A00F_OPMODE_PS) return -EBUSY; if (!gp2ap020a00f_prox_detect_enabled(data)) { err = gp2ap020a00f_set_operation_mode(data, GP2AP020A00F_OPMODE_PROX_DETECT); if (err < 0) return err; } set_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags); err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_PH, true); break; case GP2AP020A00F_CMD_PROX_HIGH_EV_DIS: if (!test_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags)) return 0; clear_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags); err = gp2ap020a00f_set_operation_mode(data, GP2AP020A00F_OPMODE_SHUTDOWN); if (err < 0) return err; err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_PH, false); break; case GP2AP020A00F_CMD_PROX_LOW_EV_EN: if (test_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags)) return 0; if (gp2ap020a00f_als_enabled(data) || data->cur_opmode == GP2AP020A00F_OPMODE_PS) return -EBUSY; if (!gp2ap020a00f_prox_detect_enabled(data)) { err = gp2ap020a00f_set_operation_mode(data, GP2AP020A00F_OPMODE_PROX_DETECT); if (err < 0) return err; } set_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags); err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_PL, true); break; case GP2AP020A00F_CMD_PROX_LOW_EV_DIS: if (!test_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags)) return 0; clear_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags); err = gp2ap020a00f_set_operation_mode(data, GP2AP020A00F_OPMODE_SHUTDOWN); if (err < 0) return err; err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_PL, false); break; } return err; } static int wait_conversion_complete_irq(struct gp2ap020a00f_data *data) { int ret; ret = wait_event_timeout(data->data_ready_queue, test_bit(GP2AP020A00F_FLAG_DATA_READY, &data->flags), GP2AP020A00F_DATA_READY_TIMEOUT); clear_bit(GP2AP020A00F_FLAG_DATA_READY, &data->flags); return ret > 0 ? 0 : -ETIME; } static int gp2ap020a00f_read_output(struct gp2ap020a00f_data *data, unsigned int output_reg, int *val) { u8 reg_buf[2]; int err; err = wait_conversion_complete_irq(data); if (err < 0) dev_dbg(&data->client->dev, "data ready timeout\n"); err = regmap_bulk_read(data->regmap, output_reg, reg_buf, 2); if (err < 0) return err; *val = le16_to_cpup((__le16 *)reg_buf); return err; } static bool gp2ap020a00f_adjust_lux_mode(struct gp2ap020a00f_data *data, int output_val) { u8 new_range = 0xff; int err; if (!test_bit(GP2AP020A00F_FLAG_LUX_MODE_HI, &data->flags)) { if (output_val > 16000) { set_bit(GP2AP020A00F_FLAG_LUX_MODE_HI, &data->flags); new_range = GP2AP020A00F_RANGE_A_x128; } } else { if (output_val < 1000) { clear_bit(GP2AP020A00F_FLAG_LUX_MODE_HI, &data->flags); new_range = GP2AP020A00F_RANGE_A_x8; } } if (new_range != 0xff) { /* Clear als threshold registers to avoid spurious * events caused by lux mode transition. */ err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_TH, false); if (err < 0) { dev_err(&data->client->dev, "Clearing als threshold register failed.\n"); return false; } err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_TL, false); if (err < 0) { dev_err(&data->client->dev, "Clearing als threshold register failed.\n"); return false; } /* Change lux mode */ err = regmap_update_bits(data->regmap, GP2AP020A00F_OP_REG, GP2AP020A00F_OP3_MASK, GP2AP020A00F_OP3_SHUTDOWN); if (err < 0) { dev_err(&data->client->dev, "Shutting down the device failed.\n"); return false; } err = regmap_update_bits(data->regmap, GP2AP020A00F_ALS_REG, GP2AP020A00F_RANGE_A_MASK, new_range); if (err < 0) { dev_err(&data->client->dev, "Adjusting device lux mode failed.\n"); return false; } err = regmap_update_bits(data->regmap, GP2AP020A00F_OP_REG, GP2AP020A00F_OP3_MASK, GP2AP020A00F_OP3_OPERATION); if (err < 0) { dev_err(&data->client->dev, "Powering up the device failed.\n"); return false; } /* Adjust als threshold register values to the new lux mode */ if (test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags)) { err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_TH, true); if (err < 0) { dev_err(&data->client->dev, "Adjusting als threshold value failed.\n"); return false; } } if (test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags)) { err = gp2ap020a00f_write_event_threshold(data, GP2AP020A00F_THRESH_TL, true); if (err < 0) { dev_err(&data->client->dev, "Adjusting als threshold value failed.\n"); return false; } } return true; } return false; } static void gp2ap020a00f_output_to_lux(struct gp2ap020a00f_data *data, int *output_val) { if (test_bit(GP2AP020A00F_FLAG_LUX_MODE_HI, &data->flags)) *output_val *= 16; } static void gp2ap020a00f_iio_trigger_work(struct irq_work *work) { struct gp2ap020a00f_data *data = container_of(work, struct gp2ap020a00f_data, work); iio_trigger_poll(data->trig); } static irqreturn_t gp2ap020a00f_prox_sensing_handler(int irq, void *data) { struct iio_dev *indio_dev = data; struct gp2ap020a00f_data *priv = iio_priv(indio_dev); unsigned int op_reg_val; int ret; /* Read interrupt flags */ ret = regmap_read(priv->regmap, GP2AP020A00F_OP_REG, &op_reg_val); if (ret < 0) return IRQ_HANDLED; if (gp2ap020a00f_prox_detect_enabled(priv)) { if (op_reg_val & GP2AP020A00F_PROX_DETECT) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE( IIO_PROXIMITY, GP2AP020A00F_SCAN_MODE_PROXIMITY, IIO_EV_TYPE_ROC, IIO_EV_DIR_RISING), iio_get_time_ns(indio_dev)); } else { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE( IIO_PROXIMITY, GP2AP020A00F_SCAN_MODE_PROXIMITY, IIO_EV_TYPE_ROC, IIO_EV_DIR_FALLING), iio_get_time_ns(indio_dev)); } } return IRQ_HANDLED; } static irqreturn_t gp2ap020a00f_thresh_event_handler(int irq, void *data) { struct iio_dev *indio_dev = data; struct gp2ap020a00f_data *priv = iio_priv(indio_dev); u8 op_reg_flags, d0_reg_buf[2]; unsigned int output_val, op_reg_val; int thresh_val_id, ret; /* Read interrupt flags */ ret = regmap_read(priv->regmap, GP2AP020A00F_OP_REG, &op_reg_val); if (ret < 0) goto done; op_reg_flags = op_reg_val & (GP2AP020A00F_FLAG_A | GP2AP020A00F_FLAG_P | GP2AP020A00F_PROX_DETECT); op_reg_val &= (~GP2AP020A00F_FLAG_A & ~GP2AP020A00F_FLAG_P & ~GP2AP020A00F_PROX_DETECT); /* Clear interrupt flags (if not in INTTYPE_PULSE mode) */ if (priv->cur_opmode != GP2AP020A00F_OPMODE_PROX_DETECT) { ret = regmap_write(priv->regmap, GP2AP020A00F_OP_REG, op_reg_val); if (ret < 0) goto done; } if (op_reg_flags & GP2AP020A00F_FLAG_A) { /* Check D0 register to assess if the lux mode * transition is required. */ ret = regmap_bulk_read(priv->regmap, GP2AP020A00F_D0_L_REG, d0_reg_buf, 2); if (ret < 0) goto done; output_val = le16_to_cpup((__le16 *)d0_reg_buf); if (gp2ap020a00f_adjust_lux_mode(priv, output_val)) goto done; gp2ap020a00f_output_to_lux(priv, &output_val); /* * We need to check output value to distinguish * between high and low ambient light threshold event. */ if (test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &priv->flags)) { thresh_val_id = GP2AP020A00F_THRESH_VAL_ID(GP2AP020A00F_TH_L_REG); if (output_val > priv->thresh_val[thresh_val_id]) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE( IIO_LIGHT, GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR, IIO_MOD_LIGHT_CLEAR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), iio_get_time_ns(indio_dev)); } if (test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &priv->flags)) { thresh_val_id = GP2AP020A00F_THRESH_VAL_ID(GP2AP020A00F_TL_L_REG); if (output_val < priv->thresh_val[thresh_val_id]) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE( IIO_LIGHT, GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR, IIO_MOD_LIGHT_CLEAR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), iio_get_time_ns(indio_dev)); } } if (priv->cur_opmode == GP2AP020A00F_OPMODE_READ_RAW_CLEAR || priv->cur_opmode == GP2AP020A00F_OPMODE_READ_RAW_IR || priv->cur_opmode == GP2AP020A00F_OPMODE_READ_RAW_PROXIMITY) { set_bit(GP2AP020A00F_FLAG_DATA_READY, &priv->flags); wake_up(&priv->data_ready_queue); goto done; } if (test_bit(GP2AP020A00F_FLAG_ALS_CLEAR_TRIGGER, &priv->flags) || test_bit(GP2AP020A00F_FLAG_ALS_IR_TRIGGER, &priv->flags) || test_bit(GP2AP020A00F_FLAG_PROX_TRIGGER, &priv->flags)) /* This fires off the trigger. */ irq_work_queue(&priv->work); done: return IRQ_HANDLED; } static irqreturn_t gp2ap020a00f_trigger_handler(int irq, void *data) { struct iio_poll_func *pf = data; struct iio_dev *indio_dev = pf->indio_dev; struct gp2ap020a00f_data *priv = iio_priv(indio_dev); size_t d_size = 0; int i, out_val, ret; iio_for_each_active_channel(indio_dev, i) { ret = regmap_bulk_read(priv->regmap, GP2AP020A00F_DATA_REG(i), &priv->buffer[d_size], 2); if (ret < 0) goto done; if (i == GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR || i == GP2AP020A00F_SCAN_MODE_LIGHT_IR) { out_val = le16_to_cpup((__le16 *)&priv->buffer[d_size]); gp2ap020a00f_output_to_lux(priv, &out_val); put_unaligned_le32(out_val, &priv->buffer[d_size]); d_size += 4; } else { d_size += 2; } } iio_push_to_buffers_with_timestamp(indio_dev, priv->buffer, pf->timestamp); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static u8 gp2ap020a00f_get_thresh_reg(const struct iio_chan_spec *chan, enum iio_event_direction event_dir) { switch (chan->type) { case IIO_PROXIMITY: if (event_dir == IIO_EV_DIR_RISING) return GP2AP020A00F_PH_L_REG; else return GP2AP020A00F_PL_L_REG; case IIO_LIGHT: if (event_dir == IIO_EV_DIR_RISING) return GP2AP020A00F_TH_L_REG; else return GP2AP020A00F_TL_L_REG; default: break; } return -EINVAL; } static int gp2ap020a00f_write_event_val(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct gp2ap020a00f_data *data = iio_priv(indio_dev); bool event_en = false; u8 thresh_val_id; u8 thresh_reg_l; int err = 0; mutex_lock(&data->lock); thresh_reg_l = gp2ap020a00f_get_thresh_reg(chan, dir); thresh_val_id = GP2AP020A00F_THRESH_VAL_ID(thresh_reg_l); if (thresh_val_id > GP2AP020A00F_THRESH_PH) { err = -EINVAL; goto error_unlock; } switch (thresh_reg_l) { case GP2AP020A00F_TH_L_REG: event_en = test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags); break; case GP2AP020A00F_TL_L_REG: event_en = test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags); break; case GP2AP020A00F_PH_L_REG: if (val == 0) { err = -EINVAL; goto error_unlock; } event_en = test_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags); break; case GP2AP020A00F_PL_L_REG: if (val == 0) { err = -EINVAL; goto error_unlock; } event_en = test_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags); break; } data->thresh_val[thresh_val_id] = val; err = gp2ap020a00f_write_event_threshold(data, thresh_val_id, event_en); error_unlock: mutex_unlock(&data->lock); return err; } static int gp2ap020a00f_read_event_val(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct gp2ap020a00f_data *data = iio_priv(indio_dev); u8 thresh_reg_l; int err = IIO_VAL_INT; mutex_lock(&data->lock); thresh_reg_l = gp2ap020a00f_get_thresh_reg(chan, dir); if (thresh_reg_l > GP2AP020A00F_PH_L_REG) { err = -EINVAL; goto error_unlock; } *val = data->thresh_val[GP2AP020A00F_THRESH_VAL_ID(thresh_reg_l)]; error_unlock: mutex_unlock(&data->lock); return err; } static int gp2ap020a00f_write_prox_event_config(struct iio_dev *indio_dev, int state) { struct gp2ap020a00f_data *data = iio_priv(indio_dev); enum gp2ap020a00f_cmd cmd_high_ev, cmd_low_ev; int err; cmd_high_ev = state ? GP2AP020A00F_CMD_PROX_HIGH_EV_EN : GP2AP020A00F_CMD_PROX_HIGH_EV_DIS; cmd_low_ev = state ? GP2AP020A00F_CMD_PROX_LOW_EV_EN : GP2AP020A00F_CMD_PROX_LOW_EV_DIS; /* * In order to enable proximity detection feature in the device * both high and low threshold registers have to be written * with different values, greater than zero. */ if (state) { if (data->thresh_val[GP2AP020A00F_THRESH_PL] == 0) return -EINVAL; if (data->thresh_val[GP2AP020A00F_THRESH_PH] == 0) return -EINVAL; } err = gp2ap020a00f_exec_cmd(data, cmd_high_ev); if (err < 0) return err; err = gp2ap020a00f_exec_cmd(data, cmd_low_ev); if (err < 0) return err; free_irq(data->client->irq, indio_dev); if (state) err = request_threaded_irq(data->client->irq, NULL, &gp2ap020a00f_prox_sensing_handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "gp2ap020a00f_prox_sensing", indio_dev); else { err = request_threaded_irq(data->client->irq, NULL, &gp2ap020a00f_thresh_event_handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "gp2ap020a00f_thresh_event", indio_dev); } return err; } static int gp2ap020a00f_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, bool state) { struct gp2ap020a00f_data *data = iio_priv(indio_dev); enum gp2ap020a00f_cmd cmd; int err; mutex_lock(&data->lock); switch (chan->type) { case IIO_PROXIMITY: err = gp2ap020a00f_write_prox_event_config(indio_dev, state); break; case IIO_LIGHT: if (dir == IIO_EV_DIR_RISING) { cmd = state ? GP2AP020A00F_CMD_ALS_HIGH_EV_EN : GP2AP020A00F_CMD_ALS_HIGH_EV_DIS; err = gp2ap020a00f_exec_cmd(data, cmd); } else { cmd = state ? GP2AP020A00F_CMD_ALS_LOW_EV_EN : GP2AP020A00F_CMD_ALS_LOW_EV_DIS; err = gp2ap020a00f_exec_cmd(data, cmd); } break; default: err = -EINVAL; } mutex_unlock(&data->lock); return err; } static int gp2ap020a00f_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct gp2ap020a00f_data *data = iio_priv(indio_dev); int event_en = 0; mutex_lock(&data->lock); switch (chan->type) { case IIO_PROXIMITY: if (dir == IIO_EV_DIR_RISING) event_en = test_bit(GP2AP020A00F_FLAG_PROX_RISING_EV, &data->flags); else event_en = test_bit(GP2AP020A00F_FLAG_PROX_FALLING_EV, &data->flags); break; case IIO_LIGHT: if (dir == IIO_EV_DIR_RISING) event_en = test_bit(GP2AP020A00F_FLAG_ALS_RISING_EV, &data->flags); else event_en = test_bit(GP2AP020A00F_FLAG_ALS_FALLING_EV, &data->flags); break; default: event_en = -EINVAL; break; } mutex_unlock(&data->lock); return event_en; } static int gp2ap020a00f_read_channel(struct gp2ap020a00f_data *data, struct iio_chan_spec const *chan, int *val) { enum gp2ap020a00f_cmd cmd; int err; switch (chan->scan_index) { case GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR: cmd = GP2AP020A00F_CMD_READ_RAW_CLEAR; break; case GP2AP020A00F_SCAN_MODE_LIGHT_IR: cmd = GP2AP020A00F_CMD_READ_RAW_IR; break; case GP2AP020A00F_SCAN_MODE_PROXIMITY: cmd = GP2AP020A00F_CMD_READ_RAW_PROXIMITY; break; default: return -EINVAL; } err = gp2ap020a00f_exec_cmd(data, cmd); if (err < 0) { dev_err(&data->client->dev, "gp2ap020a00f_exec_cmd failed\n"); goto error_ret; } err = gp2ap020a00f_read_output(data, chan->address, val); if (err < 0) dev_err(&data->client->dev, "gp2ap020a00f_read_output failed\n"); err = gp2ap020a00f_set_operation_mode(data, GP2AP020A00F_OPMODE_SHUTDOWN); if (err < 0) dev_err(&data->client->dev, "Failed to shut down the device.\n"); if (cmd == GP2AP020A00F_CMD_READ_RAW_CLEAR || cmd == GP2AP020A00F_CMD_READ_RAW_IR) gp2ap020a00f_output_to_lux(data, val); error_ret: return err; } static int gp2ap020a00f_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct gp2ap020a00f_data *data = iio_priv(indio_dev); int err = -EINVAL; if (mask == IIO_CHAN_INFO_RAW) { err = iio_device_claim_direct_mode(indio_dev); if (err) return err; err = gp2ap020a00f_read_channel(data, chan, val); iio_device_release_direct_mode(indio_dev); } return err < 0 ? err : IIO_VAL_INT; } static const struct iio_event_spec gp2ap020a00f_event_spec_light[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, }; static const struct iio_event_spec gp2ap020a00f_event_spec_prox[] = { { .type = IIO_EV_TYPE_ROC, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_ROC, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, }; static const struct iio_chan_spec gp2ap020a00f_channels[] = { { .type = IIO_LIGHT, .channel2 = IIO_MOD_LIGHT_CLEAR, .modified = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .scan_type = { .sign = 'u', .realbits = 24, .shift = 0, .storagebits = 32, .endianness = IIO_LE, }, .scan_index = GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR, .address = GP2AP020A00F_D0_L_REG, .event_spec = gp2ap020a00f_event_spec_light, .num_event_specs = ARRAY_SIZE(gp2ap020a00f_event_spec_light), }, { .type = IIO_LIGHT, .channel2 = IIO_MOD_LIGHT_IR, .modified = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .scan_type = { .sign = 'u', .realbits = 24, .shift = 0, .storagebits = 32, .endianness = IIO_LE, }, .scan_index = GP2AP020A00F_SCAN_MODE_LIGHT_IR, .address = GP2AP020A00F_D1_L_REG, }, { .type = IIO_PROXIMITY, .modified = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .scan_type = { .sign = 'u', .realbits = 16, .shift = 0, .storagebits = 16, .endianness = IIO_LE, }, .scan_index = GP2AP020A00F_SCAN_MODE_PROXIMITY, .address = GP2AP020A00F_D2_L_REG, .event_spec = gp2ap020a00f_event_spec_prox, .num_event_specs = ARRAY_SIZE(gp2ap020a00f_event_spec_prox), }, IIO_CHAN_SOFT_TIMESTAMP(GP2AP020A00F_CHAN_TIMESTAMP), }; static const struct iio_info gp2ap020a00f_info = { .read_raw = &gp2ap020a00f_read_raw, .read_event_value = &gp2ap020a00f_read_event_val, .read_event_config = &gp2ap020a00f_read_event_config, .write_event_value = &gp2ap020a00f_write_event_val, .write_event_config = &gp2ap020a00f_write_event_config, }; static int gp2ap020a00f_buffer_postenable(struct iio_dev *indio_dev) { struct gp2ap020a00f_data *data = iio_priv(indio_dev); int i, err = 0; mutex_lock(&data->lock); /* * Enable triggers according to the scan_mask. Enabling either * LIGHT_CLEAR or LIGHT_IR scan mode results in enabling ALS * module in the device, which generates samples in both D0 (clear) * and D1 (ir) registers. As the two registers are bound to the * two separate IIO channels they are treated in the driver logic * as if they were controlled independently. */ iio_for_each_active_channel(indio_dev, i) { switch (i) { case GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR: err = gp2ap020a00f_exec_cmd(data, GP2AP020A00F_CMD_TRIGGER_CLEAR_EN); break; case GP2AP020A00F_SCAN_MODE_LIGHT_IR: err = gp2ap020a00f_exec_cmd(data, GP2AP020A00F_CMD_TRIGGER_IR_EN); break; case GP2AP020A00F_SCAN_MODE_PROXIMITY: err = gp2ap020a00f_exec_cmd(data, GP2AP020A00F_CMD_TRIGGER_PROX_EN); break; } } if (err < 0) goto error_unlock; data->buffer = kmalloc(indio_dev->scan_bytes, GFP_KERNEL); if (!data->buffer) err = -ENOMEM; error_unlock: mutex_unlock(&data->lock); return err; } static int gp2ap020a00f_buffer_predisable(struct iio_dev *indio_dev) { struct gp2ap020a00f_data *data = iio_priv(indio_dev); int i, err = 0; mutex_lock(&data->lock); iio_for_each_active_channel(indio_dev, i) { switch (i) { case GP2AP020A00F_SCAN_MODE_LIGHT_CLEAR: err = gp2ap020a00f_exec_cmd(data, GP2AP020A00F_CMD_TRIGGER_CLEAR_DIS); break; case GP2AP020A00F_SCAN_MODE_LIGHT_IR: err = gp2ap020a00f_exec_cmd(data, GP2AP020A00F_CMD_TRIGGER_IR_DIS); break; case GP2AP020A00F_SCAN_MODE_PROXIMITY: err = gp2ap020a00f_exec_cmd(data, GP2AP020A00F_CMD_TRIGGER_PROX_DIS); break; } } if (err == 0) kfree(data->buffer); mutex_unlock(&data->lock); return err; } static const struct iio_buffer_setup_ops gp2ap020a00f_buffer_setup_ops = { .postenable = &gp2ap020a00f_buffer_postenable, .predisable = &gp2ap020a00f_buffer_predisable, }; static int gp2ap020a00f_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct gp2ap020a00f_data *data; struct iio_dev *indio_dev; struct regmap *regmap; int err; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); data->vled_reg = devm_regulator_get(&client->dev, "vled"); if (IS_ERR(data->vled_reg)) return PTR_ERR(data->vled_reg); err = regulator_enable(data->vled_reg); if (err) return err; regmap = devm_regmap_init_i2c(client, &gp2ap020a00f_regmap_config); if (IS_ERR(regmap)) { dev_err(&client->dev, "Regmap initialization failed.\n"); err = PTR_ERR(regmap); goto error_regulator_disable; } /* Initialize device registers */ err = regmap_bulk_write(regmap, GP2AP020A00F_OP_REG, gp2ap020a00f_reg_init_tab, ARRAY_SIZE(gp2ap020a00f_reg_init_tab)); if (err < 0) { dev_err(&client->dev, "Device initialization failed.\n"); goto error_regulator_disable; } i2c_set_clientdata(client, indio_dev); data->client = client; data->cur_opmode = GP2AP020A00F_OPMODE_SHUTDOWN; data->regmap = regmap; init_waitqueue_head(&data->data_ready_queue); mutex_init(&data->lock); indio_dev->channels = gp2ap020a00f_channels; indio_dev->num_channels = ARRAY_SIZE(gp2ap020a00f_channels); indio_dev->info = &gp2ap020a00f_info; indio_dev->name = id->name; indio_dev->modes = INDIO_DIRECT_MODE; /* Allocate buffer */ err = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, &gp2ap020a00f_trigger_handler, &gp2ap020a00f_buffer_setup_ops); if (err < 0) goto error_regulator_disable; /* Allocate trigger */ data->trig = devm_iio_trigger_alloc(&client->dev, "%s-trigger", indio_dev->name); if (data->trig == NULL) { err = -ENOMEM; dev_err(&indio_dev->dev, "Failed to allocate iio trigger.\n"); goto error_uninit_buffer; } /* This needs to be requested here for read_raw calls to work. */ err = request_threaded_irq(client->irq, NULL, &gp2ap020a00f_thresh_event_handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "gp2ap020a00f_als_event", indio_dev); if (err < 0) { dev_err(&client->dev, "Irq request failed.\n"); goto error_uninit_buffer; } init_irq_work(&data->work, gp2ap020a00f_iio_trigger_work); err = iio_trigger_register(data->trig); if (err < 0) { dev_err(&client->dev, "Failed to register iio trigger.\n"); goto error_free_irq; } err = iio_device_register(indio_dev); if (err < 0) goto error_trigger_unregister; return 0; error_trigger_unregister: iio_trigger_unregister(data->trig); error_free_irq: free_irq(client->irq, indio_dev); error_uninit_buffer: iio_triggered_buffer_cleanup(indio_dev); error_regulator_disable: regulator_disable(data->vled_reg); return err; } static void gp2ap020a00f_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct gp2ap020a00f_data *data = iio_priv(indio_dev); int err; err = gp2ap020a00f_set_operation_mode(data, GP2AP020A00F_OPMODE_SHUTDOWN); if (err < 0) dev_err(&indio_dev->dev, "Failed to power off the device.\n"); iio_device_unregister(indio_dev); iio_trigger_unregister(data->trig); free_irq(client->irq, indio_dev); iio_triggered_buffer_cleanup(indio_dev); regulator_disable(data->vled_reg); } static const struct i2c_device_id gp2ap020a00f_id[] = { { GP2A_I2C_NAME }, { } }; MODULE_DEVICE_TABLE(i2c, gp2ap020a00f_id); static const struct of_device_id gp2ap020a00f_of_match[] = { { .compatible = "sharp,gp2ap020a00f" }, { } }; MODULE_DEVICE_TABLE(of, gp2ap020a00f_of_match); static struct i2c_driver gp2ap020a00f_driver = { .driver = { .name = GP2A_I2C_NAME, .of_match_table = gp2ap020a00f_of_match, }, .probe = gp2ap020a00f_probe, .remove = gp2ap020a00f_remove, .id_table = gp2ap020a00f_id, }; module_i2c_driver(gp2ap020a00f_driver); MODULE_AUTHOR("Jacek Anaszewski "); MODULE_DESCRIPTION("Sharp GP2AP020A00F Proximity/ALS sensor driver"); MODULE_LICENSE("GPL v2");