// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2018-2023 Linaro Ltd. */ #include #include #include #include #include #include #include #include #include #include #include "gsi.h" #include "reg.h" #include "gsi_reg.h" #include "gsi_private.h" #include "gsi_trans.h" #include "ipa_gsi.h" #include "ipa_data.h" #include "ipa_version.h" /** * DOC: The IPA Generic Software Interface * * The generic software interface (GSI) is an integral component of the IPA, * providing a well-defined communication layer between the AP subsystem * and the IPA core. The modem uses the GSI layer as well. * * -------- --------- * | | | | * | AP +<---. .----+ Modem | * | +--. | | .->+ | * | | | | | | | | * -------- | | | | --------- * v | v | * --+-+---+-+-- * | GSI | * |-----------| * | | * | IPA | * | | * ------------- * * In the above diagram, the AP and Modem represent "execution environments" * (EEs), which are independent operating environments that use the IPA for * data transfer. * * Each EE uses a set of unidirectional GSI "channels," which allow transfer * of data to or from the IPA. A channel is implemented as a ring buffer, * with a DRAM-resident array of "transfer elements" (TREs) available to * describe transfers to or from other EEs through the IPA. A transfer * element can also contain an immediate command, requesting the IPA perform * actions other than data transfer. * * Each TRE refers to a block of data--also located in DRAM. After writing * one or more TREs to a channel, the writer (either the IPA or an EE) writes * a doorbell register to inform the receiving side how many elements have * been written. * * Each channel has a GSI "event ring" associated with it. An event ring * is implemented very much like a channel ring, but is always directed from * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel * events by adding an entry to the event ring associated with the channel. * The GSI then writes its doorbell for the event ring, causing the target * EE to be interrupted. Each entry in an event ring contains a pointer * to the channel TRE whose completion the event represents. * * Each TRE in a channel ring has a set of flags. One flag indicates whether * the completion of the transfer operation generates an entry (and possibly * an interrupt) in the channel's event ring. Other flags allow transfer * elements to be chained together, forming a single logical transaction. * TRE flags are used to control whether and when interrupts are generated * to signal completion of channel transfers. * * Elements in channel and event rings are completed (or consumed) strictly * in order. Completion of one entry implies the completion of all preceding * entries. A single completion interrupt can therefore communicate the * completion of many transfers. * * Note that all GSI registers are little-endian, which is the assumed * endianness of I/O space accesses. The accessor functions perform byte * swapping if needed (i.e., for a big endian CPU). */ /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ #define GSI_CMD_TIMEOUT 50 /* milliseconds */ #define GSI_CHANNEL_STOP_RETRIES 10 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10 #define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */ #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ /* An entry in an event ring */ struct gsi_event { __le64 xfer_ptr; __le16 len; u8 reserved1; u8 code; __le16 reserved2; u8 type; u8 chid; }; /** gsi_channel_scratch_gpi - GPI protocol scratch register * @max_outstanding_tre: * Defines the maximum number of TREs allowed in a single transaction * on a channel (in bytes). This determines the amount of prefetch * performed by the hardware. We configure this to equal the size of * the TLV FIFO for the channel. * @outstanding_threshold: * Defines the threshold (in bytes) determining when the sequencer * should update the channel doorbell. We configure this to equal * the size of two TREs. */ struct gsi_channel_scratch_gpi { u64 reserved1; u16 reserved2; u16 max_outstanding_tre; u16 reserved3; u16 outstanding_threshold; }; /** gsi_channel_scratch - channel scratch configuration area * * The exact interpretation of this register is protocol-specific. * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. */ union gsi_channel_scratch { struct gsi_channel_scratch_gpi gpi; struct { u32 word1; u32 word2; u32 word3; u32 word4; } data; }; /* Check things that can be validated at build time. */ static void gsi_validate_build(void) { /* This is used as a divisor */ BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); /* Code assumes the size of channel and event ring element are * the same (and fixed). Make sure the size of an event ring * element is what's expected. */ BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); /* Hardware requires a 2^n ring size. We ensure the number of * elements in an event ring is a power of 2 elsewhere; this * ensure the elements themselves meet the requirement. */ BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); } /* Return the channel id associated with a given channel */ static u32 gsi_channel_id(struct gsi_channel *channel) { return channel - &channel->gsi->channel[0]; } /* An initialized channel has a non-null GSI pointer */ static bool gsi_channel_initialized(struct gsi_channel *channel) { return !!channel->gsi; } /* Encode the channel protocol for the CH_C_CNTXT_0 register */ static u32 ch_c_cntxt_0_type_encode(enum ipa_version version, const struct reg *reg, enum gsi_channel_type type) { u32 val; val = reg_encode(reg, CHTYPE_PROTOCOL, type); if (version < IPA_VERSION_4_5) return val; type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL)); return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type); } /* Update the GSI IRQ type register with the cached value */ static void gsi_irq_type_update(struct gsi *gsi, u32 val) { const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK); gsi->type_enabled_bitmap = val; iowrite32(val, gsi->virt + reg_offset(reg)); } static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) { gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id); } static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) { gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id); } /* Event ring commands are performed one at a time. Their completion * is signaled by the event ring control GSI interrupt type, which is * only enabled when we issue an event ring command. Only the event * ring being operated on has this interrupt enabled. */ static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) { u32 val = BIT(evt_ring_id); const struct reg *reg; /* There's a small chance that a previous command completed * after the interrupt was disabled, so make sure we have no * pending interrupts before we enable them. */ reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR); iowrite32(~0, gsi->virt + reg_offset(reg)); reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); iowrite32(val, gsi->virt + reg_offset(reg)); gsi_irq_type_enable(gsi, GSI_EV_CTRL); } /* Disable event ring control interrupts */ static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) { const struct reg *reg; gsi_irq_type_disable(gsi, GSI_EV_CTRL); reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); iowrite32(0, gsi->virt + reg_offset(reg)); } /* Channel commands are performed one at a time. Their completion is * signaled by the channel control GSI interrupt type, which is only * enabled when we issue a channel command. Only the channel being * operated on has this interrupt enabled. */ static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) { u32 val = BIT(channel_id); const struct reg *reg; /* There's a small chance that a previous command completed * after the interrupt was disabled, so make sure we have no * pending interrupts before we enable them. */ reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR); iowrite32(~0, gsi->virt + reg_offset(reg)); reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); iowrite32(val, gsi->virt + reg_offset(reg)); gsi_irq_type_enable(gsi, GSI_CH_CTRL); } /* Disable channel control interrupts */ static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) { const struct reg *reg; gsi_irq_type_disable(gsi, GSI_CH_CTRL); reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); iowrite32(0, gsi->virt + reg_offset(reg)); } static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) { bool enable_ieob = !gsi->ieob_enabled_bitmap; const struct reg *reg; u32 val; gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); val = gsi->ieob_enabled_bitmap; iowrite32(val, gsi->virt + reg_offset(reg)); /* Enable the interrupt type if this is the first channel enabled */ if (enable_ieob) gsi_irq_type_enable(gsi, GSI_IEOB); } static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) { const struct reg *reg; u32 val; gsi->ieob_enabled_bitmap &= ~event_mask; /* Disable the interrupt type if this was the last enabled channel */ if (!gsi->ieob_enabled_bitmap) gsi_irq_type_disable(gsi, GSI_IEOB); reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); val = gsi->ieob_enabled_bitmap; iowrite32(val, gsi->virt + reg_offset(reg)); } static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) { gsi_irq_ieob_disable(gsi, BIT(evt_ring_id)); } /* Enable all GSI_interrupt types */ static void gsi_irq_enable(struct gsi *gsi) { const struct reg *reg; u32 val; /* Global interrupts include hardware error reports. Enable * that so we can at least report the error should it occur. */ reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); iowrite32(ERROR_INT, gsi->virt + reg_offset(reg)); gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE); /* General GSI interrupts are reported to all EEs; if they occur * they are unrecoverable (without reset). A breakpoint interrupt * also exists, but we don't support that. We want to be notified * of errors so we can report them, even if they can't be handled. */ reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); val = BUS_ERROR; val |= CMD_FIFO_OVRFLOW; val |= MCS_STACK_OVRFLOW; iowrite32(val, gsi->virt + reg_offset(reg)); gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL); } /* Disable all GSI interrupt types */ static void gsi_irq_disable(struct gsi *gsi) { const struct reg *reg; gsi_irq_type_update(gsi, 0); /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); iowrite32(0, gsi->virt + reg_offset(reg)); reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); iowrite32(0, gsi->virt + reg_offset(reg)); } /* Return the virtual address associated with a ring index */ void *gsi_ring_virt(struct gsi_ring *ring, u32 index) { /* Note: index *must* be used modulo the ring count here */ return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; } /* Return the 32-bit DMA address associated with a ring index */ static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) { return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE; } /* Return the ring index of a 32-bit ring offset */ static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) { return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; } /* Issue a GSI command by writing a value to a register, then wait for * completion to be signaled. Returns true if the command completes * or false if it times out. */ static bool gsi_command(struct gsi *gsi, u32 reg, u32 val) { unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT); struct completion *completion = &gsi->completion; reinit_completion(completion); iowrite32(val, gsi->virt + reg); return !!wait_for_completion_timeout(completion, timeout); } /* Return the hardware's notion of the current state of an event ring */ static enum gsi_evt_ring_state gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) { const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0); u32 val; val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id)); return reg_decode(reg, EV_CHSTATE, val); } /* Issue an event ring command and wait for it to complete */ static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, enum gsi_evt_cmd_opcode opcode) { struct device *dev = gsi->dev; const struct reg *reg; bool timeout; u32 val; /* Enable the completion interrupt for the command */ gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); reg = gsi_reg(gsi, EV_CH_CMD); val = reg_encode(reg, EV_CHID, evt_ring_id); val |= reg_encode(reg, EV_OPCODE, opcode); timeout = !gsi_command(gsi, reg_offset(reg), val); gsi_irq_ev_ctrl_disable(gsi); if (!timeout) return; dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id)); } /* Allocate an event ring in NOT_ALLOCATED state */ static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) { enum gsi_evt_ring_state state; /* Get initial event ring state */ state = gsi_evt_ring_state(gsi, evt_ring_id); if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", evt_ring_id, state); return -EINVAL; } gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); /* If successful the event ring state will have changed */ state = gsi_evt_ring_state(gsi, evt_ring_id); if (state == GSI_EVT_RING_STATE_ALLOCATED) return 0; dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", evt_ring_id, state); return -EIO; } /* Reset a GSI event ring in ALLOCATED or ERROR state. */ static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) { enum gsi_evt_ring_state state; state = gsi_evt_ring_state(gsi, evt_ring_id); if (state != GSI_EVT_RING_STATE_ALLOCATED && state != GSI_EVT_RING_STATE_ERROR) { dev_err(gsi->dev, "event ring %u bad state %u before reset\n", evt_ring_id, state); return; } gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); /* If successful the event ring state will have changed */ state = gsi_evt_ring_state(gsi, evt_ring_id); if (state == GSI_EVT_RING_STATE_ALLOCATED) return; dev_err(gsi->dev, "event ring %u bad state %u after reset\n", evt_ring_id, state); } /* Issue a hardware de-allocation request for an allocated event ring */ static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) { enum gsi_evt_ring_state state; state = gsi_evt_ring_state(gsi, evt_ring_id); if (state != GSI_EVT_RING_STATE_ALLOCATED) { dev_err(gsi->dev, "event ring %u state %u before dealloc\n", evt_ring_id, state); return; } gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); /* If successful the event ring state will have changed */ state = gsi_evt_ring_state(gsi, evt_ring_id); if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED) return; dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", evt_ring_id, state); } /* Fetch the current state of a channel from hardware */ static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) { const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0); u32 channel_id = gsi_channel_id(channel); struct gsi *gsi = channel->gsi; void __iomem *virt = gsi->virt; u32 val; reg = gsi_reg(gsi, CH_C_CNTXT_0); val = ioread32(virt + reg_n_offset(reg, channel_id)); return reg_decode(reg, CHSTATE, val); } /* Issue a channel command and wait for it to complete */ static void gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) { u32 channel_id = gsi_channel_id(channel); struct gsi *gsi = channel->gsi; struct device *dev = gsi->dev; const struct reg *reg; bool timeout; u32 val; /* Enable the completion interrupt for the command */ gsi_irq_ch_ctrl_enable(gsi, channel_id); reg = gsi_reg(gsi, CH_CMD); val = reg_encode(reg, CH_CHID, channel_id); val |= reg_encode(reg, CH_OPCODE, opcode); timeout = !gsi_command(gsi, reg_offset(reg), val); gsi_irq_ch_ctrl_disable(gsi); if (!timeout) return; dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", opcode, channel_id, gsi_channel_state(channel)); } /* Allocate GSI channel in NOT_ALLOCATED state */ static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; struct device *dev = gsi->dev; enum gsi_channel_state state; /* Get initial channel state */ state = gsi_channel_state(channel); if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { dev_err(dev, "channel %u bad state %u before alloc\n", channel_id, state); return -EINVAL; } gsi_channel_command(channel, GSI_CH_ALLOCATE); /* If successful the channel state will have changed */ state = gsi_channel_state(channel); if (state == GSI_CHANNEL_STATE_ALLOCATED) return 0; dev_err(dev, "channel %u bad state %u after alloc\n", channel_id, state); return -EIO; } /* Start an ALLOCATED channel */ static int gsi_channel_start_command(struct gsi_channel *channel) { struct device *dev = channel->gsi->dev; enum gsi_channel_state state; state = gsi_channel_state(channel); if (state != GSI_CHANNEL_STATE_ALLOCATED && state != GSI_CHANNEL_STATE_STOPPED) { dev_err(dev, "channel %u bad state %u before start\n", gsi_channel_id(channel), state); return -EINVAL; } gsi_channel_command(channel, GSI_CH_START); /* If successful the channel state will have changed */ state = gsi_channel_state(channel); if (state == GSI_CHANNEL_STATE_STARTED) return 0; dev_err(dev, "channel %u bad state %u after start\n", gsi_channel_id(channel), state); return -EIO; } /* Stop a GSI channel in STARTED state */ static int gsi_channel_stop_command(struct gsi_channel *channel) { struct device *dev = channel->gsi->dev; enum gsi_channel_state state; state = gsi_channel_state(channel); /* Channel could have entered STOPPED state since last call * if it timed out. If so, we're done. */ if (state == GSI_CHANNEL_STATE_STOPPED) return 0; if (state != GSI_CHANNEL_STATE_STARTED && state != GSI_CHANNEL_STATE_STOP_IN_PROC) { dev_err(dev, "channel %u bad state %u before stop\n", gsi_channel_id(channel), state); return -EINVAL; } gsi_channel_command(channel, GSI_CH_STOP); /* If successful the channel state will have changed */ state = gsi_channel_state(channel); if (state == GSI_CHANNEL_STATE_STOPPED) return 0; /* We may have to try again if stop is in progress */ if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) return -EAGAIN; dev_err(dev, "channel %u bad state %u after stop\n", gsi_channel_id(channel), state); return -EIO; } /* Reset a GSI channel in ALLOCATED or ERROR state. */ static void gsi_channel_reset_command(struct gsi_channel *channel) { struct device *dev = channel->gsi->dev; enum gsi_channel_state state; /* A short delay is required before a RESET command */ usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); state = gsi_channel_state(channel); if (state != GSI_CHANNEL_STATE_STOPPED && state != GSI_CHANNEL_STATE_ERROR) { /* No need to reset a channel already in ALLOCATED state */ if (state != GSI_CHANNEL_STATE_ALLOCATED) dev_err(dev, "channel %u bad state %u before reset\n", gsi_channel_id(channel), state); return; } gsi_channel_command(channel, GSI_CH_RESET); /* If successful the channel state will have changed */ state = gsi_channel_state(channel); if (state != GSI_CHANNEL_STATE_ALLOCATED) dev_err(dev, "channel %u bad state %u after reset\n", gsi_channel_id(channel), state); } /* Deallocate an ALLOCATED GSI channel */ static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; struct device *dev = gsi->dev; enum gsi_channel_state state; state = gsi_channel_state(channel); if (state != GSI_CHANNEL_STATE_ALLOCATED) { dev_err(dev, "channel %u bad state %u before dealloc\n", channel_id, state); return; } gsi_channel_command(channel, GSI_CH_DE_ALLOC); /* If successful the channel state will have changed */ state = gsi_channel_state(channel); if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) dev_err(dev, "channel %u bad state %u after dealloc\n", channel_id, state); } /* Ring an event ring doorbell, reporting the last entry processed by the AP. * The index argument (modulo the ring count) is the first unfilled entry, so * we supply one less than that with the doorbell. Update the event ring * index field with the value provided. */ static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) { const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0); struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; u32 val; ring->index = index; /* Next unused entry */ /* Note: index *must* be used modulo the ring count here */ val = gsi_ring_addr(ring, (index - 1) % ring->count); iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); } /* Program an event ring for use */ static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) { struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; struct gsi_ring *ring = &evt_ring->ring; const struct reg *reg; u32 val; reg = gsi_reg(gsi, EV_CH_E_CNTXT_0); /* We program all event rings as GPI type/protocol */ val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI); /* EV_EE field is 0 (GSI_EE_AP) */ val |= reg_bit(reg, EV_INTYPE); val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE); iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); reg = gsi_reg(gsi, EV_CH_E_CNTXT_1); val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE); iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); /* The context 2 and 3 registers store the low-order and * high-order 32 bits of the address of the event ring, * respectively. */ reg = gsi_reg(gsi, EV_CH_E_CNTXT_2); val = lower_32_bits(ring->addr); iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); reg = gsi_reg(gsi, EV_CH_E_CNTXT_3); val = upper_32_bits(ring->addr); iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); /* Enable interrupt moderation by setting the moderation delay */ reg = gsi_reg(gsi, EV_CH_E_CNTXT_8); val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT); val |= reg_encode(reg, EV_MODC, 1); /* comes from channel */ /* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */ iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id)); /* No MSI write data, and MSI high and low address is 0 */ reg = gsi_reg(gsi, EV_CH_E_CNTXT_9); iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); reg = gsi_reg(gsi, EV_CH_E_CNTXT_10); iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); reg = gsi_reg(gsi, EV_CH_E_CNTXT_11); iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); /* We don't need to get event read pointer updates */ reg = gsi_reg(gsi, EV_CH_E_CNTXT_12); iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); reg = gsi_reg(gsi, EV_CH_E_CNTXT_13); iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id)); /* Finally, tell the hardware our "last processed" event (arbitrary) */ gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index); } /* Find the transaction whose completion indicates a channel is quiesced */ static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) { struct gsi_trans_info *trans_info = &channel->trans_info; u32 pending_id = trans_info->pending_id; struct gsi_trans *trans; u16 trans_id; if (channel->toward_ipa && pending_id != trans_info->free_id) { /* There is a small chance a TX transaction got allocated * just before we disabled transmits, so check for that. * The last allocated, committed, or pending transaction * precedes the first free transaction. */ trans_id = trans_info->free_id - 1; } else if (trans_info->polled_id != pending_id) { /* Otherwise (TX or RX) we want to wait for anything that * has completed, or has been polled but not released yet. * * The last completed or polled transaction precedes the * first pending transaction. */ trans_id = pending_id - 1; } else { return NULL; } /* Caller will wait for this, so take a reference */ trans = &trans_info->trans[trans_id % channel->tre_count]; refcount_inc(&trans->refcount); return trans; } /* Wait for transaction activity on a channel to complete */ static void gsi_channel_trans_quiesce(struct gsi_channel *channel) { struct gsi_trans *trans; /* Get the last transaction, and wait for it to complete */ trans = gsi_channel_trans_last(channel); if (trans) { wait_for_completion(&trans->completion); gsi_trans_free(trans); } } /* Program a channel for use; there is no gsi_channel_deprogram() */ static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) { size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; u32 channel_id = gsi_channel_id(channel); union gsi_channel_scratch scr = { }; struct gsi_channel_scratch_gpi *gpi; struct gsi *gsi = channel->gsi; const struct reg *reg; u32 wrr_weight = 0; u32 offset; u32 val; reg = gsi_reg(gsi, CH_C_CNTXT_0); /* We program all channels as GPI type/protocol */ val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI); if (channel->toward_ipa) val |= reg_bit(reg, CHTYPE_DIR); val |= reg_encode(reg, ERINDEX, channel->evt_ring_id); val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE); iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); reg = gsi_reg(gsi, CH_C_CNTXT_1); val = reg_encode(reg, CH_R_LENGTH, size); iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); /* The context 2 and 3 registers store the low-order and * high-order 32 bits of the address of the channel ring, * respectively. */ reg = gsi_reg(gsi, CH_C_CNTXT_2); val = lower_32_bits(channel->tre_ring.addr); iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); reg = gsi_reg(gsi, CH_C_CNTXT_3); val = upper_32_bits(channel->tre_ring.addr); iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); reg = gsi_reg(gsi, CH_C_QOS); /* Command channel gets low weighted round-robin priority */ if (channel->command) wrr_weight = reg_field_max(reg, WRR_WEIGHT); val = reg_encode(reg, WRR_WEIGHT, wrr_weight); /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ /* No need to use the doorbell engine starting at IPA v4.0 */ if (gsi->version < IPA_VERSION_4_0 && doorbell) val |= reg_bit(reg, USE_DB_ENG); /* v4.0 introduces an escape buffer for prefetch. We use it * on all but the AP command channel. */ if (gsi->version >= IPA_VERSION_4_0 && !channel->command) { /* If not otherwise set, prefetch buffers are used */ if (gsi->version < IPA_VERSION_4_5) val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY); else val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY); } /* All channels set DB_IN_BYTES */ if (gsi->version >= IPA_VERSION_4_9) val |= reg_bit(reg, DB_IN_BYTES); iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); /* Now update the scratch registers for GPI protocol */ gpi = &scr.gpi; gpi->max_outstanding_tre = channel->trans_tre_max * GSI_RING_ELEMENT_SIZE; gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; reg = gsi_reg(gsi, CH_C_SCRATCH_0); val = scr.data.word1; iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); reg = gsi_reg(gsi, CH_C_SCRATCH_1); val = scr.data.word2; iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); reg = gsi_reg(gsi, CH_C_SCRATCH_2); val = scr.data.word3; iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); /* We must preserve the upper 16 bits of the last scratch register. * The next sequence assumes those bits remain unchanged between the * read and the write. */ reg = gsi_reg(gsi, CH_C_SCRATCH_3); offset = reg_n_offset(reg, channel_id); val = ioread32(gsi->virt + offset); val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); iowrite32(val, gsi->virt + offset); /* All done! */ } static int __gsi_channel_start(struct gsi_channel *channel, bool resume) { struct gsi *gsi = channel->gsi; int ret; /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ if (resume && gsi->version < IPA_VERSION_4_0) return 0; mutex_lock(&gsi->mutex); ret = gsi_channel_start_command(channel); mutex_unlock(&gsi->mutex); return ret; } /* Start an allocated GSI channel */ int gsi_channel_start(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; int ret; /* Enable NAPI and the completion interrupt */ napi_enable(&channel->napi); gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id); ret = __gsi_channel_start(channel, false); if (ret) { gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); napi_disable(&channel->napi); } return ret; } static int gsi_channel_stop_retry(struct gsi_channel *channel) { u32 retries = GSI_CHANNEL_STOP_RETRIES; int ret; do { ret = gsi_channel_stop_command(channel); if (ret != -EAGAIN) break; usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC); } while (retries--); return ret; } static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend) { struct gsi *gsi = channel->gsi; int ret; /* Wait for any underway transactions to complete before stopping. */ gsi_channel_trans_quiesce(channel); /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ if (suspend && gsi->version < IPA_VERSION_4_0) return 0; mutex_lock(&gsi->mutex); ret = gsi_channel_stop_retry(channel); mutex_unlock(&gsi->mutex); return ret; } /* Stop a started channel */ int gsi_channel_stop(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; int ret; ret = __gsi_channel_stop(channel, false); if (ret) return ret; /* Disable the completion interrupt and NAPI if successful */ gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); napi_disable(&channel->napi); return 0; } /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) { struct gsi_channel *channel = &gsi->channel[channel_id]; mutex_lock(&gsi->mutex); gsi_channel_reset_command(channel); /* Due to a hardware quirk we may need to reset RX channels twice. */ if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa) gsi_channel_reset_command(channel); /* Hardware assumes this is 0 following reset */ channel->tre_ring.index = 0; gsi_channel_program(channel, doorbell); gsi_channel_trans_cancel_pending(channel); mutex_unlock(&gsi->mutex); } /* Stop a started channel for suspend */ int gsi_channel_suspend(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; int ret; ret = __gsi_channel_stop(channel, true); if (ret) return ret; /* Ensure NAPI polling has finished. */ napi_synchronize(&channel->napi); return 0; } /* Resume a suspended channel (starting if stopped) */ int gsi_channel_resume(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; return __gsi_channel_start(channel, true); } /* Prevent all GSI interrupts while suspended */ void gsi_suspend(struct gsi *gsi) { disable_irq(gsi->irq); } /* Allow all GSI interrupts again when resuming */ void gsi_resume(struct gsi *gsi) { enable_irq(gsi->irq); } void gsi_trans_tx_committed(struct gsi_trans *trans) { struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; channel->trans_count++; channel->byte_count += trans->len; trans->trans_count = channel->trans_count; trans->byte_count = channel->byte_count; } void gsi_trans_tx_queued(struct gsi_trans *trans) { u32 channel_id = trans->channel_id; struct gsi *gsi = trans->gsi; struct gsi_channel *channel; u32 trans_count; u32 byte_count; channel = &gsi->channel[channel_id]; byte_count = channel->byte_count - channel->queued_byte_count; trans_count = channel->trans_count - channel->queued_trans_count; channel->queued_byte_count = channel->byte_count; channel->queued_trans_count = channel->trans_count; ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count); } /** * gsi_trans_tx_completed() - Report completed TX transactions * @trans: TX channel transaction that has completed * * Report that a transaction on a TX channel has completed. At the time a * transaction is committed, we record *in the transaction* its channel's * committed transaction and byte counts. Transactions are completed in * order, and the difference between the channel's byte/transaction count * when the transaction was committed and when it completes tells us * exactly how much data has been transferred while the transaction was * pending. * * We report this information to the network stack, which uses it to manage * the rate at which data is sent to hardware. */ static void gsi_trans_tx_completed(struct gsi_trans *trans) { u32 channel_id = trans->channel_id; struct gsi *gsi = trans->gsi; struct gsi_channel *channel; u32 trans_count; u32 byte_count; channel = &gsi->channel[channel_id]; trans_count = trans->trans_count - channel->compl_trans_count; byte_count = trans->byte_count - channel->compl_byte_count; channel->compl_trans_count += trans_count; channel->compl_byte_count += byte_count; ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count); } /* Channel control interrupt handler */ static void gsi_isr_chan_ctrl(struct gsi *gsi) { const struct reg *reg; u32 channel_mask; reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ); channel_mask = ioread32(gsi->virt + reg_offset(reg)); reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR); iowrite32(channel_mask, gsi->virt + reg_offset(reg)); while (channel_mask) { u32 channel_id = __ffs(channel_mask); channel_mask ^= BIT(channel_id); complete(&gsi->completion); } } /* Event ring control interrupt handler */ static void gsi_isr_evt_ctrl(struct gsi *gsi) { const struct reg *reg; u32 event_mask; reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ); event_mask = ioread32(gsi->virt + reg_offset(reg)); reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR); iowrite32(event_mask, gsi->virt + reg_offset(reg)); while (event_mask) { u32 evt_ring_id = __ffs(event_mask); event_mask ^= BIT(evt_ring_id); complete(&gsi->completion); } } /* Global channel error interrupt handler */ static void gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) { if (code == GSI_OUT_OF_RESOURCES) { dev_err(gsi->dev, "channel %u out of resources\n", channel_id); complete(&gsi->completion); return; } /* Report, but otherwise ignore all other error codes */ dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", channel_id, err_ee, code); } /* Global event error interrupt handler */ static void gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) { if (code == GSI_OUT_OF_RESOURCES) { struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; u32 channel_id = gsi_channel_id(evt_ring->channel); complete(&gsi->completion); dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", channel_id); return; } /* Report, but otherwise ignore all other error codes */ dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", evt_ring_id, err_ee, code); } /* Global error interrupt handler */ static void gsi_isr_glob_err(struct gsi *gsi) { const struct reg *log_reg; const struct reg *clr_reg; enum gsi_err_type type; enum gsi_err_code code; u32 offset; u32 which; u32 val; u32 ee; /* Get the logged error, then reinitialize the log */ log_reg = gsi_reg(gsi, ERROR_LOG); offset = reg_offset(log_reg); val = ioread32(gsi->virt + offset); iowrite32(0, gsi->virt + offset); clr_reg = gsi_reg(gsi, ERROR_LOG_CLR); iowrite32(~0, gsi->virt + reg_offset(clr_reg)); /* Parse the error value */ ee = reg_decode(log_reg, ERR_EE, val); type = reg_decode(log_reg, ERR_TYPE, val); which = reg_decode(log_reg, ERR_VIRT_IDX, val); code = reg_decode(log_reg, ERR_CODE, val); if (type == GSI_ERR_TYPE_CHAN) gsi_isr_glob_chan_err(gsi, ee, which, code); else if (type == GSI_ERR_TYPE_EVT) gsi_isr_glob_evt_err(gsi, ee, which, code); else /* type GSI_ERR_TYPE_GLOB should be fatal */ dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); } /* Generic EE interrupt handler */ static void gsi_isr_gp_int1(struct gsi *gsi) { const struct reg *reg; u32 result; u32 val; /* This interrupt is used to handle completions of GENERIC GSI * commands. We use these to allocate and halt channels on the * modem's behalf due to a hardware quirk on IPA v4.2. The modem * "owns" channels even when the AP allocates them, and have no * way of knowing whether a modem channel's state has been changed. * * We also use GENERIC commands to enable/disable channel flow * control for IPA v4.2+. * * It is recommended that we halt the modem channels we allocated * when shutting down, but it's possible the channel isn't running * at the time we issue the HALT command. We'll get an error in * that case, but it's harmless (the channel is already halted). * Similarly, we could get an error back when updating flow control * on a channel because it's not in the proper state. * * In either case, we silently ignore a INCORRECT_CHANNEL_STATE * error if we receive it. */ reg = gsi_reg(gsi, CNTXT_SCRATCH_0); val = ioread32(gsi->virt + reg_offset(reg)); result = reg_decode(reg, GENERIC_EE_RESULT, val); switch (result) { case GENERIC_EE_SUCCESS: case GENERIC_EE_INCORRECT_CHANNEL_STATE: gsi->result = 0; break; case GENERIC_EE_RETRY: gsi->result = -EAGAIN; break; default: dev_err(gsi->dev, "global INT1 generic result %u\n", result); gsi->result = -EIO; break; } complete(&gsi->completion); } /* Inter-EE interrupt handler */ static void gsi_isr_glob_ee(struct gsi *gsi) { const struct reg *reg; u32 val; reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS); val = ioread32(gsi->virt + reg_offset(reg)); if (val & ERROR_INT) gsi_isr_glob_err(gsi); reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR); iowrite32(val, gsi->virt + reg_offset(reg)); val &= ~ERROR_INT; if (val & GP_INT1) { val ^= GP_INT1; gsi_isr_gp_int1(gsi); } if (val) dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); } /* I/O completion interrupt event */ static void gsi_isr_ieob(struct gsi *gsi) { const struct reg *reg; u32 event_mask; reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ); event_mask = ioread32(gsi->virt + reg_offset(reg)); gsi_irq_ieob_disable(gsi, event_mask); reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR); iowrite32(event_mask, gsi->virt + reg_offset(reg)); while (event_mask) { u32 evt_ring_id = __ffs(event_mask); event_mask ^= BIT(evt_ring_id); napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); } } /* General event interrupts represent serious problems, so report them */ static void gsi_isr_general(struct gsi *gsi) { struct device *dev = gsi->dev; const struct reg *reg; u32 val; reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS); val = ioread32(gsi->virt + reg_offset(reg)); reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR); iowrite32(val, gsi->virt + reg_offset(reg)); dev_err(dev, "unexpected general interrupt 0x%08x\n", val); } /** * gsi_isr() - Top level GSI interrupt service routine * @irq: Interrupt number (ignored) * @dev_id: GSI pointer supplied to request_irq() * * This is the main handler function registered for the GSI IRQ. Each type * of interrupt has a separate handler function that is called from here. */ static irqreturn_t gsi_isr(int irq, void *dev_id) { struct gsi *gsi = dev_id; const struct reg *reg; u32 intr_mask; u32 cnt = 0; u32 offset; reg = gsi_reg(gsi, CNTXT_TYPE_IRQ); offset = reg_offset(reg); /* enum gsi_irq_type_id defines GSI interrupt types */ while ((intr_mask = ioread32(gsi->virt + offset))) { /* intr_mask contains bitmask of pending GSI interrupts */ do { u32 gsi_intr = BIT(__ffs(intr_mask)); intr_mask ^= gsi_intr; /* Note: the IRQ condition for each type is cleared * when the type-specific register is updated. */ switch (gsi_intr) { case GSI_CH_CTRL: gsi_isr_chan_ctrl(gsi); break; case GSI_EV_CTRL: gsi_isr_evt_ctrl(gsi); break; case GSI_GLOB_EE: gsi_isr_glob_ee(gsi); break; case GSI_IEOB: gsi_isr_ieob(gsi); break; case GSI_GENERAL: gsi_isr_general(gsi); break; default: dev_err(gsi->dev, "unrecognized interrupt type 0x%08x\n", gsi_intr); break; } } while (intr_mask); if (++cnt > GSI_ISR_MAX_ITER) { dev_err(gsi->dev, "interrupt flood\n"); break; } } return IRQ_HANDLED; } /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */ static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) { int ret; ret = platform_get_irq_byname(pdev, "gsi"); if (ret <= 0) return ret ? : -EINVAL; gsi->irq = ret; return 0; } /* Return the transaction associated with a transfer completion event */ static struct gsi_trans * gsi_event_trans(struct gsi *gsi, struct gsi_event *event) { u32 channel_id = event->chid; struct gsi_channel *channel; struct gsi_trans *trans; u32 tre_offset; u32 tre_index; channel = &gsi->channel[channel_id]; if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id)) return NULL; /* Event xfer_ptr records the TRE it's associated with */ tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr)); tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); trans = gsi_channel_trans_mapped(channel, tre_index); if (WARN(!trans, "channel %u event with no transaction\n", channel_id)) return NULL; return trans; } /** * gsi_evt_ring_update() - Update transaction state from hardware * @gsi: GSI pointer * @evt_ring_id: Event ring ID * @index: Event index in ring reported by hardware * * Events for RX channels contain the actual number of bytes received into * the buffer. Every event has a transaction associated with it, and here * we update transactions to record their actual received lengths. * * When an event for a TX channel arrives we use information in the * transaction to report the number of requests and bytes that have * been transferred. * * This function is called whenever we learn that the GSI hardware has filled * new events since the last time we checked. The ring's index field tells * the first entry in need of processing. The index provided is the * first *unfilled* event in the ring (following the last filled one). * * Events are sequential within the event ring, and transactions are * sequential within the transaction array. * * Note that @index always refers to an element *within* the event ring. */ static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index) { struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; struct gsi_ring *ring = &evt_ring->ring; struct gsi_event *event_done; struct gsi_event *event; u32 event_avail; u32 old_index; /* Starting with the oldest un-processed event, determine which * transaction (and which channel) is associated with the event. * For RX channels, update each completed transaction with the * number of bytes that were actually received. For TX channels * associated with a network device, report to the network stack * the number of transfers and bytes this completion represents. */ old_index = ring->index; event = gsi_ring_virt(ring, old_index); /* Compute the number of events to process before we wrap, * and determine when we'll be done processing events. */ event_avail = ring->count - old_index % ring->count; event_done = gsi_ring_virt(ring, index); do { struct gsi_trans *trans; trans = gsi_event_trans(gsi, event); if (!trans) return; if (trans->direction == DMA_FROM_DEVICE) trans->len = __le16_to_cpu(event->len); else gsi_trans_tx_completed(trans); gsi_trans_move_complete(trans); /* Move on to the next event and transaction */ if (--event_avail) event++; else event = gsi_ring_virt(ring, 0); } while (event != event_done); /* Tell the hardware we've handled these events */ gsi_evt_ring_doorbell(gsi, evt_ring_id, index); } /* Initialize a ring, including allocating DMA memory for its entries */ static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) { u32 size = count * GSI_RING_ELEMENT_SIZE; struct device *dev = gsi->dev; dma_addr_t addr; /* Hardware requires a 2^n ring size, with alignment equal to size. * The DMA address returned by dma_alloc_coherent() is guaranteed to * be a power-of-2 number of pages, which satisfies the requirement. */ ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); if (!ring->virt) return -ENOMEM; ring->addr = addr; ring->count = count; ring->index = 0; return 0; } /* Free a previously-allocated ring */ static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) { size_t size = ring->count * GSI_RING_ELEMENT_SIZE; dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); } /* Allocate an available event ring id */ static int gsi_evt_ring_id_alloc(struct gsi *gsi) { u32 evt_ring_id; if (gsi->event_bitmap == ~0U) { dev_err(gsi->dev, "event rings exhausted\n"); return -ENOSPC; } evt_ring_id = ffz(gsi->event_bitmap); gsi->event_bitmap |= BIT(evt_ring_id); return (int)evt_ring_id; } /* Free a previously-allocated event ring id */ static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) { gsi->event_bitmap &= ~BIT(evt_ring_id); } /* Ring a channel doorbell, reporting the first un-filled entry */ void gsi_channel_doorbell(struct gsi_channel *channel) { struct gsi_ring *tre_ring = &channel->tre_ring; u32 channel_id = gsi_channel_id(channel); struct gsi *gsi = channel->gsi; const struct reg *reg; u32 val; reg = gsi_reg(gsi, CH_C_DOORBELL_0); /* Note: index *must* be used modulo the ring count here */ val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id)); } /* Consult hardware, move newly completed transactions to completed state */ void gsi_channel_update(struct gsi_channel *channel) { u32 evt_ring_id = channel->evt_ring_id; struct gsi *gsi = channel->gsi; struct gsi_evt_ring *evt_ring; struct gsi_trans *trans; struct gsi_ring *ring; const struct reg *reg; u32 offset; u32 index; evt_ring = &gsi->evt_ring[evt_ring_id]; ring = &evt_ring->ring; /* See if there's anything new to process; if not, we're done. Note * that index always refers to an entry *within* the event ring. */ reg = gsi_reg(gsi, EV_CH_E_CNTXT_4); offset = reg_n_offset(reg, evt_ring_id); index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); if (index == ring->index % ring->count) return; /* Get the transaction for the latest completed event. */ trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1)); if (!trans) return; /* For RX channels, update each completed transaction with the number * of bytes that were actually received. For TX channels, report * the number of transactions and bytes this completion represents * up the network stack. */ gsi_evt_ring_update(gsi, evt_ring_id, index); } /** * gsi_channel_poll_one() - Return a single completed transaction on a channel * @channel: Channel to be polled * * Return: Transaction pointer, or null if none are available * * This function returns the first of a channel's completed transactions. * If no transactions are in completed state, the hardware is consulted to * determine whether any new transactions have completed. If so, they're * moved to completed state and the first such transaction is returned. * If there are no more completed transactions, a null pointer is returned. */ static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) { struct gsi_trans *trans; /* Get the first completed transaction */ trans = gsi_channel_trans_complete(channel); if (trans) gsi_trans_move_polled(trans); return trans; } /** * gsi_channel_poll() - NAPI poll function for a channel * @napi: NAPI structure for the channel * @budget: Budget supplied by NAPI core * * Return: Number of items polled (<= budget) * * Single transactions completed by hardware are polled until either * the budget is exhausted, or there are no more. Each transaction * polled is passed to gsi_trans_complete(), to perform remaining * completion processing and retire/free the transaction. */ static int gsi_channel_poll(struct napi_struct *napi, int budget) { struct gsi_channel *channel; int count; channel = container_of(napi, struct gsi_channel, napi); for (count = 0; count < budget; count++) { struct gsi_trans *trans; trans = gsi_channel_poll_one(channel); if (!trans) break; gsi_trans_complete(trans); } if (count < budget && napi_complete(napi)) gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id); return count; } /* The event bitmap represents which event ids are available for allocation. * Set bits are not available, clear bits can be used. This function * initializes the map so all events supported by the hardware are available, * then precludes any reserved events from being allocated. */ static u32 gsi_event_bitmap_init(u32 evt_ring_max) { u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); return event_bitmap; } /* Setup function for a single channel */ static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; u32 evt_ring_id = channel->evt_ring_id; int ret; if (!gsi_channel_initialized(channel)) return 0; ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); if (ret) return ret; gsi_evt_ring_program(gsi, evt_ring_id); ret = gsi_channel_alloc_command(gsi, channel_id); if (ret) goto err_evt_ring_de_alloc; gsi_channel_program(channel, true); if (channel->toward_ipa) netif_napi_add_tx(&gsi->dummy_dev, &channel->napi, gsi_channel_poll); else netif_napi_add(&gsi->dummy_dev, &channel->napi, gsi_channel_poll); return 0; err_evt_ring_de_alloc: /* We've done nothing with the event ring yet so don't reset */ gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); return ret; } /* Inverse of gsi_channel_setup_one() */ static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; u32 evt_ring_id = channel->evt_ring_id; if (!gsi_channel_initialized(channel)) return; netif_napi_del(&channel->napi); gsi_channel_de_alloc_command(gsi, channel_id); gsi_evt_ring_reset_command(gsi, evt_ring_id); gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); } /* We use generic commands only to operate on modem channels. We don't have * the ability to determine channel state for a modem channel, so we simply * issue the command and wait for it to complete. */ static int gsi_generic_command(struct gsi *gsi, u32 channel_id, enum gsi_generic_cmd_opcode opcode, u8 params) { const struct reg *reg; bool timeout; u32 offset; u32 val; /* The error global interrupt type is always enabled (until we tear * down), so we will keep it enabled. * * A generic EE command completes with a GSI global interrupt of * type GP_INT1. We only perform one generic command at a time * (to allocate, halt, or enable/disable flow control on a modem * channel), and only from this function. So we enable the GP_INT1 * IRQ type here, and disable it again after the command completes. */ reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); val = ERROR_INT | GP_INT1; iowrite32(val, gsi->virt + reg_offset(reg)); /* First zero the result code field */ reg = gsi_reg(gsi, CNTXT_SCRATCH_0); offset = reg_offset(reg); val = ioread32(gsi->virt + offset); val &= ~reg_fmask(reg, GENERIC_EE_RESULT); iowrite32(val, gsi->virt + offset); /* Now issue the command */ reg = gsi_reg(gsi, GENERIC_CMD); val = reg_encode(reg, GENERIC_OPCODE, opcode); val |= reg_encode(reg, GENERIC_CHID, channel_id); val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM); if (gsi->version >= IPA_VERSION_4_11) val |= reg_encode(reg, GENERIC_PARAMS, params); timeout = !gsi_command(gsi, reg_offset(reg), val); /* Disable the GP_INT1 IRQ type again */ reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); iowrite32(ERROR_INT, gsi->virt + reg_offset(reg)); if (!timeout) return gsi->result; dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", opcode, channel_id); return -ETIMEDOUT; } static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) { return gsi_generic_command(gsi, channel_id, GSI_GENERIC_ALLOCATE_CHANNEL, 0); } static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) { u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; int ret; do ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL, 0); while (ret == -EAGAIN && retries--); if (ret) dev_err(gsi->dev, "error %d halting modem channel %u\n", ret, channel_id); } /* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */ void gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable) { u32 retries = 0; u32 command; int ret; command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL : GSI_GENERIC_DISABLE_FLOW_CONTROL; /* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable * is underway. In this case we need to retry the command. */ if (!enable && gsi->version >= IPA_VERSION_4_11) retries = GSI_CHANNEL_MODEM_FLOW_RETRIES; do ret = gsi_generic_command(gsi, channel_id, command, 0); while (ret == -EAGAIN && retries--); if (ret) dev_err(gsi->dev, "error %d %sabling mode channel %u flow control\n", ret, enable ? "en" : "dis", channel_id); } /* Setup function for channels */ static int gsi_channel_setup(struct gsi *gsi) { u32 channel_id = 0; u32 mask; int ret; gsi_irq_enable(gsi); mutex_lock(&gsi->mutex); do { ret = gsi_channel_setup_one(gsi, channel_id); if (ret) goto err_unwind; } while (++channel_id < gsi->channel_count); /* Make sure no channels were defined that hardware does not support */ while (channel_id < GSI_CHANNEL_COUNT_MAX) { struct gsi_channel *channel = &gsi->channel[channel_id++]; if (!gsi_channel_initialized(channel)) continue; ret = -EINVAL; dev_err(gsi->dev, "channel %u not supported by hardware\n", channel_id - 1); channel_id = gsi->channel_count; goto err_unwind; } /* Allocate modem channels if necessary */ mask = gsi->modem_channel_bitmap; while (mask) { u32 modem_channel_id = __ffs(mask); ret = gsi_modem_channel_alloc(gsi, modem_channel_id); if (ret) goto err_unwind_modem; /* Clear bit from mask only after success (for unwind) */ mask ^= BIT(modem_channel_id); } mutex_unlock(&gsi->mutex); return 0; err_unwind_modem: /* Compute which modem channels need to be deallocated */ mask ^= gsi->modem_channel_bitmap; while (mask) { channel_id = __fls(mask); mask ^= BIT(channel_id); gsi_modem_channel_halt(gsi, channel_id); } err_unwind: while (channel_id--) gsi_channel_teardown_one(gsi, channel_id); mutex_unlock(&gsi->mutex); gsi_irq_disable(gsi); return ret; } /* Inverse of gsi_channel_setup() */ static void gsi_channel_teardown(struct gsi *gsi) { u32 mask = gsi->modem_channel_bitmap; u32 channel_id; mutex_lock(&gsi->mutex); while (mask) { channel_id = __fls(mask); mask ^= BIT(channel_id); gsi_modem_channel_halt(gsi, channel_id); } channel_id = gsi->channel_count - 1; do gsi_channel_teardown_one(gsi, channel_id); while (channel_id--); mutex_unlock(&gsi->mutex); gsi_irq_disable(gsi); } /* Turn off all GSI interrupts initially */ static int gsi_irq_setup(struct gsi *gsi) { const struct reg *reg; int ret; /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ reg = gsi_reg(gsi, CNTXT_INTSET); iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg)); /* Disable all interrupt types */ gsi_irq_type_update(gsi, 0); /* Clear all type-specific interrupt masks */ reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK); iowrite32(0, gsi->virt + reg_offset(reg)); reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK); iowrite32(0, gsi->virt + reg_offset(reg)); reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN); iowrite32(0, gsi->virt + reg_offset(reg)); reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK); iowrite32(0, gsi->virt + reg_offset(reg)); /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */ if (gsi->version > IPA_VERSION_3_1) { reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK); iowrite32(0, gsi->virt + reg_offset(reg)); reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK); iowrite32(0, gsi->virt + reg_offset(reg)); } reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN); iowrite32(0, gsi->virt + reg_offset(reg)); ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi); if (ret) dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); return ret; } static void gsi_irq_teardown(struct gsi *gsi) { free_irq(gsi->irq, gsi); } /* Get # supported channel and event rings; there is no gsi_ring_teardown() */ static int gsi_ring_setup(struct gsi *gsi) { struct device *dev = gsi->dev; const struct reg *reg; u32 count; u32 val; if (gsi->version < IPA_VERSION_3_5_1) { /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */ gsi->channel_count = GSI_CHANNEL_COUNT_MAX; gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; return 0; } reg = gsi_reg(gsi, HW_PARAM_2); val = ioread32(gsi->virt + reg_offset(reg)); count = reg_decode(reg, NUM_CH_PER_EE, val); if (!count) { dev_err(dev, "GSI reports zero channels supported\n"); return -EINVAL; } if (count > GSI_CHANNEL_COUNT_MAX) { dev_warn(dev, "limiting to %u channels; hardware supports %u\n", GSI_CHANNEL_COUNT_MAX, count); count = GSI_CHANNEL_COUNT_MAX; } gsi->channel_count = count; count = reg_decode(reg, NUM_EV_PER_EE, val); if (!count) { dev_err(dev, "GSI reports zero event rings supported\n"); return -EINVAL; } if (count > GSI_EVT_RING_COUNT_MAX) { dev_warn(dev, "limiting to %u event rings; hardware supports %u\n", GSI_EVT_RING_COUNT_MAX, count); count = GSI_EVT_RING_COUNT_MAX; } gsi->evt_ring_count = count; return 0; } /* Setup function for GSI. GSI firmware must be loaded and initialized */ int gsi_setup(struct gsi *gsi) { const struct reg *reg; u32 val; int ret; /* Here is where we first touch the GSI hardware */ reg = gsi_reg(gsi, GSI_STATUS); val = ioread32(gsi->virt + reg_offset(reg)); if (!(val & reg_bit(reg, ENABLED))) { dev_err(gsi->dev, "GSI has not been enabled\n"); return -EIO; } ret = gsi_irq_setup(gsi); if (ret) return ret; ret = gsi_ring_setup(gsi); /* No matching teardown required */ if (ret) goto err_irq_teardown; /* Initialize the error log */ reg = gsi_reg(gsi, ERROR_LOG); iowrite32(0, gsi->virt + reg_offset(reg)); ret = gsi_channel_setup(gsi); if (ret) goto err_irq_teardown; return 0; err_irq_teardown: gsi_irq_teardown(gsi); return ret; } /* Inverse of gsi_setup() */ void gsi_teardown(struct gsi *gsi) { gsi_channel_teardown(gsi); gsi_irq_teardown(gsi); } /* Initialize a channel's event ring */ static int gsi_channel_evt_ring_init(struct gsi_channel *channel) { struct gsi *gsi = channel->gsi; struct gsi_evt_ring *evt_ring; int ret; ret = gsi_evt_ring_id_alloc(gsi); if (ret < 0) return ret; channel->evt_ring_id = ret; evt_ring = &gsi->evt_ring[channel->evt_ring_id]; evt_ring->channel = channel; ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); if (!ret) return 0; /* Success! */ dev_err(gsi->dev, "error %d allocating channel %u event ring\n", ret, gsi_channel_id(channel)); gsi_evt_ring_id_free(gsi, channel->evt_ring_id); return ret; } /* Inverse of gsi_channel_evt_ring_init() */ static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) { u32 evt_ring_id = channel->evt_ring_id; struct gsi *gsi = channel->gsi; struct gsi_evt_ring *evt_ring; evt_ring = &gsi->evt_ring[evt_ring_id]; gsi_ring_free(gsi, &evt_ring->ring); gsi_evt_ring_id_free(gsi, evt_ring_id); } static bool gsi_channel_data_valid(struct gsi *gsi, bool command, const struct ipa_gsi_endpoint_data *data) { const struct gsi_channel_data *channel_data; u32 channel_id = data->channel_id; struct device *dev = gsi->dev; /* Make sure channel ids are in the range driver supports */ if (channel_id >= GSI_CHANNEL_COUNT_MAX) { dev_err(dev, "bad channel id %u; must be less than %u\n", channel_id, GSI_CHANNEL_COUNT_MAX); return false; } if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); return false; } if (command && !data->toward_ipa) { dev_err(dev, "command channel %u is not TX\n", channel_id); return false; } channel_data = &data->channel; if (!channel_data->tlv_count || channel_data->tlv_count > GSI_TLV_MAX) { dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", channel_id, channel_data->tlv_count, GSI_TLV_MAX); return false; } if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) { dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n", channel_id, IPA_COMMAND_TRANS_TRE_MAX, channel_data->tlv_count); return false; } /* We have to allow at least one maximally-sized transaction to * be outstanding (which would use tlv_count TREs). Given how * gsi_channel_tre_max() is computed, tre_count has to be almost * twice the TLV FIFO size to satisfy this requirement. */ if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) { dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", channel_id, channel_data->tlv_count, channel_data->tre_count); return false; } if (!is_power_of_2(channel_data->tre_count)) { dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", channel_id, channel_data->tre_count); return false; } if (!is_power_of_2(channel_data->event_count)) { dev_err(dev, "channel %u bad event_count %u; not power of 2\n", channel_id, channel_data->event_count); return false; } return true; } /* Init function for a single channel */ static int gsi_channel_init_one(struct gsi *gsi, const struct ipa_gsi_endpoint_data *data, bool command) { struct gsi_channel *channel; u32 tre_count; int ret; if (!gsi_channel_data_valid(gsi, command, data)) return -EINVAL; /* Worst case we need an event for every outstanding TRE */ if (data->channel.tre_count > data->channel.event_count) { tre_count = data->channel.event_count; dev_warn(gsi->dev, "channel %u limited to %u TREs\n", data->channel_id, tre_count); } else { tre_count = data->channel.tre_count; } channel = &gsi->channel[data->channel_id]; memset(channel, 0, sizeof(*channel)); channel->gsi = gsi; channel->toward_ipa = data->toward_ipa; channel->command = command; channel->trans_tre_max = data->channel.tlv_count; channel->tre_count = tre_count; channel->event_count = data->channel.event_count; ret = gsi_channel_evt_ring_init(channel); if (ret) goto err_clear_gsi; ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); if (ret) { dev_err(gsi->dev, "error %d allocating channel %u ring\n", ret, data->channel_id); goto err_channel_evt_ring_exit; } ret = gsi_channel_trans_init(gsi, data->channel_id); if (ret) goto err_ring_free; if (command) { u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); ret = ipa_cmd_pool_init(channel, tre_max); } if (!ret) return 0; /* Success! */ gsi_channel_trans_exit(channel); err_ring_free: gsi_ring_free(gsi, &channel->tre_ring); err_channel_evt_ring_exit: gsi_channel_evt_ring_exit(channel); err_clear_gsi: channel->gsi = NULL; /* Mark it not (fully) initialized */ return ret; } /* Inverse of gsi_channel_init_one() */ static void gsi_channel_exit_one(struct gsi_channel *channel) { if (!gsi_channel_initialized(channel)) return; if (channel->command) ipa_cmd_pool_exit(channel); gsi_channel_trans_exit(channel); gsi_ring_free(channel->gsi, &channel->tre_ring); gsi_channel_evt_ring_exit(channel); } /* Init function for channels */ static int gsi_channel_init(struct gsi *gsi, u32 count, const struct ipa_gsi_endpoint_data *data) { bool modem_alloc; int ret = 0; u32 i; /* IPA v4.2 requires the AP to allocate channels for the modem */ modem_alloc = gsi->version == IPA_VERSION_4_2; gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); gsi->ieob_enabled_bitmap = 0; /* The endpoint data array is indexed by endpoint name */ for (i = 0; i < count; i++) { bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; if (ipa_gsi_endpoint_data_empty(&data[i])) continue; /* Skip over empty slots */ /* Mark modem channels to be allocated (hardware workaround) */ if (data[i].ee_id == GSI_EE_MODEM) { if (modem_alloc) gsi->modem_channel_bitmap |= BIT(data[i].channel_id); continue; } ret = gsi_channel_init_one(gsi, &data[i], command); if (ret) goto err_unwind; } return ret; err_unwind: while (i--) { if (ipa_gsi_endpoint_data_empty(&data[i])) continue; if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); continue; } gsi_channel_exit_one(&gsi->channel[data->channel_id]); } return ret; } /* Inverse of gsi_channel_init() */ static void gsi_channel_exit(struct gsi *gsi) { u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; do gsi_channel_exit_one(&gsi->channel[channel_id]); while (channel_id--); gsi->modem_channel_bitmap = 0; } /* Init function for GSI. GSI hardware does not need to be "ready" */ int gsi_init(struct gsi *gsi, struct platform_device *pdev, enum ipa_version version, u32 count, const struct ipa_gsi_endpoint_data *data) { int ret; gsi_validate_build(); gsi->dev = &pdev->dev; gsi->version = version; /* GSI uses NAPI on all channels. Create a dummy network device * for the channel NAPI contexts to be associated with. */ init_dummy_netdev(&gsi->dummy_dev); init_completion(&gsi->completion); ret = gsi_reg_init(gsi, pdev); if (ret) return ret; ret = gsi_irq_init(gsi, pdev); /* No matching exit required */ if (ret) goto err_reg_exit; ret = gsi_channel_init(gsi, count, data); if (ret) goto err_reg_exit; mutex_init(&gsi->mutex); return 0; err_reg_exit: gsi_reg_exit(gsi); return ret; } /* Inverse of gsi_init() */ void gsi_exit(struct gsi *gsi) { mutex_destroy(&gsi->mutex); gsi_channel_exit(gsi); gsi_reg_exit(gsi); } /* The maximum number of outstanding TREs on a channel. This limits * a channel's maximum number of transactions outstanding (worst case * is one TRE per transaction). * * The absolute limit is the number of TREs in the channel's TRE ring, * and in theory we should be able use all of them. But in practice, * doing that led to the hardware reporting exhaustion of event ring * slots for writing completion information. So the hardware limit * would be (tre_count - 1). * * We reduce it a bit further though. Transaction resource pools are * sized to be a little larger than this maximum, to allow resource * allocations to always be contiguous. The number of entries in a * TRE ring buffer is a power of 2, and the extra resources in a pool * tends to nearly double the memory allocated for it. Reducing the * maximum number of outstanding TREs allows the number of entries in * a pool to avoid crossing that power-of-2 boundary, and this can * substantially reduce pool memory requirements. The number we * reduce it by matches the number added in gsi_trans_pool_init(). */ u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) { struct gsi_channel *channel = &gsi->channel[channel_id]; /* Hardware limit is channel->tre_count - 1 */ return channel->tre_count - (channel->trans_tre_max - 1); }