// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2018-2020 Linaro Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipa.h" #include "ipa_clock.h" #include "ipa_data.h" #include "ipa_endpoint.h" #include "ipa_cmd.h" #include "ipa_reg.h" #include "ipa_mem.h" #include "ipa_table.h" #include "ipa_modem.h" #include "ipa_uc.h" #include "ipa_interrupt.h" #include "gsi_trans.h" /** * DOC: The IP Accelerator * * This driver supports the Qualcomm IP Accelerator (IPA), which is a * networking component found in many Qualcomm SoCs. The IPA is connected * to the application processor (AP), but is also connected (and partially * controlled by) other "execution environments" (EEs), such as a modem. * * The IPA is the conduit between the AP and the modem that carries network * traffic. This driver presents a network interface representing the * connection of the modem to external (e.g. LTE) networks. * * The IPA provides protocol checksum calculation, offloading this work * from the AP. The IPA offers additional functionality, including routing, * filtering, and NAT support, but that more advanced functionality is not * currently supported. Despite that, some resources--including routing * tables and filter tables--are defined in this driver because they must * be initialized even when the advanced hardware features are not used. * * There are two distinct layers that implement the IPA hardware, and this * is reflected in the organization of the driver. The generic software * interface (GSI) is an integral component of the IPA, providing a * well-defined communication layer between the AP subsystem and the IPA * core. The GSI implements a set of "channels" used for communication * between the AP and the IPA. * * The IPA layer uses GSI channels to implement its "endpoints". And while * a GSI channel carries data between the AP and the IPA, a pair of IPA * endpoints is used to carry traffic between two EEs. Specifically, the main * modem network interface is implemented by two pairs of endpoints: a TX * endpoint on the AP coupled with an RX endpoint on the modem; and another * RX endpoint on the AP receiving data from a TX endpoint on the modem. */ /* The name of the GSI firmware file relative to /lib/firmware */ #define IPA_FWS_PATH "ipa_fws.mdt" #define IPA_PAS_ID 15 /** * ipa_suspend_handler() - Handle the suspend IPA interrupt * @ipa: IPA pointer * @irq_id: IPA interrupt type (unused) * * If an RX endpoint is in suspend state, and the IPA has a packet * destined for that endpoint, the IPA generates a SUSPEND interrupt * to inform the AP that it should resume the endpoint. If we get * one of these interrupts we just resume everything. */ static void ipa_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id) { /* Just report the event, and let system resume handle the rest. * More than one endpoint could signal this; if so, ignore * all but the first. */ if (!test_and_set_bit(IPA_FLAG_RESUMED, ipa->flags)) pm_wakeup_dev_event(&ipa->pdev->dev, 0, true); /* Acknowledge/clear the suspend interrupt on all endpoints */ ipa_interrupt_suspend_clear_all(ipa->interrupt); } /** * ipa_setup() - Set up IPA hardware * @ipa: IPA pointer * * Perform initialization that requires issuing immediate commands on * the command TX endpoint. If the modem is doing GSI firmware load * and initialization, this function will be called when an SMP2P * interrupt has been signaled by the modem. Otherwise it will be * called from ipa_probe() after GSI firmware has been successfully * loaded, authenticated, and started by Trust Zone. */ int ipa_setup(struct ipa *ipa) { struct ipa_endpoint *exception_endpoint; struct ipa_endpoint *command_endpoint; struct device *dev = &ipa->pdev->dev; int ret; ret = gsi_setup(&ipa->gsi); if (ret) return ret; ipa->interrupt = ipa_interrupt_setup(ipa); if (IS_ERR(ipa->interrupt)) { ret = PTR_ERR(ipa->interrupt); goto err_gsi_teardown; } ipa_interrupt_add(ipa->interrupt, IPA_IRQ_TX_SUSPEND, ipa_suspend_handler); ipa_uc_setup(ipa); ret = device_init_wakeup(dev, true); if (ret) goto err_uc_teardown; ipa_endpoint_setup(ipa); /* We need to use the AP command TX endpoint to perform other * initialization, so we enable first. */ command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; ret = ipa_endpoint_enable_one(command_endpoint); if (ret) goto err_endpoint_teardown; ret = ipa_mem_setup(ipa); if (ret) goto err_command_disable; ret = ipa_table_setup(ipa); if (ret) goto err_mem_teardown; /* Enable the exception handling endpoint, and tell the hardware * to use it by default. */ exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; ret = ipa_endpoint_enable_one(exception_endpoint); if (ret) goto err_table_teardown; ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); /* We're all set. Now prepare for communication with the modem */ ret = ipa_modem_setup(ipa); if (ret) goto err_default_route_clear; ipa->setup_complete = true; dev_info(dev, "IPA driver setup completed successfully\n"); return 0; err_default_route_clear: ipa_endpoint_default_route_clear(ipa); ipa_endpoint_disable_one(exception_endpoint); err_table_teardown: ipa_table_teardown(ipa); err_mem_teardown: ipa_mem_teardown(ipa); err_command_disable: ipa_endpoint_disable_one(command_endpoint); err_endpoint_teardown: ipa_endpoint_teardown(ipa); (void)device_init_wakeup(dev, false); err_uc_teardown: ipa_uc_teardown(ipa); ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); ipa_interrupt_teardown(ipa->interrupt); err_gsi_teardown: gsi_teardown(&ipa->gsi); return ret; } /** * ipa_teardown() - Inverse of ipa_setup() * @ipa: IPA pointer */ static void ipa_teardown(struct ipa *ipa) { struct ipa_endpoint *exception_endpoint; struct ipa_endpoint *command_endpoint; ipa_modem_teardown(ipa); ipa_endpoint_default_route_clear(ipa); exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; ipa_endpoint_disable_one(exception_endpoint); ipa_table_teardown(ipa); ipa_mem_teardown(ipa); command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; ipa_endpoint_disable_one(command_endpoint); ipa_endpoint_teardown(ipa); (void)device_init_wakeup(&ipa->pdev->dev, false); ipa_uc_teardown(ipa); ipa_interrupt_remove(ipa->interrupt, IPA_IRQ_TX_SUSPEND); ipa_interrupt_teardown(ipa->interrupt); gsi_teardown(&ipa->gsi); } /* Configure QMB Core Master Port selection */ static void ipa_hardware_config_comp(struct ipa *ipa) { u32 val; /* Nothing to configure for IPA v3.5.1 */ if (ipa->version == IPA_VERSION_3_5_1) return; val = ioread32(ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); if (ipa->version == IPA_VERSION_4_0) { val &= ~IPA_QMB_SELECT_CONS_EN_FMASK; val &= ~IPA_QMB_SELECT_PROD_EN_FMASK; val &= ~IPA_QMB_SELECT_GLOBAL_EN_FMASK; } else { val |= GSI_MULTI_AXI_MASTERS_DIS_FMASK; } val |= GSI_MULTI_INORDER_RD_DIS_FMASK; val |= GSI_MULTI_INORDER_WR_DIS_FMASK; iowrite32(val, ipa->reg_virt + IPA_REG_COMP_CFG_OFFSET); } /* Configure DDR and PCIe max read/write QSB values */ static void ipa_hardware_config_qsb(struct ipa *ipa) { u32 val; /* QMB_0 represents DDR; QMB_1 represents PCIe (not present in 4.2) */ val = u32_encode_bits(8, GEN_QMB_0_MAX_WRITES_FMASK); if (ipa->version == IPA_VERSION_4_2) val |= u32_encode_bits(0, GEN_QMB_1_MAX_WRITES_FMASK); else val |= u32_encode_bits(4, GEN_QMB_1_MAX_WRITES_FMASK); iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_WRITES_OFFSET); if (ipa->version == IPA_VERSION_3_5_1) { val = u32_encode_bits(8, GEN_QMB_0_MAX_READS_FMASK); val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK); } else { val = u32_encode_bits(12, GEN_QMB_0_MAX_READS_FMASK); if (ipa->version == IPA_VERSION_4_2) val |= u32_encode_bits(0, GEN_QMB_1_MAX_READS_FMASK); else val |= u32_encode_bits(12, GEN_QMB_1_MAX_READS_FMASK); /* GEN_QMB_0_MAX_READS_BEATS is 0 */ /* GEN_QMB_1_MAX_READS_BEATS is 0 */ } iowrite32(val, ipa->reg_virt + IPA_REG_QSB_MAX_READS_OFFSET); } static void ipa_idle_indication_cfg(struct ipa *ipa, u32 enter_idle_debounce_thresh, bool const_non_idle_enable) { u32 offset; u32 val; val = u32_encode_bits(enter_idle_debounce_thresh, ENTER_IDLE_DEBOUNCE_THRESH_FMASK); if (const_non_idle_enable) val |= CONST_NON_IDLE_ENABLE_FMASK; offset = ipa_reg_idle_indication_cfg_offset(ipa->version); iowrite32(val, ipa->reg_virt + offset); } /** * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA * @ipa: IPA pointer * * Configures when the IPA signals it is idle to the global clock * controller, which can respond by scalling down the clock to * save power. */ static void ipa_hardware_dcd_config(struct ipa *ipa) { /* Recommended values for IPA 3.5 according to IPA HPG */ ipa_idle_indication_cfg(ipa, 256, false); } static void ipa_hardware_dcd_deconfig(struct ipa *ipa) { /* Power-on reset values */ ipa_idle_indication_cfg(ipa, 0, true); } /** * ipa_hardware_config() - Primitive hardware initialization * @ipa: IPA pointer */ static void ipa_hardware_config(struct ipa *ipa) { u32 granularity; u32 val; /* Fill in backward-compatibility register, based on version */ val = ipa_reg_bcr_val(ipa->version); iowrite32(val, ipa->reg_virt + IPA_REG_BCR_OFFSET); if (ipa->version != IPA_VERSION_3_5_1) { /* Enable open global clocks (hardware workaround) */ val = GLOBAL_FMASK; val |= GLOBAL_2X_CLK_FMASK; iowrite32(val, ipa->reg_virt + IPA_REG_CLKON_CFG_OFFSET); /* Disable PA mask to allow HOLB drop (hardware workaround) */ val = ioread32(ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); val &= ~PA_MASK_EN_FMASK; iowrite32(val, ipa->reg_virt + IPA_REG_TX_CFG_OFFSET); } ipa_hardware_config_comp(ipa); /* Configure system bus limits */ ipa_hardware_config_qsb(ipa); /* Configure aggregation granularity */ granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); val = u32_encode_bits(granularity, AGGR_GRANULARITY_FMASK); iowrite32(val, ipa->reg_virt + IPA_REG_COUNTER_CFG_OFFSET); /* IPA v4.2 does not support hashed tables, so disable them */ if (ipa->version == IPA_VERSION_4_2) { u32 offset = ipa_reg_filt_rout_hash_en_offset(ipa->version); iowrite32(0, ipa->reg_virt + offset); } /* Enable dynamic clock division */ ipa_hardware_dcd_config(ipa); } /** * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() * @ipa: IPA pointer * * This restores the power-on reset values (even if they aren't different) */ static void ipa_hardware_deconfig(struct ipa *ipa) { /* Mostly we just leave things as we set them. */ ipa_hardware_dcd_deconfig(ipa); } #ifdef IPA_VALIDATION static bool ipa_resource_limits_valid(struct ipa *ipa, const struct ipa_resource_data *data) { u32 group_count; u32 i; u32 j; /* We program at most 6 source or destination resource group limits */ BUILD_BUG_ON(IPA_RESOURCE_GROUP_SRC_MAX > 6); group_count = ipa_resource_group_src_count(ipa->version); if (!group_count || group_count > IPA_RESOURCE_GROUP_SRC_MAX) return false; /* Return an error if a non-zero resource limit is specified * for a resource group not supported by hardware. */ for (i = 0; i < data->resource_src_count; i++) { const struct ipa_resource_src *resource; resource = &data->resource_src[i]; for (j = group_count; j < IPA_RESOURCE_GROUP_SRC_MAX; j++) if (resource->limits[j].min || resource->limits[j].max) return false; } group_count = ipa_resource_group_dst_count(ipa->version); if (!group_count || group_count > IPA_RESOURCE_GROUP_DST_MAX) return false; for (i = 0; i < data->resource_dst_count; i++) { const struct ipa_resource_dst *resource; resource = &data->resource_dst[i]; for (j = group_count; j < IPA_RESOURCE_GROUP_DST_MAX; j++) if (resource->limits[j].min || resource->limits[j].max) return false; } return true; } #else /* !IPA_VALIDATION */ static bool ipa_resource_limits_valid(struct ipa *ipa, const struct ipa_resource_data *data) { return true; } #endif /* !IPA_VALIDATION */ static void ipa_resource_config_common(struct ipa *ipa, u32 offset, const struct ipa_resource_limits *xlimits, const struct ipa_resource_limits *ylimits) { u32 val; val = u32_encode_bits(xlimits->min, X_MIN_LIM_FMASK); val |= u32_encode_bits(xlimits->max, X_MAX_LIM_FMASK); if (ylimits) { val |= u32_encode_bits(ylimits->min, Y_MIN_LIM_FMASK); val |= u32_encode_bits(ylimits->max, Y_MAX_LIM_FMASK); } iowrite32(val, ipa->reg_virt + offset); } static void ipa_resource_config_src(struct ipa *ipa, const struct ipa_resource_src *resource) { u32 group_count = ipa_resource_group_src_count(ipa->version); const struct ipa_resource_limits *ylimits; u32 offset; offset = IPA_REG_SRC_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); ylimits = group_count == 1 ? NULL : &resource->limits[1]; ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits); if (group_count < 2) return; offset = IPA_REG_SRC_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); ylimits = group_count == 3 ? NULL : &resource->limits[3]; ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits); if (group_count < 4) return; offset = IPA_REG_SRC_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type); ylimits = group_count == 5 ? NULL : &resource->limits[5]; ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits); } static void ipa_resource_config_dst(struct ipa *ipa, const struct ipa_resource_dst *resource) { u32 group_count = ipa_resource_group_dst_count(ipa->version); const struct ipa_resource_limits *ylimits; u32 offset; offset = IPA_REG_DST_RSRC_GRP_01_RSRC_TYPE_N_OFFSET(resource->type); ylimits = group_count == 1 ? NULL : &resource->limits[1]; ipa_resource_config_common(ipa, offset, &resource->limits[0], ylimits); if (group_count < 2) return; offset = IPA_REG_DST_RSRC_GRP_23_RSRC_TYPE_N_OFFSET(resource->type); ylimits = group_count == 3 ? NULL : &resource->limits[3]; ipa_resource_config_common(ipa, offset, &resource->limits[2], ylimits); if (group_count < 4) return; offset = IPA_REG_DST_RSRC_GRP_45_RSRC_TYPE_N_OFFSET(resource->type); ylimits = group_count == 5 ? NULL : &resource->limits[5]; ipa_resource_config_common(ipa, offset, &resource->limits[4], ylimits); } static int ipa_resource_config(struct ipa *ipa, const struct ipa_resource_data *data) { u32 i; if (!ipa_resource_limits_valid(ipa, data)) return -EINVAL; for (i = 0; i < data->resource_src_count; i++) ipa_resource_config_src(ipa, data->resource_src); for (i = 0; i < data->resource_dst_count; i++) ipa_resource_config_dst(ipa, data->resource_dst); return 0; } static void ipa_resource_deconfig(struct ipa *ipa) { /* Nothing to do */ } /** * ipa_config() - Configure IPA hardware * @ipa: IPA pointer * @data: IPA configuration data * * Perform initialization requiring IPA clock to be enabled. */ static int ipa_config(struct ipa *ipa, const struct ipa_data *data) { int ret; /* Get a clock reference to allow initialization. This reference * is held after initialization completes, and won't get dropped * unless/until a system suspend request arrives. */ ipa_clock_get(ipa); ipa_hardware_config(ipa); ret = ipa_endpoint_config(ipa); if (ret) goto err_hardware_deconfig; ret = ipa_mem_config(ipa); if (ret) goto err_endpoint_deconfig; ipa_table_config(ipa); /* Assign resource limitation to each group */ ret = ipa_resource_config(ipa, data->resource_data); if (ret) goto err_table_deconfig; ret = ipa_modem_config(ipa); if (ret) goto err_resource_deconfig; return 0; err_resource_deconfig: ipa_resource_deconfig(ipa); err_table_deconfig: ipa_table_deconfig(ipa); ipa_mem_deconfig(ipa); err_endpoint_deconfig: ipa_endpoint_deconfig(ipa); err_hardware_deconfig: ipa_hardware_deconfig(ipa); ipa_clock_put(ipa); return ret; } /** * ipa_deconfig() - Inverse of ipa_config() * @ipa: IPA pointer */ static void ipa_deconfig(struct ipa *ipa) { ipa_modem_deconfig(ipa); ipa_resource_deconfig(ipa); ipa_table_deconfig(ipa); ipa_mem_deconfig(ipa); ipa_endpoint_deconfig(ipa); ipa_hardware_deconfig(ipa); ipa_clock_put(ipa); } static int ipa_firmware_load(struct device *dev) { const struct firmware *fw; struct device_node *node; struct resource res; phys_addr_t phys; ssize_t size; void *virt; int ret; node = of_parse_phandle(dev->of_node, "memory-region", 0); if (!node) { dev_err(dev, "DT error getting \"memory-region\" property\n"); return -EINVAL; } ret = of_address_to_resource(node, 0, &res); if (ret) { dev_err(dev, "error %d getting \"memory-region\" resource\n", ret); return ret; } ret = request_firmware(&fw, IPA_FWS_PATH, dev); if (ret) { dev_err(dev, "error %d requesting \"%s\"\n", ret, IPA_FWS_PATH); return ret; } phys = res.start; size = (size_t)resource_size(&res); virt = memremap(phys, size, MEMREMAP_WC); if (!virt) { dev_err(dev, "unable to remap firmware memory\n"); ret = -ENOMEM; goto out_release_firmware; } ret = qcom_mdt_load(dev, fw, IPA_FWS_PATH, IPA_PAS_ID, virt, phys, size, NULL); if (ret) dev_err(dev, "error %d loading \"%s\"\n", ret, IPA_FWS_PATH); else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) dev_err(dev, "error %d authenticating \"%s\"\n", ret, IPA_FWS_PATH); memunmap(virt); out_release_firmware: release_firmware(fw); return ret; } static const struct of_device_id ipa_match[] = { { .compatible = "qcom,sdm845-ipa", .data = &ipa_data_sdm845, }, { .compatible = "qcom,sc7180-ipa", .data = &ipa_data_sc7180, }, { }, }; MODULE_DEVICE_TABLE(of, ipa_match); static phandle of_property_read_phandle(const struct device_node *np, const char *name) { struct property *prop; int len = 0; prop = of_find_property(np, name, &len); if (!prop || len != sizeof(__be32)) return 0; return be32_to_cpup(prop->value); } /* Check things that can be validated at build time. This just * groups these things BUILD_BUG_ON() calls don't clutter the rest * of the code. * */ static void ipa_validate_build(void) { #ifdef IPA_VALIDATE /* We assume we're working on 64-bit hardware */ BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT)); /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ BUILD_BUG_ON(GSI_EE_AP != 0); /* There's no point if we have no channels or event rings */ BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); /* GSI hardware design limits */ BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); /* The number of TREs in a transaction is limited by the channel's * TLV FIFO size. A transaction structure uses 8-bit fields * to represents the number of TREs it has allocated and used. */ BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); /* This is used as a divisor */ BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); /* Aggregation granularity value can't be 0, and must fit */ BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); BUILD_BUG_ON(ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY) > field_max(AGGR_GRANULARITY_FMASK)); #endif /* IPA_VALIDATE */ } /** * ipa_probe() - IPA platform driver probe function * @pdev: Platform device pointer * * Return: 0 if successful, or a negative error code (possibly * EPROBE_DEFER) * * This is the main entry point for the IPA driver. Initialization proceeds * in several stages: * - The "init" stage involves activities that can be initialized without * access to the IPA hardware. * - The "config" stage requires the IPA clock to be active so IPA registers * can be accessed, but does not require the use of IPA immediate commands. * - The "setup" stage uses IPA immediate commands, and so requires the GSI * layer to be initialized. * * A Boolean Device Tree "modem-init" property determines whether GSI * initialization will be performed by the AP (Trust Zone) or the modem. * If the AP does GSI initialization, the setup phase is entered after * this has completed successfully. Otherwise the modem initializes * the GSI layer and signals it has finished by sending an SMP2P interrupt * to the AP; this triggers the start if IPA setup. */ static int ipa_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct ipa_data *data; struct ipa_clock *clock; struct rproc *rproc; bool modem_init; struct ipa *ipa; phandle ph; int ret; ipa_validate_build(); /* If we need Trust Zone, make sure it's available */ modem_init = of_property_read_bool(dev->of_node, "modem-init"); if (!modem_init) if (!qcom_scm_is_available()) return -EPROBE_DEFER; /* We rely on remoteproc to tell us about modem state changes */ ph = of_property_read_phandle(dev->of_node, "modem-remoteproc"); if (!ph) { dev_err(dev, "DT missing \"modem-remoteproc\" property\n"); return -EINVAL; } rproc = rproc_get_by_phandle(ph); if (!rproc) return -EPROBE_DEFER; /* The clock and interconnects might not be ready when we're * probed, so might return -EPROBE_DEFER. */ clock = ipa_clock_init(dev); if (IS_ERR(clock)) { ret = PTR_ERR(clock); goto err_rproc_put; } /* No more EPROBE_DEFER. Get our configuration data */ data = of_device_get_match_data(dev); if (!data) { /* This is really IPA_VALIDATE (should never happen) */ dev_err(dev, "matched hardware not supported\n"); ret = -ENOTSUPP; goto err_clock_exit; } /* Allocate and initialize the IPA structure */ ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); if (!ipa) { ret = -ENOMEM; goto err_clock_exit; } ipa->pdev = pdev; dev_set_drvdata(dev, ipa); ipa->modem_rproc = rproc; ipa->clock = clock; ipa->version = data->version; ret = ipa_reg_init(ipa); if (ret) goto err_kfree_ipa; ret = ipa_mem_init(ipa, data->mem_data); if (ret) goto err_reg_exit; ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, data->endpoint_data); if (ret) goto err_mem_exit; /* Result is a non-zero mask of endpoints that support filtering */ ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data); if (!ipa->filter_map) { ret = -EINVAL; goto err_gsi_exit; } ret = ipa_table_init(ipa); if (ret) goto err_endpoint_exit; ret = ipa_modem_init(ipa, modem_init); if (ret) goto err_table_exit; ret = ipa_config(ipa, data); if (ret) goto err_modem_exit; dev_info(dev, "IPA driver initialized"); /* If the modem is doing early initialization, it will trigger a * call to ipa_setup() call when it has finished. In that case * we're done here. */ if (modem_init) return 0; /* Otherwise we need to load the firmware and have Trust Zone validate * and install it. If that succeeds we can proceed with setup. */ ret = ipa_firmware_load(dev); if (ret) goto err_deconfig; ret = ipa_setup(ipa); if (ret) goto err_deconfig; return 0; err_deconfig: ipa_deconfig(ipa); err_modem_exit: ipa_modem_exit(ipa); err_table_exit: ipa_table_exit(ipa); err_endpoint_exit: ipa_endpoint_exit(ipa); err_gsi_exit: gsi_exit(&ipa->gsi); err_mem_exit: ipa_mem_exit(ipa); err_reg_exit: ipa_reg_exit(ipa); err_kfree_ipa: kfree(ipa); err_clock_exit: ipa_clock_exit(clock); err_rproc_put: rproc_put(rproc); return ret; } static int ipa_remove(struct platform_device *pdev) { struct ipa *ipa = dev_get_drvdata(&pdev->dev); struct rproc *rproc = ipa->modem_rproc; struct ipa_clock *clock = ipa->clock; int ret; if (ipa->setup_complete) { ret = ipa_modem_stop(ipa); if (ret) return ret; ipa_teardown(ipa); } ipa_deconfig(ipa); ipa_modem_exit(ipa); ipa_table_exit(ipa); ipa_endpoint_exit(ipa); gsi_exit(&ipa->gsi); ipa_mem_exit(ipa); ipa_reg_exit(ipa); kfree(ipa); ipa_clock_exit(clock); rproc_put(rproc); return 0; } /** * ipa_suspend() - Power management system suspend callback * @dev: IPA device structure * * Return: Always returns zero * * Called by the PM framework when a system suspend operation is invoked. * Suspends endpoints and releases the clock reference held to keep * the IPA clock running until this point. */ static int ipa_suspend(struct device *dev) { struct ipa *ipa = dev_get_drvdata(dev); /* When a suspended RX endpoint has a packet ready to receive, we * get an IPA SUSPEND interrupt. We trigger a system resume in * that case, but only on the first such interrupt since suspend. */ __clear_bit(IPA_FLAG_RESUMED, ipa->flags); ipa_endpoint_suspend(ipa); ipa_clock_put(ipa); return 0; } /** * ipa_resume() - Power management system resume callback * @dev: IPA device structure * * Return: Always returns 0 * * Called by the PM framework when a system resume operation is invoked. * Takes an IPA clock reference to keep the clock running until suspend, * and resumes endpoints. */ static int ipa_resume(struct device *dev) { struct ipa *ipa = dev_get_drvdata(dev); /* This clock reference will keep the IPA out of suspend * until we get a power management suspend request. */ ipa_clock_get(ipa); ipa_endpoint_resume(ipa); return 0; } static const struct dev_pm_ops ipa_pm_ops = { .suspend = ipa_suspend, .resume = ipa_resume, }; static struct platform_driver ipa_driver = { .probe = ipa_probe, .remove = ipa_remove, .driver = { .name = "ipa", .pm = &ipa_pm_ops, .of_match_table = ipa_match, }, }; module_platform_driver(ipa_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");