// SPDX-License-Identifier: GPL-2.0+ /* * Derived from arch/i386/kernel/irq.c * Copyright (C) 1992 Linus Torvalds * Adapted from arch/i386 by Gary Thomas * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * Updated and modified by Cort Dougan <cort@fsmlabs.com> * Copyright (C) 1996-2001 Cort Dougan * Adapted for Power Macintosh by Paul Mackerras * Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au) * * This file contains the code used to make IRQ descriptions in the * device tree to actual irq numbers on an interrupt controller * driver. */ #define pr_fmt(fmt) "OF: " fmt #include <linux/device.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/string.h> #include <linux/slab.h> /** * irq_of_parse_and_map - Parse and map an interrupt into linux virq space * @dev: Device node of the device whose interrupt is to be mapped * @index: Index of the interrupt to map * * This function is a wrapper that chains of_irq_parse_one() and * irq_create_of_mapping() to make things easier to callers */ unsigned int irq_of_parse_and_map(struct device_node *dev, int index) { struct of_phandle_args oirq; if (of_irq_parse_one(dev, index, &oirq)) return 0; return irq_create_of_mapping(&oirq); } EXPORT_SYMBOL_GPL(irq_of_parse_and_map); /** * of_irq_find_parent - Given a device node, find its interrupt parent node * @child: pointer to device node * * Returns a pointer to the interrupt parent node, or NULL if the interrupt * parent could not be determined. */ struct device_node *of_irq_find_parent(struct device_node *child) { struct device_node *p; phandle parent; if (!of_node_get(child)) return NULL; do { if (of_property_read_u32(child, "interrupt-parent", &parent)) { p = of_get_parent(child); } else { if (of_irq_workarounds & OF_IMAP_NO_PHANDLE) p = of_node_get(of_irq_dflt_pic); else p = of_find_node_by_phandle(parent); } of_node_put(child); child = p; } while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL); return p; } EXPORT_SYMBOL_GPL(of_irq_find_parent); /** * of_irq_parse_raw - Low level interrupt tree parsing * @addr: address specifier (start of "reg" property of the device) in be32 format * @out_irq: structure of_phandle_args updated by this function * * Returns 0 on success and a negative number on error * * This function is a low-level interrupt tree walking function. It * can be used to do a partial walk with synthetized reg and interrupts * properties, for example when resolving PCI interrupts when no device * node exist for the parent. It takes an interrupt specifier structure as * input, walks the tree looking for any interrupt-map properties, translates * the specifier for each map, and then returns the translated map. */ int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq) { struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL; __be32 initial_match_array[MAX_PHANDLE_ARGS]; const __be32 *match_array = initial_match_array; const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) }; u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0; int imaplen, match, i, rc = -EINVAL; #ifdef DEBUG of_print_phandle_args("of_irq_parse_raw: ", out_irq); #endif ipar = of_node_get(out_irq->np); /* First get the #interrupt-cells property of the current cursor * that tells us how to interpret the passed-in intspec. If there * is none, we are nice and just walk up the tree */ do { if (!of_property_read_u32(ipar, "#interrupt-cells", &intsize)) break; tnode = ipar; ipar = of_irq_find_parent(ipar); of_node_put(tnode); } while (ipar); if (ipar == NULL) { pr_debug(" -> no parent found !\n"); goto fail; } pr_debug("of_irq_parse_raw: ipar=%pOF, size=%d\n", ipar, intsize); if (out_irq->args_count != intsize) goto fail; /* Look for this #address-cells. We have to implement the old linux * trick of looking for the parent here as some device-trees rely on it */ old = of_node_get(ipar); do { tmp = of_get_property(old, "#address-cells", NULL); tnode = of_get_parent(old); of_node_put(old); old = tnode; } while (old && tmp == NULL); of_node_put(old); old = NULL; addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp); pr_debug(" -> addrsize=%d\n", addrsize); /* Range check so that the temporary buffer doesn't overflow */ if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)) { rc = -EFAULT; goto fail; } /* Precalculate the match array - this simplifies match loop */ for (i = 0; i < addrsize; i++) initial_match_array[i] = addr ? addr[i] : 0; for (i = 0; i < intsize; i++) initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]); /* Now start the actual "proper" walk of the interrupt tree */ while (ipar != NULL) { /* Now check if cursor is an interrupt-controller and if it is * then we are done */ if (of_property_read_bool(ipar, "interrupt-controller")) { pr_debug(" -> got it !\n"); return 0; } /* * interrupt-map parsing does not work without a reg * property when #address-cells != 0 */ if (addrsize && !addr) { pr_debug(" -> no reg passed in when needed !\n"); goto fail; } /* Now look for an interrupt-map */ imap = of_get_property(ipar, "interrupt-map", &imaplen); /* No interrupt map, check for an interrupt parent */ if (imap == NULL) { pr_debug(" -> no map, getting parent\n"); newpar = of_irq_find_parent(ipar); goto skiplevel; } imaplen /= sizeof(u32); /* Look for a mask */ imask = of_get_property(ipar, "interrupt-map-mask", NULL); if (!imask) imask = dummy_imask; /* Parse interrupt-map */ match = 0; while (imaplen > (addrsize + intsize + 1) && !match) { /* Compare specifiers */ match = 1; for (i = 0; i < (addrsize + intsize); i++, imaplen--) match &= !((match_array[i] ^ *imap++) & imask[i]); pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen); /* Get the interrupt parent */ if (of_irq_workarounds & OF_IMAP_NO_PHANDLE) newpar = of_node_get(of_irq_dflt_pic); else newpar = of_find_node_by_phandle(be32_to_cpup(imap)); imap++; --imaplen; /* Check if not found */ if (newpar == NULL) { pr_debug(" -> imap parent not found !\n"); goto fail; } if (!of_device_is_available(newpar)) match = 0; /* Get #interrupt-cells and #address-cells of new * parent */ if (of_property_read_u32(newpar, "#interrupt-cells", &newintsize)) { pr_debug(" -> parent lacks #interrupt-cells!\n"); goto fail; } if (of_property_read_u32(newpar, "#address-cells", &newaddrsize)) newaddrsize = 0; pr_debug(" -> newintsize=%d, newaddrsize=%d\n", newintsize, newaddrsize); /* Check for malformed properties */ if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS) || (imaplen < (newaddrsize + newintsize))) { rc = -EFAULT; goto fail; } imap += newaddrsize + newintsize; imaplen -= newaddrsize + newintsize; pr_debug(" -> imaplen=%d\n", imaplen); } if (!match) goto fail; /* * Successfully parsed an interrrupt-map translation; copy new * interrupt specifier into the out_irq structure */ match_array = imap - newaddrsize - newintsize; for (i = 0; i < newintsize; i++) out_irq->args[i] = be32_to_cpup(imap - newintsize + i); out_irq->args_count = intsize = newintsize; addrsize = newaddrsize; skiplevel: /* Iterate again with new parent */ out_irq->np = newpar; pr_debug(" -> new parent: %pOF\n", newpar); of_node_put(ipar); ipar = newpar; newpar = NULL; } rc = -ENOENT; /* No interrupt-map found */ fail: of_node_put(ipar); of_node_put(newpar); return rc; } EXPORT_SYMBOL_GPL(of_irq_parse_raw); /** * of_irq_parse_one - Resolve an interrupt for a device * @device: the device whose interrupt is to be resolved * @index: index of the interrupt to resolve * @out_irq: structure of_phandle_args filled by this function * * This function resolves an interrupt for a node by walking the interrupt tree, * finding which interrupt controller node it is attached to, and returning the * interrupt specifier that can be used to retrieve a Linux IRQ number. */ int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq) { struct device_node *p; const __be32 *addr; u32 intsize; int i, res; pr_debug("of_irq_parse_one: dev=%pOF, index=%d\n", device, index); /* OldWorld mac stuff is "special", handle out of line */ if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC) return of_irq_parse_oldworld(device, index, out_irq); /* Get the reg property (if any) */ addr = of_get_property(device, "reg", NULL); /* Try the new-style interrupts-extended first */ res = of_parse_phandle_with_args(device, "interrupts-extended", "#interrupt-cells", index, out_irq); if (!res) return of_irq_parse_raw(addr, out_irq); /* Look for the interrupt parent. */ p = of_irq_find_parent(device); if (p == NULL) return -EINVAL; /* Get size of interrupt specifier */ if (of_property_read_u32(p, "#interrupt-cells", &intsize)) { res = -EINVAL; goto out; } pr_debug(" parent=%pOF, intsize=%d\n", p, intsize); /* Copy intspec into irq structure */ out_irq->np = p; out_irq->args_count = intsize; for (i = 0; i < intsize; i++) { res = of_property_read_u32_index(device, "interrupts", (index * intsize) + i, out_irq->args + i); if (res) goto out; } pr_debug(" intspec=%d\n", *out_irq->args); /* Check if there are any interrupt-map translations to process */ res = of_irq_parse_raw(addr, out_irq); out: of_node_put(p); return res; } EXPORT_SYMBOL_GPL(of_irq_parse_one); /** * of_irq_to_resource - Decode a node's IRQ and return it as a resource * @dev: pointer to device tree node * @index: zero-based index of the irq * @r: pointer to resource structure to return result into. */ int of_irq_to_resource(struct device_node *dev, int index, struct resource *r) { int irq = of_irq_get(dev, index); if (irq < 0) return irq; /* Only dereference the resource if both the * resource and the irq are valid. */ if (r && irq) { const char *name = NULL; memset(r, 0, sizeof(*r)); /* * Get optional "interrupt-names" property to add a name * to the resource. */ of_property_read_string_index(dev, "interrupt-names", index, &name); r->start = r->end = irq; r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq)); r->name = name ? name : of_node_full_name(dev); } return irq; } EXPORT_SYMBOL_GPL(of_irq_to_resource); /** * of_irq_get - Decode a node's IRQ and return it as a Linux IRQ number * @dev: pointer to device tree node * @index: zero-based index of the IRQ * * Returns Linux IRQ number on success, or 0 on the IRQ mapping failure, or * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case * of any other failure. */ int of_irq_get(struct device_node *dev, int index) { int rc; struct of_phandle_args oirq; struct irq_domain *domain; rc = of_irq_parse_one(dev, index, &oirq); if (rc) return rc; domain = irq_find_host(oirq.np); if (!domain) return -EPROBE_DEFER; return irq_create_of_mapping(&oirq); } EXPORT_SYMBOL_GPL(of_irq_get); /** * of_irq_get_byname - Decode a node's IRQ and return it as a Linux IRQ number * @dev: pointer to device tree node * @name: IRQ name * * Returns Linux IRQ number on success, or 0 on the IRQ mapping failure, or * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case * of any other failure. */ int of_irq_get_byname(struct device_node *dev, const char *name) { int index; if (unlikely(!name)) return -EINVAL; index = of_property_match_string(dev, "interrupt-names", name); if (index < 0) return index; return of_irq_get(dev, index); } EXPORT_SYMBOL_GPL(of_irq_get_byname); /** * of_irq_count - Count the number of IRQs a node uses * @dev: pointer to device tree node */ int of_irq_count(struct device_node *dev) { struct of_phandle_args irq; int nr = 0; while (of_irq_parse_one(dev, nr, &irq) == 0) nr++; return nr; } /** * of_irq_to_resource_table - Fill in resource table with node's IRQ info * @dev: pointer to device tree node * @res: array of resources to fill in * @nr_irqs: the number of IRQs (and upper bound for num of @res elements) * * Returns the size of the filled in table (up to @nr_irqs). */ int of_irq_to_resource_table(struct device_node *dev, struct resource *res, int nr_irqs) { int i; for (i = 0; i < nr_irqs; i++, res++) if (of_irq_to_resource(dev, i, res) <= 0) break; return i; } EXPORT_SYMBOL_GPL(of_irq_to_resource_table); struct of_intc_desc { struct list_head list; of_irq_init_cb_t irq_init_cb; struct device_node *dev; struct device_node *interrupt_parent; }; /** * of_irq_init - Scan and init matching interrupt controllers in DT * @matches: 0 terminated array of nodes to match and init function to call * * This function scans the device tree for matching interrupt controller nodes, * and calls their initialization functions in order with parents first. */ void __init of_irq_init(const struct of_device_id *matches) { const struct of_device_id *match; struct device_node *np, *parent = NULL; struct of_intc_desc *desc, *temp_desc; struct list_head intc_desc_list, intc_parent_list; INIT_LIST_HEAD(&intc_desc_list); INIT_LIST_HEAD(&intc_parent_list); for_each_matching_node_and_match(np, matches, &match) { if (!of_property_read_bool(np, "interrupt-controller") || !of_device_is_available(np)) continue; if (WARN(!match->data, "of_irq_init: no init function for %s\n", match->compatible)) continue; /* * Here, we allocate and populate an of_intc_desc with the node * pointer, interrupt-parent device_node etc. */ desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) { of_node_put(np); goto err; } desc->irq_init_cb = match->data; desc->dev = of_node_get(np); desc->interrupt_parent = of_irq_find_parent(np); if (desc->interrupt_parent == np) desc->interrupt_parent = NULL; list_add_tail(&desc->list, &intc_desc_list); } /* * The root irq controller is the one without an interrupt-parent. * That one goes first, followed by the controllers that reference it, * followed by the ones that reference the 2nd level controllers, etc. */ while (!list_empty(&intc_desc_list)) { /* * Process all controllers with the current 'parent'. * First pass will be looking for NULL as the parent. * The assumption is that NULL parent means a root controller. */ list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { int ret; if (desc->interrupt_parent != parent) continue; list_del(&desc->list); of_node_set_flag(desc->dev, OF_POPULATED); pr_debug("of_irq_init: init %pOF (%p), parent %p\n", desc->dev, desc->dev, desc->interrupt_parent); ret = desc->irq_init_cb(desc->dev, desc->interrupt_parent); if (ret) { of_node_clear_flag(desc->dev, OF_POPULATED); kfree(desc); continue; } /* * This one is now set up; add it to the parent list so * its children can get processed in a subsequent pass. */ list_add_tail(&desc->list, &intc_parent_list); } /* Get the next pending parent that might have children */ desc = list_first_entry_or_null(&intc_parent_list, typeof(*desc), list); if (!desc) { pr_err("of_irq_init: children remain, but no parents\n"); break; } list_del(&desc->list); parent = desc->dev; kfree(desc); } list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) { list_del(&desc->list); kfree(desc); } err: list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { list_del(&desc->list); of_node_put(desc->dev); kfree(desc); } } static u32 __of_msi_map_rid(struct device *dev, struct device_node **np, u32 rid_in) { struct device *parent_dev; u32 rid_out = rid_in; /* * Walk up the device parent links looking for one with a * "msi-map" property. */ for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent) if (!of_map_rid(parent_dev->of_node, rid_in, "msi-map", "msi-map-mask", np, &rid_out)) break; return rid_out; } /** * of_msi_map_rid - Map a MSI requester ID for a device. * @dev: device for which the mapping is to be done. * @msi_np: device node of the expected msi controller. * @rid_in: unmapped MSI requester ID for the device. * * Walk up the device hierarchy looking for devices with a "msi-map" * property. If found, apply the mapping to @rid_in. * * Returns the mapped MSI requester ID. */ u32 of_msi_map_rid(struct device *dev, struct device_node *msi_np, u32 rid_in) { return __of_msi_map_rid(dev, &msi_np, rid_in); } /** * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain * @dev: device for which the mapping is to be done. * @rid: Requester ID for the device. * * Walk up the device hierarchy looking for devices with a "msi-map" * property. * * Returns: the MSI domain for this device (or NULL on failure) */ struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 rid) { struct device_node *np = NULL; __of_msi_map_rid(dev, &np, rid); return irq_find_matching_host(np, DOMAIN_BUS_PCI_MSI); } /** * of_msi_get_domain - Use msi-parent to find the relevant MSI domain * @dev: device for which the domain is requested * @np: device node for @dev * @token: bus type for this domain * * Parse the msi-parent property (both the simple and the complex * versions), and returns the corresponding MSI domain. * * Returns: the MSI domain for this device (or NULL on failure). */ struct irq_domain *of_msi_get_domain(struct device *dev, struct device_node *np, enum irq_domain_bus_token token) { struct device_node *msi_np; struct irq_domain *d; /* Check for a single msi-parent property */ msi_np = of_parse_phandle(np, "msi-parent", 0); if (msi_np && !of_property_read_bool(msi_np, "#msi-cells")) { d = irq_find_matching_host(msi_np, token); if (!d) of_node_put(msi_np); return d; } if (token == DOMAIN_BUS_PLATFORM_MSI) { /* Check for the complex msi-parent version */ struct of_phandle_args args; int index = 0; while (!of_parse_phandle_with_args(np, "msi-parent", "#msi-cells", index, &args)) { d = irq_find_matching_host(args.np, token); if (d) return d; of_node_put(args.np); index++; } } return NULL; } /** * of_msi_configure - Set the msi_domain field of a device * @dev: device structure to associate with an MSI irq domain * @np: device node for that device */ void of_msi_configure(struct device *dev, struct device_node *np) { dev_set_msi_domain(dev, of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI)); } EXPORT_SYMBOL_GPL(of_msi_configure);