// SPDX-License-Identifier: GPL-2.0-only /* * sl28cpld PWM driver * * Copyright (c) 2020 Michael Walle <michael@walle.cc> * * There is no public datasheet available for this PWM core. But it is easy * enough to be briefly explained. It consists of one 8-bit counter. The PWM * supports four distinct frequencies by selecting when to reset the counter. * With the prescaler setting you can select which bit of the counter is used * to reset it. This implies that the higher the frequency the less remaining * bits are available for the actual counter. * * Let cnt[7:0] be the counter, clocked at 32kHz: * +-----------+--------+--------------+-----------+---------------+ * | prescaler | reset | counter bits | frequency | period length | * +-----------+--------+--------------+-----------+---------------+ * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns | * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns | * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns | * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns | * +-----------+--------+--------------+-----------+---------------+ * * Limitations: * - The hardware cannot generate a 100% duty cycle if the prescaler is 0. * - The hardware cannot atomically set the prescaler and the counter value, * which might lead to glitches and inconsistent states if a write fails. * - The counter is not reset if you switch the prescaler which leads * to glitches, too. * - The duty cycle will switch immediately and not after a complete cycle. * - Depending on the actual implementation, disabling the PWM might have * side effects. For example, if the output pin is shared with a GPIO pin * it will automatically switch back to GPIO mode. */ #include <linux/bitfield.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/pwm.h> #include <linux/regmap.h> /* * PWM timer block registers. */ #define SL28CPLD_PWM_CTRL 0x00 #define SL28CPLD_PWM_CTRL_ENABLE BIT(7) #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0) #define SL28CPLD_PWM_CYCLE 0x01 #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0) #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */ #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler))) #define SL28CPLD_PWM_PERIOD(prescaler) \ (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)) /* * We calculate the duty cycle like this: * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle * * With * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC * max_duty_cycle = 1 << (7 - prescaler) * this then simplifies to: * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg * * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing * precision by doing the divison first. */ #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \ (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg)) #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \ (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK)) #define sl28cpld_pwm_read(priv, reg, val) \ regmap_read((priv)->regmap, (priv)->offset + (reg), (val)) #define sl28cpld_pwm_write(priv, reg, val) \ regmap_write((priv)->regmap, (priv)->offset + (reg), (val)) struct sl28cpld_pwm { struct pwm_chip chip; struct regmap *regmap; u32 offset; }; static inline struct sl28cpld_pwm *sl28cpld_pwm_from_chip(struct pwm_chip *chip) { return container_of(chip, struct sl28cpld_pwm, chip); } static int sl28cpld_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); unsigned int reg; int prescaler; sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®); state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE; prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg); state->period = SL28CPLD_PWM_PERIOD(prescaler); sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®); state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg); state->polarity = PWM_POLARITY_NORMAL; /* * Sanitize values for the PWM core. Depending on the prescaler it * might happen that we calculate a duty_cycle greater than the actual * period. This might happen if someone (e.g. the bootloader) sets an * invalid combination of values. The behavior of the hardware is * undefined in this case. But we need to report sane values back to * the PWM core. */ state->duty_cycle = min(state->duty_cycle, state->period); return 0; } static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); unsigned int cycle, prescaler; bool write_duty_cycle_first; int ret; u8 ctrl; /* Polarity inversion is not supported */ if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; /* * Calculate the prescaler. Pick the biggest period that isn't * bigger than the requested period. */ prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period); prescaler = order_base_2(prescaler); if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK)) return -ERANGE; ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler); if (state->enabled) ctrl |= SL28CPLD_PWM_CTRL_ENABLE; cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle); cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)); /* * Work around the hardware limitation. See also above. Trap 100% duty * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't * care about the frequency because its "all-one" in either case. * * We don't need to check the actual prescaler setting, because only * if the prescaler is 0 we can have this particular value. */ if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) { ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK; ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1); cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1); } /* * To avoid glitches when we switch the prescaler, we have to make sure * we have a valid duty cycle for the new mode. * * Take the current prescaler (or the current period length) into * account to decide whether we have to write the duty cycle or the new * prescaler first. If the period length is decreasing we have to * write the duty cycle first. */ write_duty_cycle_first = pwm->state.period > state->period; if (write_duty_cycle_first) { ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); if (ret) return ret; } ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl); if (ret) return ret; if (!write_duty_cycle_first) { ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); if (ret) return ret; } return 0; } static const struct pwm_ops sl28cpld_pwm_ops = { .apply = sl28cpld_pwm_apply, .get_state = sl28cpld_pwm_get_state, }; static int sl28cpld_pwm_probe(struct platform_device *pdev) { struct sl28cpld_pwm *priv; struct pwm_chip *chip; int ret; if (!pdev->dev.parent) { dev_err(&pdev->dev, "no parent device\n"); return -ENODEV; } priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!priv->regmap) { dev_err(&pdev->dev, "could not get parent regmap\n"); return -ENODEV; } ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset); if (ret) { dev_err(&pdev->dev, "no 'reg' property found (%pe)\n", ERR_PTR(ret)); return -EINVAL; } /* Initialize the pwm_chip structure */ chip = &priv->chip; chip->dev = &pdev->dev; chip->ops = &sl28cpld_pwm_ops; chip->npwm = 1; ret = devm_pwmchip_add(&pdev->dev, chip); if (ret) { dev_err(&pdev->dev, "failed to add PWM chip (%pe)", ERR_PTR(ret)); return ret; } return 0; } static const struct of_device_id sl28cpld_pwm_of_match[] = { { .compatible = "kontron,sl28cpld-pwm" }, {} }; MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match); static struct platform_driver sl28cpld_pwm_driver = { .probe = sl28cpld_pwm_probe, .driver = { .name = "sl28cpld-pwm", .of_match_table = sl28cpld_pwm_of_match, }, }; module_platform_driver(sl28cpld_pwm_driver); MODULE_DESCRIPTION("sl28cpld PWM Driver"); MODULE_AUTHOR("Michael Walle <michael@walle.cc>"); MODULE_LICENSE("GPL");