// SPDX-License-Identifier: GPL-2.0-only /* * SPI-Engine SPI controller driver * Copyright 2015 Analog Devices Inc. * Author: Lars-Peter Clausen */ #include #include #include #include #include #include #include #include #include #include #include #define SPI_ENGINE_REG_RESET 0x40 #define SPI_ENGINE_REG_INT_ENABLE 0x80 #define SPI_ENGINE_REG_INT_PENDING 0x84 #define SPI_ENGINE_REG_INT_SOURCE 0x88 #define SPI_ENGINE_REG_SYNC_ID 0xc0 #define SPI_ENGINE_REG_CMD_FIFO_ROOM 0xd0 #define SPI_ENGINE_REG_SDO_FIFO_ROOM 0xd4 #define SPI_ENGINE_REG_SDI_FIFO_LEVEL 0xd8 #define SPI_ENGINE_REG_CMD_FIFO 0xe0 #define SPI_ENGINE_REG_SDO_DATA_FIFO 0xe4 #define SPI_ENGINE_REG_SDI_DATA_FIFO 0xe8 #define SPI_ENGINE_REG_SDI_DATA_FIFO_PEEK 0xec #define SPI_ENGINE_INT_CMD_ALMOST_EMPTY BIT(0) #define SPI_ENGINE_INT_SDO_ALMOST_EMPTY BIT(1) #define SPI_ENGINE_INT_SDI_ALMOST_FULL BIT(2) #define SPI_ENGINE_INT_SYNC BIT(3) #define SPI_ENGINE_CONFIG_CPHA BIT(0) #define SPI_ENGINE_CONFIG_CPOL BIT(1) #define SPI_ENGINE_CONFIG_3WIRE BIT(2) #define SPI_ENGINE_CONFIG_SDO_IDLE_HIGH BIT(3) #define SPI_ENGINE_INST_TRANSFER 0x0 #define SPI_ENGINE_INST_ASSERT 0x1 #define SPI_ENGINE_INST_WRITE 0x2 #define SPI_ENGINE_INST_MISC 0x3 #define SPI_ENGINE_INST_CS_INV 0x4 #define SPI_ENGINE_CMD_REG_CLK_DIV 0x0 #define SPI_ENGINE_CMD_REG_CONFIG 0x1 #define SPI_ENGINE_CMD_REG_XFER_BITS 0x2 #define SPI_ENGINE_MISC_SYNC 0x0 #define SPI_ENGINE_MISC_SLEEP 0x1 #define SPI_ENGINE_TRANSFER_WRITE 0x1 #define SPI_ENGINE_TRANSFER_READ 0x2 /* Arbitrary sync ID for use by host->cur_msg */ #define AXI_SPI_ENGINE_CUR_MSG_SYNC_ID 0x1 #define SPI_ENGINE_CMD(inst, arg1, arg2) \ (((inst) << 12) | ((arg1) << 8) | (arg2)) #define SPI_ENGINE_CMD_TRANSFER(flags, n) \ SPI_ENGINE_CMD(SPI_ENGINE_INST_TRANSFER, (flags), (n)) #define SPI_ENGINE_CMD_ASSERT(delay, cs) \ SPI_ENGINE_CMD(SPI_ENGINE_INST_ASSERT, (delay), (cs)) #define SPI_ENGINE_CMD_WRITE(reg, val) \ SPI_ENGINE_CMD(SPI_ENGINE_INST_WRITE, (reg), (val)) #define SPI_ENGINE_CMD_SLEEP(delay) \ SPI_ENGINE_CMD(SPI_ENGINE_INST_MISC, SPI_ENGINE_MISC_SLEEP, (delay)) #define SPI_ENGINE_CMD_SYNC(id) \ SPI_ENGINE_CMD(SPI_ENGINE_INST_MISC, SPI_ENGINE_MISC_SYNC, (id)) #define SPI_ENGINE_CMD_CS_INV(flags) \ SPI_ENGINE_CMD(SPI_ENGINE_INST_CS_INV, 0, (flags)) struct spi_engine_program { unsigned int length; uint16_t instructions[] __counted_by(length); }; /** * struct spi_engine_message_state - SPI engine per-message state */ struct spi_engine_message_state { /** @cmd_length: Number of elements in cmd_buf array. */ unsigned cmd_length; /** @cmd_buf: Array of commands not yet written to CMD FIFO. */ const uint16_t *cmd_buf; /** @tx_xfer: Next xfer with tx_buf not yet fully written to TX FIFO. */ struct spi_transfer *tx_xfer; /** @tx_length: Size of tx_buf in bytes. */ unsigned int tx_length; /** @tx_buf: Bytes not yet written to TX FIFO. */ const uint8_t *tx_buf; /** @rx_xfer: Next xfer with rx_buf not yet fully written to RX FIFO. */ struct spi_transfer *rx_xfer; /** @rx_length: Size of tx_buf in bytes. */ unsigned int rx_length; /** @rx_buf: Bytes not yet written to the RX FIFO. */ uint8_t *rx_buf; }; struct spi_engine { struct clk *clk; struct clk *ref_clk; spinlock_t lock; void __iomem *base; struct spi_engine_message_state msg_state; struct completion msg_complete; unsigned int int_enable; /* shadows hardware CS inversion flag state */ u8 cs_inv; }; static void spi_engine_program_add_cmd(struct spi_engine_program *p, bool dry, uint16_t cmd) { p->length++; if (!dry) p->instructions[p->length - 1] = cmd; } static unsigned int spi_engine_get_config(struct spi_device *spi) { unsigned int config = 0; if (spi->mode & SPI_CPOL) config |= SPI_ENGINE_CONFIG_CPOL; if (spi->mode & SPI_CPHA) config |= SPI_ENGINE_CONFIG_CPHA; if (spi->mode & SPI_3WIRE) config |= SPI_ENGINE_CONFIG_3WIRE; if (spi->mode & SPI_MOSI_IDLE_HIGH) config |= SPI_ENGINE_CONFIG_SDO_IDLE_HIGH; if (spi->mode & SPI_MOSI_IDLE_LOW) config &= ~SPI_ENGINE_CONFIG_SDO_IDLE_HIGH; return config; } static void spi_engine_gen_xfer(struct spi_engine_program *p, bool dry, struct spi_transfer *xfer) { unsigned int len; if (xfer->bits_per_word <= 8) len = xfer->len; else if (xfer->bits_per_word <= 16) len = xfer->len / 2; else len = xfer->len / 4; while (len) { unsigned int n = min(len, 256U); unsigned int flags = 0; if (xfer->tx_buf) flags |= SPI_ENGINE_TRANSFER_WRITE; if (xfer->rx_buf) flags |= SPI_ENGINE_TRANSFER_READ; spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_TRANSFER(flags, n - 1)); len -= n; } } static void spi_engine_gen_sleep(struct spi_engine_program *p, bool dry, int delay_ns, int inst_ns, u32 sclk_hz) { unsigned int t; /* * Negative delay indicates error, e.g. from spi_delay_to_ns(). And if * delay is less that the instruction execution time, there is no need * for an extra sleep instruction since the instruction execution time * will already cover the required delay. */ if (delay_ns < 0 || delay_ns <= inst_ns) return; t = DIV_ROUND_UP_ULL((u64)(delay_ns - inst_ns) * sclk_hz, NSEC_PER_SEC); while (t) { unsigned int n = min(t, 256U); spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_SLEEP(n - 1)); t -= n; } } static void spi_engine_gen_cs(struct spi_engine_program *p, bool dry, struct spi_device *spi, bool assert) { unsigned int mask = 0xff; if (assert) mask ^= BIT(spi_get_chipselect(spi, 0)); spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_ASSERT(0, mask)); } /* * Performs precompile steps on the message. * * The SPI core does most of the message/transfer validation and filling in * fields for us via __spi_validate(). This fixes up anything remaining not * done there. * * NB: This is separate from spi_engine_compile_message() because the latter * is called twice and would otherwise result in double-evaluation. */ static void spi_engine_precompile_message(struct spi_message *msg) { unsigned int clk_div, max_hz = msg->spi->controller->max_speed_hz; struct spi_transfer *xfer; list_for_each_entry(xfer, &msg->transfers, transfer_list) { clk_div = DIV_ROUND_UP(max_hz, xfer->speed_hz); xfer->effective_speed_hz = max_hz / min(clk_div, 256U); } } static void spi_engine_compile_message(struct spi_message *msg, bool dry, struct spi_engine_program *p) { struct spi_device *spi = msg->spi; struct spi_controller *host = spi->controller; struct spi_transfer *xfer; int clk_div, new_clk_div, inst_ns; bool keep_cs = false; u8 bits_per_word = 0; /* * Take into account instruction execution time for more accurate sleep * times, especially when the delay is small. */ inst_ns = DIV_ROUND_UP(NSEC_PER_SEC, host->max_speed_hz); clk_div = 1; spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_CONFIG, spi_engine_get_config(spi))); xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); spi_engine_gen_cs(p, dry, spi, !xfer->cs_off); list_for_each_entry(xfer, &msg->transfers, transfer_list) { new_clk_div = host->max_speed_hz / xfer->effective_speed_hz; if (new_clk_div != clk_div) { clk_div = new_clk_div; /* actual divider used is register value + 1 */ spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_CLK_DIV, clk_div - 1)); } if (bits_per_word != xfer->bits_per_word && xfer->len) { bits_per_word = xfer->bits_per_word; spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_XFER_BITS, bits_per_word)); } spi_engine_gen_xfer(p, dry, xfer); spi_engine_gen_sleep(p, dry, spi_delay_to_ns(&xfer->delay, xfer), inst_ns, xfer->effective_speed_hz); if (xfer->cs_change) { if (list_is_last(&xfer->transfer_list, &msg->transfers)) { keep_cs = true; } else { if (!xfer->cs_off) spi_engine_gen_cs(p, dry, spi, false); spi_engine_gen_sleep(p, dry, spi_delay_to_ns( &xfer->cs_change_delay, xfer), inst_ns, xfer->effective_speed_hz); if (!list_next_entry(xfer, transfer_list)->cs_off) spi_engine_gen_cs(p, dry, spi, true); } } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { spi_engine_gen_cs(p, dry, spi, xfer->cs_off); } } if (!keep_cs) spi_engine_gen_cs(p, dry, spi, false); /* * Restore clockdiv to default so that future gen_sleep commands don't * have to be aware of the current register state. */ if (clk_div != 1) spi_engine_program_add_cmd(p, dry, SPI_ENGINE_CMD_WRITE(SPI_ENGINE_CMD_REG_CLK_DIV, 0)); } static void spi_engine_xfer_next(struct spi_message *msg, struct spi_transfer **_xfer) { struct spi_transfer *xfer = *_xfer; if (!xfer) { xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); } else if (list_is_last(&xfer->transfer_list, &msg->transfers)) { xfer = NULL; } else { xfer = list_next_entry(xfer, transfer_list); } *_xfer = xfer; } static void spi_engine_tx_next(struct spi_message *msg) { struct spi_engine_message_state *st = msg->state; struct spi_transfer *xfer = st->tx_xfer; do { spi_engine_xfer_next(msg, &xfer); } while (xfer && !xfer->tx_buf); st->tx_xfer = xfer; if (xfer) { st->tx_length = xfer->len; st->tx_buf = xfer->tx_buf; } else { st->tx_buf = NULL; } } static void spi_engine_rx_next(struct spi_message *msg) { struct spi_engine_message_state *st = msg->state; struct spi_transfer *xfer = st->rx_xfer; do { spi_engine_xfer_next(msg, &xfer); } while (xfer && !xfer->rx_buf); st->rx_xfer = xfer; if (xfer) { st->rx_length = xfer->len; st->rx_buf = xfer->rx_buf; } else { st->rx_buf = NULL; } } static bool spi_engine_write_cmd_fifo(struct spi_engine *spi_engine, struct spi_message *msg) { void __iomem *addr = spi_engine->base + SPI_ENGINE_REG_CMD_FIFO; struct spi_engine_message_state *st = msg->state; unsigned int n, m, i; const uint16_t *buf; n = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_CMD_FIFO_ROOM); while (n && st->cmd_length) { m = min(n, st->cmd_length); buf = st->cmd_buf; for (i = 0; i < m; i++) writel_relaxed(buf[i], addr); st->cmd_buf += m; st->cmd_length -= m; n -= m; } return st->cmd_length != 0; } static bool spi_engine_write_tx_fifo(struct spi_engine *spi_engine, struct spi_message *msg) { void __iomem *addr = spi_engine->base + SPI_ENGINE_REG_SDO_DATA_FIFO; struct spi_engine_message_state *st = msg->state; unsigned int n, m, i; n = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_SDO_FIFO_ROOM); while (n && st->tx_length) { if (st->tx_xfer->bits_per_word <= 8) { const u8 *buf = st->tx_buf; m = min(n, st->tx_length); for (i = 0; i < m; i++) writel_relaxed(buf[i], addr); st->tx_buf += m; st->tx_length -= m; } else if (st->tx_xfer->bits_per_word <= 16) { const u16 *buf = (const u16 *)st->tx_buf; m = min(n, st->tx_length / 2); for (i = 0; i < m; i++) writel_relaxed(buf[i], addr); st->tx_buf += m * 2; st->tx_length -= m * 2; } else { const u32 *buf = (const u32 *)st->tx_buf; m = min(n, st->tx_length / 4); for (i = 0; i < m; i++) writel_relaxed(buf[i], addr); st->tx_buf += m * 4; st->tx_length -= m * 4; } n -= m; if (st->tx_length == 0) spi_engine_tx_next(msg); } return st->tx_length != 0; } static bool spi_engine_read_rx_fifo(struct spi_engine *spi_engine, struct spi_message *msg) { void __iomem *addr = spi_engine->base + SPI_ENGINE_REG_SDI_DATA_FIFO; struct spi_engine_message_state *st = msg->state; unsigned int n, m, i; n = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_SDI_FIFO_LEVEL); while (n && st->rx_length) { if (st->rx_xfer->bits_per_word <= 8) { u8 *buf = st->rx_buf; m = min(n, st->rx_length); for (i = 0; i < m; i++) buf[i] = readl_relaxed(addr); st->rx_buf += m; st->rx_length -= m; } else if (st->rx_xfer->bits_per_word <= 16) { u16 *buf = (u16 *)st->rx_buf; m = min(n, st->rx_length / 2); for (i = 0; i < m; i++) buf[i] = readl_relaxed(addr); st->rx_buf += m * 2; st->rx_length -= m * 2; } else { u32 *buf = (u32 *)st->rx_buf; m = min(n, st->rx_length / 4); for (i = 0; i < m; i++) buf[i] = readl_relaxed(addr); st->rx_buf += m * 4; st->rx_length -= m * 4; } n -= m; if (st->rx_length == 0) spi_engine_rx_next(msg); } return st->rx_length != 0; } static irqreturn_t spi_engine_irq(int irq, void *devid) { struct spi_controller *host = devid; struct spi_message *msg = host->cur_msg; struct spi_engine *spi_engine = spi_controller_get_devdata(host); unsigned int disable_int = 0; unsigned int pending; int completed_id = -1; pending = readl_relaxed(spi_engine->base + SPI_ENGINE_REG_INT_PENDING); if (pending & SPI_ENGINE_INT_SYNC) { writel_relaxed(SPI_ENGINE_INT_SYNC, spi_engine->base + SPI_ENGINE_REG_INT_PENDING); completed_id = readl_relaxed( spi_engine->base + SPI_ENGINE_REG_SYNC_ID); } spin_lock(&spi_engine->lock); if (pending & SPI_ENGINE_INT_CMD_ALMOST_EMPTY) { if (!spi_engine_write_cmd_fifo(spi_engine, msg)) disable_int |= SPI_ENGINE_INT_CMD_ALMOST_EMPTY; } if (pending & SPI_ENGINE_INT_SDO_ALMOST_EMPTY) { if (!spi_engine_write_tx_fifo(spi_engine, msg)) disable_int |= SPI_ENGINE_INT_SDO_ALMOST_EMPTY; } if (pending & (SPI_ENGINE_INT_SDI_ALMOST_FULL | SPI_ENGINE_INT_SYNC)) { if (!spi_engine_read_rx_fifo(spi_engine, msg)) disable_int |= SPI_ENGINE_INT_SDI_ALMOST_FULL; } if (pending & SPI_ENGINE_INT_SYNC && msg) { if (completed_id == AXI_SPI_ENGINE_CUR_MSG_SYNC_ID) { msg->status = 0; msg->actual_length = msg->frame_length; complete(&spi_engine->msg_complete); disable_int |= SPI_ENGINE_INT_SYNC; } } if (disable_int) { spi_engine->int_enable &= ~disable_int; writel_relaxed(spi_engine->int_enable, spi_engine->base + SPI_ENGINE_REG_INT_ENABLE); } spin_unlock(&spi_engine->lock); return IRQ_HANDLED; } static int spi_engine_optimize_message(struct spi_message *msg) { struct spi_engine_program p_dry, *p; spi_engine_precompile_message(msg); p_dry.length = 0; spi_engine_compile_message(msg, true, &p_dry); p = kzalloc(struct_size(p, instructions, p_dry.length + 1), GFP_KERNEL); if (!p) return -ENOMEM; spi_engine_compile_message(msg, false, p); spi_engine_program_add_cmd(p, false, SPI_ENGINE_CMD_SYNC( AXI_SPI_ENGINE_CUR_MSG_SYNC_ID)); msg->opt_state = p; return 0; } static int spi_engine_unoptimize_message(struct spi_message *msg) { kfree(msg->opt_state); return 0; } static int spi_engine_setup(struct spi_device *device) { struct spi_controller *host = device->controller; struct spi_engine *spi_engine = spi_controller_get_devdata(host); if (device->mode & SPI_CS_HIGH) spi_engine->cs_inv |= BIT(spi_get_chipselect(device, 0)); else spi_engine->cs_inv &= ~BIT(spi_get_chipselect(device, 0)); writel_relaxed(SPI_ENGINE_CMD_CS_INV(spi_engine->cs_inv), spi_engine->base + SPI_ENGINE_REG_CMD_FIFO); /* * In addition to setting the flags, we have to do a CS assert command * to make the new setting actually take effect. */ writel_relaxed(SPI_ENGINE_CMD_ASSERT(0, 0xff), spi_engine->base + SPI_ENGINE_REG_CMD_FIFO); return 0; } static int spi_engine_transfer_one_message(struct spi_controller *host, struct spi_message *msg) { struct spi_engine *spi_engine = spi_controller_get_devdata(host); struct spi_engine_message_state *st = &spi_engine->msg_state; struct spi_engine_program *p = msg->opt_state; unsigned int int_enable = 0; unsigned long flags; /* reinitialize message state for this transfer */ memset(st, 0, sizeof(*st)); st->cmd_buf = p->instructions; st->cmd_length = p->length; msg->state = st; reinit_completion(&spi_engine->msg_complete); if (trace_spi_transfer_start_enabled()) { struct spi_transfer *xfer; list_for_each_entry(xfer, &msg->transfers, transfer_list) trace_spi_transfer_start(msg, xfer); } spin_lock_irqsave(&spi_engine->lock, flags); if (spi_engine_write_cmd_fifo(spi_engine, msg)) int_enable |= SPI_ENGINE_INT_CMD_ALMOST_EMPTY; spi_engine_tx_next(msg); if (spi_engine_write_tx_fifo(spi_engine, msg)) int_enable |= SPI_ENGINE_INT_SDO_ALMOST_EMPTY; spi_engine_rx_next(msg); if (st->rx_length != 0) int_enable |= SPI_ENGINE_INT_SDI_ALMOST_FULL; int_enable |= SPI_ENGINE_INT_SYNC; writel_relaxed(int_enable, spi_engine->base + SPI_ENGINE_REG_INT_ENABLE); spi_engine->int_enable = int_enable; spin_unlock_irqrestore(&spi_engine->lock, flags); if (!wait_for_completion_timeout(&spi_engine->msg_complete, msecs_to_jiffies(5000))) { dev_err(&host->dev, "Timeout occurred while waiting for transfer to complete. Hardware is probably broken.\n"); msg->status = -ETIMEDOUT; } if (trace_spi_transfer_stop_enabled()) { struct spi_transfer *xfer; list_for_each_entry(xfer, &msg->transfers, transfer_list) trace_spi_transfer_stop(msg, xfer); } spi_finalize_current_message(host); return msg->status; } static void spi_engine_release_hw(void *p) { struct spi_engine *spi_engine = p; writel_relaxed(0xff, spi_engine->base + SPI_ENGINE_REG_INT_PENDING); writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_INT_ENABLE); writel_relaxed(0x01, spi_engine->base + SPI_ENGINE_REG_RESET); } static int spi_engine_probe(struct platform_device *pdev) { struct spi_engine *spi_engine; struct spi_controller *host; unsigned int version; int irq; int ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; host = devm_spi_alloc_host(&pdev->dev, sizeof(*spi_engine)); if (!host) return -ENOMEM; spi_engine = spi_controller_get_devdata(host); spin_lock_init(&spi_engine->lock); init_completion(&spi_engine->msg_complete); spi_engine->clk = devm_clk_get_enabled(&pdev->dev, "s_axi_aclk"); if (IS_ERR(spi_engine->clk)) return PTR_ERR(spi_engine->clk); spi_engine->ref_clk = devm_clk_get_enabled(&pdev->dev, "spi_clk"); if (IS_ERR(spi_engine->ref_clk)) return PTR_ERR(spi_engine->ref_clk); spi_engine->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(spi_engine->base)) return PTR_ERR(spi_engine->base); version = readl(spi_engine->base + ADI_AXI_REG_VERSION); if (ADI_AXI_PCORE_VER_MAJOR(version) != 1) { dev_err(&pdev->dev, "Unsupported peripheral version %u.%u.%u\n", ADI_AXI_PCORE_VER_MAJOR(version), ADI_AXI_PCORE_VER_MINOR(version), ADI_AXI_PCORE_VER_PATCH(version)); return -ENODEV; } writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_RESET); writel_relaxed(0xff, spi_engine->base + SPI_ENGINE_REG_INT_PENDING); writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_INT_ENABLE); ret = devm_add_action_or_reset(&pdev->dev, spi_engine_release_hw, spi_engine); if (ret) return ret; ret = devm_request_irq(&pdev->dev, irq, spi_engine_irq, 0, pdev->name, host); if (ret) return ret; host->dev.of_node = pdev->dev.of_node; host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE; host->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32); host->max_speed_hz = clk_get_rate(spi_engine->ref_clk) / 2; host->transfer_one_message = spi_engine_transfer_one_message; host->optimize_message = spi_engine_optimize_message; host->unoptimize_message = spi_engine_unoptimize_message; host->num_chipselect = 8; /* Some features depend of the IP core version. */ if (ADI_AXI_PCORE_VER_MAJOR(version) >= 1) { if (ADI_AXI_PCORE_VER_MINOR(version) >= 2) { host->mode_bits |= SPI_CS_HIGH; host->setup = spi_engine_setup; } if (ADI_AXI_PCORE_VER_MINOR(version) >= 3) host->mode_bits |= SPI_MOSI_IDLE_LOW | SPI_MOSI_IDLE_HIGH; } if (host->max_speed_hz == 0) return dev_err_probe(&pdev->dev, -EINVAL, "spi_clk rate is 0"); return devm_spi_register_controller(&pdev->dev, host); } static const struct of_device_id spi_engine_match_table[] = { { .compatible = "adi,axi-spi-engine-1.00.a" }, { }, }; MODULE_DEVICE_TABLE(of, spi_engine_match_table); static struct platform_driver spi_engine_driver = { .probe = spi_engine_probe, .driver = { .name = "spi-engine", .of_match_table = spi_engine_match_table, }, }; module_platform_driver(spi_engine_driver); MODULE_AUTHOR("Lars-Peter Clausen "); MODULE_DESCRIPTION("Analog Devices SPI engine peripheral driver"); MODULE_LICENSE("GPL");