// SPDX-License-Identifier: GPL-2.0 /* * USB hub driver. * * (C) Copyright 1999 Linus Torvalds * (C) Copyright 1999 Johannes Erdfelt * (C) Copyright 1999 Gregory P. Smith * (C) Copyright 2001 Brad Hards (bhards@bigpond.net.au) * * Released under the GPLv2 only. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hub.h" #include "otg_productlist.h" #define USB_VENDOR_GENESYS_LOGIC 0x05e3 #define USB_VENDOR_SMSC 0x0424 #define USB_PRODUCT_USB5534B 0x5534 #define USB_VENDOR_CYPRESS 0x04b4 #define USB_PRODUCT_CY7C65632 0x6570 #define HUB_QUIRK_CHECK_PORT_AUTOSUSPEND 0x01 #define HUB_QUIRK_DISABLE_AUTOSUSPEND 0x02 #define USB_TP_TRANSMISSION_DELAY 40 /* ns */ #define USB_TP_TRANSMISSION_DELAY_MAX 65535 /* ns */ #define USB_PING_RESPONSE_TIME 400 /* ns */ /* Protect struct usb_device->state and ->children members * Note: Both are also protected by ->dev.sem, except that ->state can * change to USB_STATE_NOTATTACHED even when the semaphore isn't held. */ static DEFINE_SPINLOCK(device_state_lock); /* workqueue to process hub events */ static struct workqueue_struct *hub_wq; static void hub_event(struct work_struct *work); /* synchronize hub-port add/remove and peering operations */ DEFINE_MUTEX(usb_port_peer_mutex); /* cycle leds on hubs that aren't blinking for attention */ static bool blinkenlights; module_param(blinkenlights, bool, S_IRUGO); MODULE_PARM_DESC(blinkenlights, "true to cycle leds on hubs"); /* * Device SATA8000 FW1.0 from DATAST0R Technology Corp requires about * 10 seconds to send reply for the initial 64-byte descriptor request. */ /* define initial 64-byte descriptor request timeout in milliseconds */ static int initial_descriptor_timeout = USB_CTRL_GET_TIMEOUT; module_param(initial_descriptor_timeout, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(initial_descriptor_timeout, "initial 64-byte descriptor request timeout in milliseconds " "(default 5000 - 5.0 seconds)"); /* * As of 2.6.10 we introduce a new USB device initialization scheme which * closely resembles the way Windows works. Hopefully it will be compatible * with a wider range of devices than the old scheme. However some previously * working devices may start giving rise to "device not accepting address" * errors; if that happens the user can try the old scheme by adjusting the * following module parameters. * * For maximum flexibility there are two boolean parameters to control the * hub driver's behavior. On the first initialization attempt, if the * "old_scheme_first" parameter is set then the old scheme will be used, * otherwise the new scheme is used. If that fails and "use_both_schemes" * is set, then the driver will make another attempt, using the other scheme. */ static bool old_scheme_first; module_param(old_scheme_first, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(old_scheme_first, "start with the old device initialization scheme"); static bool use_both_schemes = true; module_param(use_both_schemes, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(use_both_schemes, "try the other device initialization scheme if the " "first one fails"); /* Mutual exclusion for EHCI CF initialization. This interferes with * port reset on some companion controllers. */ DECLARE_RWSEM(ehci_cf_port_reset_rwsem); EXPORT_SYMBOL_GPL(ehci_cf_port_reset_rwsem); #define HUB_DEBOUNCE_TIMEOUT 2000 #define HUB_DEBOUNCE_STEP 25 #define HUB_DEBOUNCE_STABLE 100 static void hub_release(struct kref *kref); static int usb_reset_and_verify_device(struct usb_device *udev); static int hub_port_disable(struct usb_hub *hub, int port1, int set_state); static bool hub_port_warm_reset_required(struct usb_hub *hub, int port1, u16 portstatus); static inline char *portspeed(struct usb_hub *hub, int portstatus) { if (hub_is_superspeedplus(hub->hdev)) return "10.0 Gb/s"; if (hub_is_superspeed(hub->hdev)) return "5.0 Gb/s"; if (portstatus & USB_PORT_STAT_HIGH_SPEED) return "480 Mb/s"; else if (portstatus & USB_PORT_STAT_LOW_SPEED) return "1.5 Mb/s"; else return "12 Mb/s"; } /* Note that hdev or one of its children must be locked! */ struct usb_hub *usb_hub_to_struct_hub(struct usb_device *hdev) { if (!hdev || !hdev->actconfig || !hdev->maxchild) return NULL; return usb_get_intfdata(hdev->actconfig->interface[0]); } int usb_device_supports_lpm(struct usb_device *udev) { /* Some devices have trouble with LPM */ if (udev->quirks & USB_QUIRK_NO_LPM) return 0; /* USB 2.1 (and greater) devices indicate LPM support through * their USB 2.0 Extended Capabilities BOS descriptor. */ if (udev->speed == USB_SPEED_HIGH || udev->speed == USB_SPEED_FULL) { if (udev->bos->ext_cap && (USB_LPM_SUPPORT & le32_to_cpu(udev->bos->ext_cap->bmAttributes))) return 1; return 0; } /* * According to the USB 3.0 spec, all USB 3.0 devices must support LPM. * However, there are some that don't, and they set the U1/U2 exit * latencies to zero. */ if (!udev->bos->ss_cap) { dev_info(&udev->dev, "No LPM exit latency info found, disabling LPM.\n"); return 0; } if (udev->bos->ss_cap->bU1devExitLat == 0 && udev->bos->ss_cap->bU2DevExitLat == 0) { if (udev->parent) dev_info(&udev->dev, "LPM exit latency is zeroed, disabling LPM.\n"); else dev_info(&udev->dev, "We don't know the algorithms for LPM for this host, disabling LPM.\n"); return 0; } if (!udev->parent || udev->parent->lpm_capable) return 1; return 0; } /* * Set the Maximum Exit Latency (MEL) for the host to wakup up the path from * U1/U2, send a PING to the device and receive a PING_RESPONSE. * See USB 3.1 section C.1.5.2 */ static void usb_set_lpm_mel(struct usb_device *udev, struct usb3_lpm_parameters *udev_lpm_params, unsigned int udev_exit_latency, struct usb_hub *hub, struct usb3_lpm_parameters *hub_lpm_params, unsigned int hub_exit_latency) { unsigned int total_mel; /* * tMEL1. time to transition path from host to device into U0. * MEL for parent already contains the delay up to parent, so only add * the exit latency for the last link (pick the slower exit latency), * and the hub header decode latency. See USB 3.1 section C 2.2.1 * Store MEL in nanoseconds */ total_mel = hub_lpm_params->mel + max(udev_exit_latency, hub_exit_latency) * 1000 + hub->descriptor->u.ss.bHubHdrDecLat * 100; /* * tMEL2. Time to submit PING packet. Sum of tTPTransmissionDelay for * each link + wHubDelay for each hub. Add only for last link. * tMEL4, the time for PING_RESPONSE to traverse upstream is similar. * Multiply by 2 to include it as well. */ total_mel += (__le16_to_cpu(hub->descriptor->u.ss.wHubDelay) + USB_TP_TRANSMISSION_DELAY) * 2; /* * tMEL3, tPingResponse. Time taken by device to generate PING_RESPONSE * after receiving PING. Also add 2100ns as stated in USB 3.1 C 1.5.2.4 * to cover the delay if the PING_RESPONSE is queued behind a Max Packet * Size DP. * Note these delays should be added only once for the entire path, so * add them to the MEL of the device connected to the roothub. */ if (!hub->hdev->parent) total_mel += USB_PING_RESPONSE_TIME + 2100; udev_lpm_params->mel = total_mel; } /* * Set the maximum Device to Host Exit Latency (PEL) for the device to initiate * a transition from either U1 or U2. */ static void usb_set_lpm_pel(struct usb_device *udev, struct usb3_lpm_parameters *udev_lpm_params, unsigned int udev_exit_latency, struct usb_hub *hub, struct usb3_lpm_parameters *hub_lpm_params, unsigned int hub_exit_latency, unsigned int port_to_port_exit_latency) { unsigned int first_link_pel; unsigned int hub_pel; /* * First, the device sends an LFPS to transition the link between the * device and the parent hub into U0. The exit latency is the bigger of * the device exit latency or the hub exit latency. */ if (udev_exit_latency > hub_exit_latency) first_link_pel = udev_exit_latency * 1000; else first_link_pel = hub_exit_latency * 1000; /* * When the hub starts to receive the LFPS, there is a slight delay for * it to figure out that one of the ports is sending an LFPS. Then it * will forward the LFPS to its upstream link. The exit latency is the * delay, plus the PEL that we calculated for this hub. */ hub_pel = port_to_port_exit_latency * 1000 + hub_lpm_params->pel; /* * According to figure C-7 in the USB 3.0 spec, the PEL for this device * is the greater of the two exit latencies. */ if (first_link_pel > hub_pel) udev_lpm_params->pel = first_link_pel; else udev_lpm_params->pel = hub_pel; } /* * Set the System Exit Latency (SEL) to indicate the total worst-case time from * when a device initiates a transition to U0, until when it will receive the * first packet from the host controller. * * Section C.1.5.1 describes the four components to this: * - t1: device PEL * - t2: time for the ERDY to make it from the device to the host. * - t3: a host-specific delay to process the ERDY. * - t4: time for the packet to make it from the host to the device. * * t3 is specific to both the xHCI host and the platform the host is integrated * into. The Intel HW folks have said it's negligible, FIXME if a different * vendor says otherwise. */ static void usb_set_lpm_sel(struct usb_device *udev, struct usb3_lpm_parameters *udev_lpm_params) { struct usb_device *parent; unsigned int num_hubs; unsigned int total_sel; /* t1 = device PEL */ total_sel = udev_lpm_params->pel; /* How many external hubs are in between the device & the root port. */ for (parent = udev->parent, num_hubs = 0; parent->parent; parent = parent->parent) num_hubs++; /* t2 = 2.1us + 250ns * (num_hubs - 1) */ if (num_hubs > 0) total_sel += 2100 + 250 * (num_hubs - 1); /* t4 = 250ns * num_hubs */ total_sel += 250 * num_hubs; udev_lpm_params->sel = total_sel; } static void usb_set_lpm_parameters(struct usb_device *udev) { struct usb_hub *hub; unsigned int port_to_port_delay; unsigned int udev_u1_del; unsigned int udev_u2_del; unsigned int hub_u1_del; unsigned int hub_u2_del; if (!udev->lpm_capable || udev->speed < USB_SPEED_SUPER) return; hub = usb_hub_to_struct_hub(udev->parent); /* It doesn't take time to transition the roothub into U0, since it * doesn't have an upstream link. */ if (!hub) return; udev_u1_del = udev->bos->ss_cap->bU1devExitLat; udev_u2_del = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat); hub_u1_del = udev->parent->bos->ss_cap->bU1devExitLat; hub_u2_del = le16_to_cpu(udev->parent->bos->ss_cap->bU2DevExitLat); usb_set_lpm_mel(udev, &udev->u1_params, udev_u1_del, hub, &udev->parent->u1_params, hub_u1_del); usb_set_lpm_mel(udev, &udev->u2_params, udev_u2_del, hub, &udev->parent->u2_params, hub_u2_del); /* * Appendix C, section C.2.2.2, says that there is a slight delay from * when the parent hub notices the downstream port is trying to * transition to U0 to when the hub initiates a U0 transition on its * upstream port. The section says the delays are tPort2PortU1EL and * tPort2PortU2EL, but it doesn't define what they are. * * The hub chapter, sections 10.4.2.4 and 10.4.2.5 seem to be talking * about the same delays. Use the maximum delay calculations from those * sections. For U1, it's tHubPort2PortExitLat, which is 1us max. For * U2, it's tHubPort2PortExitLat + U2DevExitLat - U1DevExitLat. I * assume the device exit latencies they are talking about are the hub * exit latencies. * * What do we do if the U2 exit latency is less than the U1 exit * latency? It's possible, although not likely... */ port_to_port_delay = 1; usb_set_lpm_pel(udev, &udev->u1_params, udev_u1_del, hub, &udev->parent->u1_params, hub_u1_del, port_to_port_delay); if (hub_u2_del > hub_u1_del) port_to_port_delay = 1 + hub_u2_del - hub_u1_del; else port_to_port_delay = 1 + hub_u1_del; usb_set_lpm_pel(udev, &udev->u2_params, udev_u2_del, hub, &udev->parent->u2_params, hub_u2_del, port_to_port_delay); /* Now that we've got PEL, calculate SEL. */ usb_set_lpm_sel(udev, &udev->u1_params); usb_set_lpm_sel(udev, &udev->u2_params); } /* USB 2.0 spec Section 11.24.4.5 */ static int get_hub_descriptor(struct usb_device *hdev, struct usb_hub_descriptor *desc) { int i, ret, size; unsigned dtype; if (hub_is_superspeed(hdev)) { dtype = USB_DT_SS_HUB; size = USB_DT_SS_HUB_SIZE; } else { dtype = USB_DT_HUB; size = sizeof(struct usb_hub_descriptor); } for (i = 0; i < 3; i++) { ret = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN | USB_RT_HUB, dtype << 8, 0, desc, size, USB_CTRL_GET_TIMEOUT); if (hub_is_superspeed(hdev)) { if (ret == size) return ret; } else if (ret >= USB_DT_HUB_NONVAR_SIZE + 2) { /* Make sure we have the DeviceRemovable field. */ size = USB_DT_HUB_NONVAR_SIZE + desc->bNbrPorts / 8 + 1; if (ret < size) return -EMSGSIZE; return ret; } } return -EINVAL; } /* * USB 2.0 spec Section 11.24.2.1 */ static int clear_hub_feature(struct usb_device *hdev, int feature) { return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), USB_REQ_CLEAR_FEATURE, USB_RT_HUB, feature, 0, NULL, 0, 1000); } /* * USB 2.0 spec Section 11.24.2.2 */ int usb_clear_port_feature(struct usb_device *hdev, int port1, int feature) { return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), USB_REQ_CLEAR_FEATURE, USB_RT_PORT, feature, port1, NULL, 0, 1000); } /* * USB 2.0 spec Section 11.24.2.13 */ static int set_port_feature(struct usb_device *hdev, int port1, int feature) { return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), USB_REQ_SET_FEATURE, USB_RT_PORT, feature, port1, NULL, 0, 1000); } static char *to_led_name(int selector) { switch (selector) { case HUB_LED_AMBER: return "amber"; case HUB_LED_GREEN: return "green"; case HUB_LED_OFF: return "off"; case HUB_LED_AUTO: return "auto"; default: return "??"; } } /* * USB 2.0 spec Section 11.24.2.7.1.10 and table 11-7 * for info about using port indicators */ static void set_port_led(struct usb_hub *hub, int port1, int selector) { struct usb_port *port_dev = hub->ports[port1 - 1]; int status; status = set_port_feature(hub->hdev, (selector << 8) | port1, USB_PORT_FEAT_INDICATOR); dev_dbg(&port_dev->dev, "indicator %s status %d\n", to_led_name(selector), status); } #define LED_CYCLE_PERIOD ((2*HZ)/3) static void led_work(struct work_struct *work) { struct usb_hub *hub = container_of(work, struct usb_hub, leds.work); struct usb_device *hdev = hub->hdev; unsigned i; unsigned changed = 0; int cursor = -1; if (hdev->state != USB_STATE_CONFIGURED || hub->quiescing) return; for (i = 0; i < hdev->maxchild; i++) { unsigned selector, mode; /* 30%-50% duty cycle */ switch (hub->indicator[i]) { /* cycle marker */ case INDICATOR_CYCLE: cursor = i; selector = HUB_LED_AUTO; mode = INDICATOR_AUTO; break; /* blinking green = sw attention */ case INDICATOR_GREEN_BLINK: selector = HUB_LED_GREEN; mode = INDICATOR_GREEN_BLINK_OFF; break; case INDICATOR_GREEN_BLINK_OFF: selector = HUB_LED_OFF; mode = INDICATOR_GREEN_BLINK; break; /* blinking amber = hw attention */ case INDICATOR_AMBER_BLINK: selector = HUB_LED_AMBER; mode = INDICATOR_AMBER_BLINK_OFF; break; case INDICATOR_AMBER_BLINK_OFF: selector = HUB_LED_OFF; mode = INDICATOR_AMBER_BLINK; break; /* blink green/amber = reserved */ case INDICATOR_ALT_BLINK: selector = HUB_LED_GREEN; mode = INDICATOR_ALT_BLINK_OFF; break; case INDICATOR_ALT_BLINK_OFF: selector = HUB_LED_AMBER; mode = INDICATOR_ALT_BLINK; break; default: continue; } if (selector != HUB_LED_AUTO) changed = 1; set_port_led(hub, i + 1, selector); hub->indicator[i] = mode; } if (!changed && blinkenlights) { cursor++; cursor %= hdev->maxchild; set_port_led(hub, cursor + 1, HUB_LED_GREEN); hub->indicator[cursor] = INDICATOR_CYCLE; changed++; } if (changed) queue_delayed_work(system_power_efficient_wq, &hub->leds, LED_CYCLE_PERIOD); } /* use a short timeout for hub/port status fetches */ #define USB_STS_TIMEOUT 1000 #define USB_STS_RETRIES 5 /* * USB 2.0 spec Section 11.24.2.6 */ static int get_hub_status(struct usb_device *hdev, struct usb_hub_status *data) { int i, status = -ETIMEDOUT; for (i = 0; i < USB_STS_RETRIES && (status == -ETIMEDOUT || status == -EPIPE); i++) { status = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0), USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_HUB, 0, 0, data, sizeof(*data), USB_STS_TIMEOUT); } return status; } /* * USB 2.0 spec Section 11.24.2.7 * USB 3.1 takes into use the wValue and wLength fields, spec Section 10.16.2.6 */ static int get_port_status(struct usb_device *hdev, int port1, void *data, u16 value, u16 length) { int i, status = -ETIMEDOUT; for (i = 0; i < USB_STS_RETRIES && (status == -ETIMEDOUT || status == -EPIPE); i++) { status = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0), USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_PORT, value, port1, data, length, USB_STS_TIMEOUT); } return status; } static int hub_ext_port_status(struct usb_hub *hub, int port1, int type, u16 *status, u16 *change, u32 *ext_status) { int ret; int len = 4; if (type != HUB_PORT_STATUS) len = 8; mutex_lock(&hub->status_mutex); ret = get_port_status(hub->hdev, port1, &hub->status->port, type, len); if (ret < len) { if (ret != -ENODEV) dev_err(hub->intfdev, "%s failed (err = %d)\n", __func__, ret); if (ret >= 0) ret = -EIO; } else { *status = le16_to_cpu(hub->status->port.wPortStatus); *change = le16_to_cpu(hub->status->port.wPortChange); if (type != HUB_PORT_STATUS && ext_status) *ext_status = le32_to_cpu( hub->status->port.dwExtPortStatus); ret = 0; } mutex_unlock(&hub->status_mutex); return ret; } static int hub_port_status(struct usb_hub *hub, int port1, u16 *status, u16 *change) { return hub_ext_port_status(hub, port1, HUB_PORT_STATUS, status, change, NULL); } static void hub_resubmit_irq_urb(struct usb_hub *hub) { unsigned long flags; int status; spin_lock_irqsave(&hub->irq_urb_lock, flags); if (hub->quiescing) { spin_unlock_irqrestore(&hub->irq_urb_lock, flags); return; } status = usb_submit_urb(hub->urb, GFP_ATOMIC); if (status && status != -ENODEV && status != -EPERM && status != -ESHUTDOWN) { dev_err(hub->intfdev, "resubmit --> %d\n", status); mod_timer(&hub->irq_urb_retry, jiffies + HZ); } spin_unlock_irqrestore(&hub->irq_urb_lock, flags); } static void hub_retry_irq_urb(struct timer_list *t) { struct usb_hub *hub = from_timer(hub, t, irq_urb_retry); hub_resubmit_irq_urb(hub); } static void kick_hub_wq(struct usb_hub *hub) { struct usb_interface *intf; if (hub->disconnected || work_pending(&hub->events)) return; /* * Suppress autosuspend until the event is proceed. * * Be careful and make sure that the symmetric operation is * always called. We are here only when there is no pending * work for this hub. Therefore put the interface either when * the new work is called or when it is canceled. */ intf = to_usb_interface(hub->intfdev); usb_autopm_get_interface_no_resume(intf); kref_get(&hub->kref); if (queue_work(hub_wq, &hub->events)) return; /* the work has already been scheduled */ usb_autopm_put_interface_async(intf); kref_put(&hub->kref, hub_release); } void usb_kick_hub_wq(struct usb_device *hdev) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); if (hub) kick_hub_wq(hub); } /* * Let the USB core know that a USB 3.0 device has sent a Function Wake Device * Notification, which indicates it had initiated remote wakeup. * * USB 3.0 hubs do not report the port link state change from U3 to U0 when the * device initiates resume, so the USB core will not receive notice of the * resume through the normal hub interrupt URB. */ void usb_wakeup_notification(struct usb_device *hdev, unsigned int portnum) { struct usb_hub *hub; struct usb_port *port_dev; if (!hdev) return; hub = usb_hub_to_struct_hub(hdev); if (hub) { port_dev = hub->ports[portnum - 1]; if (port_dev && port_dev->child) pm_wakeup_event(&port_dev->child->dev, 0); set_bit(portnum, hub->wakeup_bits); kick_hub_wq(hub); } } EXPORT_SYMBOL_GPL(usb_wakeup_notification); /* completion function, fires on port status changes and various faults */ static void hub_irq(struct urb *urb) { struct usb_hub *hub = urb->context; int status = urb->status; unsigned i; unsigned long bits; switch (status) { case -ENOENT: /* synchronous unlink */ case -ECONNRESET: /* async unlink */ case -ESHUTDOWN: /* hardware going away */ return; default: /* presumably an error */ /* Cause a hub reset after 10 consecutive errors */ dev_dbg(hub->intfdev, "transfer --> %d\n", status); if ((++hub->nerrors < 10) || hub->error) goto resubmit; hub->error = status; fallthrough; /* let hub_wq handle things */ case 0: /* we got data: port status changed */ bits = 0; for (i = 0; i < urb->actual_length; ++i) bits |= ((unsigned long) ((*hub->buffer)[i])) << (i*8); hub->event_bits[0] = bits; break; } hub->nerrors = 0; /* Something happened, let hub_wq figure it out */ kick_hub_wq(hub); resubmit: hub_resubmit_irq_urb(hub); } /* USB 2.0 spec Section 11.24.2.3 */ static inline int hub_clear_tt_buffer(struct usb_device *hdev, u16 devinfo, u16 tt) { /* Need to clear both directions for control ep */ if (((devinfo >> 11) & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL) { int status = usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), HUB_CLEAR_TT_BUFFER, USB_RT_PORT, devinfo ^ 0x8000, tt, NULL, 0, 1000); if (status) return status; } return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), HUB_CLEAR_TT_BUFFER, USB_RT_PORT, devinfo, tt, NULL, 0, 1000); } /* * enumeration blocks hub_wq for a long time. we use keventd instead, since * long blocking there is the exception, not the rule. accordingly, HCDs * talking to TTs must queue control transfers (not just bulk and iso), so * both can talk to the same hub concurrently. */ static void hub_tt_work(struct work_struct *work) { struct usb_hub *hub = container_of(work, struct usb_hub, tt.clear_work); unsigned long flags; spin_lock_irqsave(&hub->tt.lock, flags); while (!list_empty(&hub->tt.clear_list)) { struct list_head *next; struct usb_tt_clear *clear; struct usb_device *hdev = hub->hdev; const struct hc_driver *drv; int status; next = hub->tt.clear_list.next; clear = list_entry(next, struct usb_tt_clear, clear_list); list_del(&clear->clear_list); /* drop lock so HCD can concurrently report other TT errors */ spin_unlock_irqrestore(&hub->tt.lock, flags); status = hub_clear_tt_buffer(hdev, clear->devinfo, clear->tt); if (status && status != -ENODEV) dev_err(&hdev->dev, "clear tt %d (%04x) error %d\n", clear->tt, clear->devinfo, status); /* Tell the HCD, even if the operation failed */ drv = clear->hcd->driver; if (drv->clear_tt_buffer_complete) (drv->clear_tt_buffer_complete)(clear->hcd, clear->ep); kfree(clear); spin_lock_irqsave(&hub->tt.lock, flags); } spin_unlock_irqrestore(&hub->tt.lock, flags); } /** * usb_hub_set_port_power - control hub port's power state * @hdev: USB device belonging to the usb hub * @hub: target hub * @port1: port index * @set: expected status * * call this function to control port's power via setting or * clearing the port's PORT_POWER feature. * * Return: 0 if successful. A negative error code otherwise. */ int usb_hub_set_port_power(struct usb_device *hdev, struct usb_hub *hub, int port1, bool set) { int ret; if (set) ret = set_port_feature(hdev, port1, USB_PORT_FEAT_POWER); else ret = usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_POWER); if (ret) return ret; if (set) set_bit(port1, hub->power_bits); else clear_bit(port1, hub->power_bits); return 0; } /** * usb_hub_clear_tt_buffer - clear control/bulk TT state in high speed hub * @urb: an URB associated with the failed or incomplete split transaction * * High speed HCDs use this to tell the hub driver that some split control or * bulk transaction failed in a way that requires clearing internal state of * a transaction translator. This is normally detected (and reported) from * interrupt context. * * It may not be possible for that hub to handle additional full (or low) * speed transactions until that state is fully cleared out. * * Return: 0 if successful. A negative error code otherwise. */ int usb_hub_clear_tt_buffer(struct urb *urb) { struct usb_device *udev = urb->dev; int pipe = urb->pipe; struct usb_tt *tt = udev->tt; unsigned long flags; struct usb_tt_clear *clear; /* we've got to cope with an arbitrary number of pending TT clears, * since each TT has "at least two" buffers that can need it (and * there can be many TTs per hub). even if they're uncommon. */ clear = kmalloc(sizeof *clear, GFP_ATOMIC); if (clear == NULL) { dev_err(&udev->dev, "can't save CLEAR_TT_BUFFER state\n"); /* FIXME recover somehow ... RESET_TT? */ return -ENOMEM; } /* info that CLEAR_TT_BUFFER needs */ clear->tt = tt->multi ? udev->ttport : 1; clear->devinfo = usb_pipeendpoint (pipe); clear->devinfo |= ((u16)udev->devaddr) << 4; clear->devinfo |= usb_pipecontrol(pipe) ? (USB_ENDPOINT_XFER_CONTROL << 11) : (USB_ENDPOINT_XFER_BULK << 11); if (usb_pipein(pipe)) clear->devinfo |= 1 << 15; /* info for completion callback */ clear->hcd = bus_to_hcd(udev->bus); clear->ep = urb->ep; /* tell keventd to clear state for this TT */ spin_lock_irqsave(&tt->lock, flags); list_add_tail(&clear->clear_list, &tt->clear_list); schedule_work(&tt->clear_work); spin_unlock_irqrestore(&tt->lock, flags); return 0; } EXPORT_SYMBOL_GPL(usb_hub_clear_tt_buffer); static void hub_power_on(struct usb_hub *hub, bool do_delay) { int port1; /* Enable power on each port. Some hubs have reserved values * of LPSM (> 2) in their descriptors, even though they are * USB 2.0 hubs. Some hubs do not implement port-power switching * but only emulate it. In all cases, the ports won't work * unless we send these messages to the hub. */ if (hub_is_port_power_switchable(hub)) dev_dbg(hub->intfdev, "enabling power on all ports\n"); else dev_dbg(hub->intfdev, "trying to enable port power on " "non-switchable hub\n"); for (port1 = 1; port1 <= hub->hdev->maxchild; port1++) if (test_bit(port1, hub->power_bits)) set_port_feature(hub->hdev, port1, USB_PORT_FEAT_POWER); else usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_POWER); if (do_delay) msleep(hub_power_on_good_delay(hub)); } static int hub_hub_status(struct usb_hub *hub, u16 *status, u16 *change) { int ret; mutex_lock(&hub->status_mutex); ret = get_hub_status(hub->hdev, &hub->status->hub); if (ret < 0) { if (ret != -ENODEV) dev_err(hub->intfdev, "%s failed (err = %d)\n", __func__, ret); } else { *status = le16_to_cpu(hub->status->hub.wHubStatus); *change = le16_to_cpu(hub->status->hub.wHubChange); ret = 0; } mutex_unlock(&hub->status_mutex); return ret; } static int hub_set_port_link_state(struct usb_hub *hub, int port1, unsigned int link_status) { return set_port_feature(hub->hdev, port1 | (link_status << 3), USB_PORT_FEAT_LINK_STATE); } /* * Disable a port and mark a logical connect-change event, so that some * time later hub_wq will disconnect() any existing usb_device on the port * and will re-enumerate if there actually is a device attached. */ static void hub_port_logical_disconnect(struct usb_hub *hub, int port1) { dev_dbg(&hub->ports[port1 - 1]->dev, "logical disconnect\n"); hub_port_disable(hub, port1, 1); /* FIXME let caller ask to power down the port: * - some devices won't enumerate without a VBUS power cycle * - SRP saves power that way * - ... new call, TBD ... * That's easy if this hub can switch power per-port, and * hub_wq reactivates the port later (timer, SRP, etc). * Powerdown must be optional, because of reset/DFU. */ set_bit(port1, hub->change_bits); kick_hub_wq(hub); } /** * usb_remove_device - disable a device's port on its parent hub * @udev: device to be disabled and removed * Context: @udev locked, must be able to sleep. * * After @udev's port has been disabled, hub_wq is notified and it will * see that the device has been disconnected. When the device is * physically unplugged and something is plugged in, the events will * be received and processed normally. * * Return: 0 if successful. A negative error code otherwise. */ int usb_remove_device(struct usb_device *udev) { struct usb_hub *hub; struct usb_interface *intf; int ret; if (!udev->parent) /* Can't remove a root hub */ return -EINVAL; hub = usb_hub_to_struct_hub(udev->parent); intf = to_usb_interface(hub->intfdev); ret = usb_autopm_get_interface(intf); if (ret < 0) return ret; set_bit(udev->portnum, hub->removed_bits); hub_port_logical_disconnect(hub, udev->portnum); usb_autopm_put_interface(intf); return 0; } enum hub_activation_type { HUB_INIT, HUB_INIT2, HUB_INIT3, /* INITs must come first */ HUB_POST_RESET, HUB_RESUME, HUB_RESET_RESUME, }; static void hub_init_func2(struct work_struct *ws); static void hub_init_func3(struct work_struct *ws); static void hub_activate(struct usb_hub *hub, enum hub_activation_type type) { struct usb_device *hdev = hub->hdev; struct usb_hcd *hcd; int ret; int port1; int status; bool need_debounce_delay = false; unsigned delay; /* Continue a partial initialization */ if (type == HUB_INIT2 || type == HUB_INIT3) { device_lock(&hdev->dev); /* Was the hub disconnected while we were waiting? */ if (hub->disconnected) goto disconnected; if (type == HUB_INIT2) goto init2; goto init3; } kref_get(&hub->kref); /* The superspeed hub except for root hub has to use Hub Depth * value as an offset into the route string to locate the bits * it uses to determine the downstream port number. So hub driver * should send a set hub depth request to superspeed hub after * the superspeed hub is set configuration in initialization or * reset procedure. * * After a resume, port power should still be on. * For any other type of activation, turn it on. */ if (type != HUB_RESUME) { if (hdev->parent && hub_is_superspeed(hdev)) { ret = usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0), HUB_SET_DEPTH, USB_RT_HUB, hdev->level - 1, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (ret < 0) dev_err(hub->intfdev, "set hub depth failed\n"); } /* Speed up system boot by using a delayed_work for the * hub's initial power-up delays. This is pretty awkward * and the implementation looks like a home-brewed sort of * setjmp/longjmp, but it saves at least 100 ms for each * root hub (assuming usbcore is compiled into the kernel * rather than as a module). It adds up. * * This can't be done for HUB_RESUME or HUB_RESET_RESUME * because for those activation types the ports have to be * operational when we return. In theory this could be done * for HUB_POST_RESET, but it's easier not to. */ if (type == HUB_INIT) { delay = hub_power_on_good_delay(hub); hub_power_on(hub, false); INIT_DELAYED_WORK(&hub->init_work, hub_init_func2); queue_delayed_work(system_power_efficient_wq, &hub->init_work, msecs_to_jiffies(delay)); /* Suppress autosuspend until init is done */ usb_autopm_get_interface_no_resume( to_usb_interface(hub->intfdev)); return; /* Continues at init2: below */ } else if (type == HUB_RESET_RESUME) { /* The internal host controller state for the hub device * may be gone after a host power loss on system resume. * Update the device's info so the HW knows it's a hub. */ hcd = bus_to_hcd(hdev->bus); if (hcd->driver->update_hub_device) { ret = hcd->driver->update_hub_device(hcd, hdev, &hub->tt, GFP_NOIO); if (ret < 0) { dev_err(hub->intfdev, "Host not accepting hub info update\n"); dev_err(hub->intfdev, "LS/FS devices and hubs may not work under this hub\n"); } } hub_power_on(hub, true); } else { hub_power_on(hub, true); } } init2: /* * Check each port and set hub->change_bits to let hub_wq know * which ports need attention. */ for (port1 = 1; port1 <= hdev->maxchild; ++port1) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; u16 portstatus, portchange; portstatus = portchange = 0; status = hub_port_status(hub, port1, &portstatus, &portchange); if (status) goto abort; if (udev || (portstatus & USB_PORT_STAT_CONNECTION)) dev_dbg(&port_dev->dev, "status %04x change %04x\n", portstatus, portchange); /* * After anything other than HUB_RESUME (i.e., initialization * or any sort of reset), every port should be disabled. * Unconnected ports should likewise be disabled (paranoia), * and so should ports for which we have no usb_device. */ if ((portstatus & USB_PORT_STAT_ENABLE) && ( type != HUB_RESUME || !(portstatus & USB_PORT_STAT_CONNECTION) || !udev || udev->state == USB_STATE_NOTATTACHED)) { /* * USB3 protocol ports will automatically transition * to Enabled state when detect an USB3.0 device attach. * Do not disable USB3 protocol ports, just pretend * power was lost */ portstatus &= ~USB_PORT_STAT_ENABLE; if (!hub_is_superspeed(hdev)) usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_ENABLE); } /* Make sure a warm-reset request is handled by port_event */ if (type == HUB_RESUME && hub_port_warm_reset_required(hub, port1, portstatus)) set_bit(port1, hub->event_bits); /* * Add debounce if USB3 link is in polling/link training state. * Link will automatically transition to Enabled state after * link training completes. */ if (hub_is_superspeed(hdev) && ((portstatus & USB_PORT_STAT_LINK_STATE) == USB_SS_PORT_LS_POLLING)) need_debounce_delay = true; /* Clear status-change flags; we'll debounce later */ if (portchange & USB_PORT_STAT_C_CONNECTION) { need_debounce_delay = true; usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_CONNECTION); } if (portchange & USB_PORT_STAT_C_ENABLE) { need_debounce_delay = true; usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_ENABLE); } if (portchange & USB_PORT_STAT_C_RESET) { need_debounce_delay = true; usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_RESET); } if ((portchange & USB_PORT_STAT_C_BH_RESET) && hub_is_superspeed(hub->hdev)) { need_debounce_delay = true; usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_BH_PORT_RESET); } /* We can forget about a "removed" device when there's a * physical disconnect or the connect status changes. */ if (!(portstatus & USB_PORT_STAT_CONNECTION) || (portchange & USB_PORT_STAT_C_CONNECTION)) clear_bit(port1, hub->removed_bits); if (!udev || udev->state == USB_STATE_NOTATTACHED) { /* Tell hub_wq to disconnect the device or * check for a new connection or over current condition. * Based on USB2.0 Spec Section 11.12.5, * C_PORT_OVER_CURRENT could be set while * PORT_OVER_CURRENT is not. So check for any of them. */ if (udev || (portstatus & USB_PORT_STAT_CONNECTION) || (portchange & USB_PORT_STAT_C_CONNECTION) || (portstatus & USB_PORT_STAT_OVERCURRENT) || (portchange & USB_PORT_STAT_C_OVERCURRENT)) set_bit(port1, hub->change_bits); } else if (portstatus & USB_PORT_STAT_ENABLE) { bool port_resumed = (portstatus & USB_PORT_STAT_LINK_STATE) == USB_SS_PORT_LS_U0; /* The power session apparently survived the resume. * If there was an overcurrent or suspend change * (i.e., remote wakeup request), have hub_wq * take care of it. Look at the port link state * for USB 3.0 hubs, since they don't have a suspend * change bit, and they don't set the port link change * bit on device-initiated resume. */ if (portchange || (hub_is_superspeed(hub->hdev) && port_resumed)) set_bit(port1, hub->change_bits); } else if (udev->persist_enabled) { #ifdef CONFIG_PM udev->reset_resume = 1; #endif /* Don't set the change_bits when the device * was powered off. */ if (test_bit(port1, hub->power_bits)) set_bit(port1, hub->change_bits); } else { /* The power session is gone; tell hub_wq */ usb_set_device_state(udev, USB_STATE_NOTATTACHED); set_bit(port1, hub->change_bits); } } /* If no port-status-change flags were set, we don't need any * debouncing. If flags were set we can try to debounce the * ports all at once right now, instead of letting hub_wq do them * one at a time later on. * * If any port-status changes do occur during this delay, hub_wq * will see them later and handle them normally. */ if (need_debounce_delay) { delay = HUB_DEBOUNCE_STABLE; /* Don't do a long sleep inside a workqueue routine */ if (type == HUB_INIT2) { INIT_DELAYED_WORK(&hub->init_work, hub_init_func3); queue_delayed_work(system_power_efficient_wq, &hub->init_work, msecs_to_jiffies(delay)); device_unlock(&hdev->dev); return; /* Continues at init3: below */ } else { msleep(delay); } } init3: hub->quiescing = 0; status = usb_submit_urb(hub->urb, GFP_NOIO); if (status < 0) dev_err(hub->intfdev, "activate --> %d\n", status); if (hub->has_indicators && blinkenlights) queue_delayed_work(system_power_efficient_wq, &hub->leds, LED_CYCLE_PERIOD); /* Scan all ports that need attention */ kick_hub_wq(hub); abort: if (type == HUB_INIT2 || type == HUB_INIT3) { /* Allow autosuspend if it was suppressed */ disconnected: usb_autopm_put_interface_async(to_usb_interface(hub->intfdev)); device_unlock(&hdev->dev); } kref_put(&hub->kref, hub_release); } /* Implement the continuations for the delays above */ static void hub_init_func2(struct work_struct *ws) { struct usb_hub *hub = container_of(ws, struct usb_hub, init_work.work); hub_activate(hub, HUB_INIT2); } static void hub_init_func3(struct work_struct *ws) { struct usb_hub *hub = container_of(ws, struct usb_hub, init_work.work); hub_activate(hub, HUB_INIT3); } enum hub_quiescing_type { HUB_DISCONNECT, HUB_PRE_RESET, HUB_SUSPEND }; static void hub_quiesce(struct usb_hub *hub, enum hub_quiescing_type type) { struct usb_device *hdev = hub->hdev; unsigned long flags; int i; /* hub_wq and related activity won't re-trigger */ spin_lock_irqsave(&hub->irq_urb_lock, flags); hub->quiescing = 1; spin_unlock_irqrestore(&hub->irq_urb_lock, flags); if (type != HUB_SUSPEND) { /* Disconnect all the children */ for (i = 0; i < hdev->maxchild; ++i) { if (hub->ports[i]->child) usb_disconnect(&hub->ports[i]->child); } } /* Stop hub_wq and related activity */ del_timer_sync(&hub->irq_urb_retry); usb_kill_urb(hub->urb); if (hub->has_indicators) cancel_delayed_work_sync(&hub->leds); if (hub->tt.hub) flush_work(&hub->tt.clear_work); } static void hub_pm_barrier_for_all_ports(struct usb_hub *hub) { int i; for (i = 0; i < hub->hdev->maxchild; ++i) pm_runtime_barrier(&hub->ports[i]->dev); } /* caller has locked the hub device */ static int hub_pre_reset(struct usb_interface *intf) { struct usb_hub *hub = usb_get_intfdata(intf); hub_quiesce(hub, HUB_PRE_RESET); hub->in_reset = 1; hub_pm_barrier_for_all_ports(hub); return 0; } /* caller has locked the hub device */ static int hub_post_reset(struct usb_interface *intf) { struct usb_hub *hub = usb_get_intfdata(intf); hub->in_reset = 0; hub_pm_barrier_for_all_ports(hub); hub_activate(hub, HUB_POST_RESET); return 0; } static int hub_configure(struct usb_hub *hub, struct usb_endpoint_descriptor *endpoint) { struct usb_hcd *hcd; struct usb_device *hdev = hub->hdev; struct device *hub_dev = hub->intfdev; u16 hubstatus, hubchange; u16 wHubCharacteristics; unsigned int pipe; int maxp, ret, i; char *message = "out of memory"; unsigned unit_load; unsigned full_load; unsigned maxchild; hub->buffer = kmalloc(sizeof(*hub->buffer), GFP_KERNEL); if (!hub->buffer) { ret = -ENOMEM; goto fail; } hub->status = kmalloc(sizeof(*hub->status), GFP_KERNEL); if (!hub->status) { ret = -ENOMEM; goto fail; } mutex_init(&hub->status_mutex); hub->descriptor = kzalloc(sizeof(*hub->descriptor), GFP_KERNEL); if (!hub->descriptor) { ret = -ENOMEM; goto fail; } /* Request the entire hub descriptor. * hub->descriptor can handle USB_MAXCHILDREN ports, * but a (non-SS) hub can/will return fewer bytes here. */ ret = get_hub_descriptor(hdev, hub->descriptor); if (ret < 0) { message = "can't read hub descriptor"; goto fail; } maxchild = USB_MAXCHILDREN; if (hub_is_superspeed(hdev)) maxchild = min_t(unsigned, maxchild, USB_SS_MAXPORTS); if (hub->descriptor->bNbrPorts > maxchild) { message = "hub has too many ports!"; ret = -ENODEV; goto fail; } else if (hub->descriptor->bNbrPorts == 0) { message = "hub doesn't have any ports!"; ret = -ENODEV; goto fail; } /* * Accumulate wHubDelay + 40ns for every hub in the tree of devices. * The resulting value will be used for SetIsochDelay() request. */ if (hub_is_superspeed(hdev) || hub_is_superspeedplus(hdev)) { u32 delay = __le16_to_cpu(hub->descriptor->u.ss.wHubDelay); if (hdev->parent) delay += hdev->parent->hub_delay; delay += USB_TP_TRANSMISSION_DELAY; hdev->hub_delay = min_t(u32, delay, USB_TP_TRANSMISSION_DELAY_MAX); } maxchild = hub->descriptor->bNbrPorts; dev_info(hub_dev, "%d port%s detected\n", maxchild, (maxchild == 1) ? "" : "s"); hub->ports = kcalloc(maxchild, sizeof(struct usb_port *), GFP_KERNEL); if (!hub->ports) { ret = -ENOMEM; goto fail; } wHubCharacteristics = le16_to_cpu(hub->descriptor->wHubCharacteristics); if (hub_is_superspeed(hdev)) { unit_load = 150; full_load = 900; } else { unit_load = 100; full_load = 500; } /* FIXME for USB 3.0, skip for now */ if ((wHubCharacteristics & HUB_CHAR_COMPOUND) && !(hub_is_superspeed(hdev))) { char portstr[USB_MAXCHILDREN + 1]; for (i = 0; i < maxchild; i++) portstr[i] = hub->descriptor->u.hs.DeviceRemovable [((i + 1) / 8)] & (1 << ((i + 1) % 8)) ? 'F' : 'R'; portstr[maxchild] = 0; dev_dbg(hub_dev, "compound device; port removable status: %s\n", portstr); } else dev_dbg(hub_dev, "standalone hub\n"); switch (wHubCharacteristics & HUB_CHAR_LPSM) { case HUB_CHAR_COMMON_LPSM: dev_dbg(hub_dev, "ganged power switching\n"); break; case HUB_CHAR_INDV_PORT_LPSM: dev_dbg(hub_dev, "individual port power switching\n"); break; case HUB_CHAR_NO_LPSM: case HUB_CHAR_LPSM: dev_dbg(hub_dev, "no power switching (usb 1.0)\n"); break; } switch (wHubCharacteristics & HUB_CHAR_OCPM) { case HUB_CHAR_COMMON_OCPM: dev_dbg(hub_dev, "global over-current protection\n"); break; case HUB_CHAR_INDV_PORT_OCPM: dev_dbg(hub_dev, "individual port over-current protection\n"); break; case HUB_CHAR_NO_OCPM: case HUB_CHAR_OCPM: dev_dbg(hub_dev, "no over-current protection\n"); break; } spin_lock_init(&hub->tt.lock); INIT_LIST_HEAD(&hub->tt.clear_list); INIT_WORK(&hub->tt.clear_work, hub_tt_work); switch (hdev->descriptor.bDeviceProtocol) { case USB_HUB_PR_FS: break; case USB_HUB_PR_HS_SINGLE_TT: dev_dbg(hub_dev, "Single TT\n"); hub->tt.hub = hdev; break; case USB_HUB_PR_HS_MULTI_TT: ret = usb_set_interface(hdev, 0, 1); if (ret == 0) { dev_dbg(hub_dev, "TT per port\n"); hub->tt.multi = 1; } else dev_err(hub_dev, "Using single TT (err %d)\n", ret); hub->tt.hub = hdev; break; case USB_HUB_PR_SS: /* USB 3.0 hubs don't have a TT */ break; default: dev_dbg(hub_dev, "Unrecognized hub protocol %d\n", hdev->descriptor.bDeviceProtocol); break; } /* Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns */ switch (wHubCharacteristics & HUB_CHAR_TTTT) { case HUB_TTTT_8_BITS: if (hdev->descriptor.bDeviceProtocol != 0) { hub->tt.think_time = 666; dev_dbg(hub_dev, "TT requires at most %d " "FS bit times (%d ns)\n", 8, hub->tt.think_time); } break; case HUB_TTTT_16_BITS: hub->tt.think_time = 666 * 2; dev_dbg(hub_dev, "TT requires at most %d " "FS bit times (%d ns)\n", 16, hub->tt.think_time); break; case HUB_TTTT_24_BITS: hub->tt.think_time = 666 * 3; dev_dbg(hub_dev, "TT requires at most %d " "FS bit times (%d ns)\n", 24, hub->tt.think_time); break; case HUB_TTTT_32_BITS: hub->tt.think_time = 666 * 4; dev_dbg(hub_dev, "TT requires at most %d " "FS bit times (%d ns)\n", 32, hub->tt.think_time); break; } /* probe() zeroes hub->indicator[] */ if (wHubCharacteristics & HUB_CHAR_PORTIND) { hub->has_indicators = 1; dev_dbg(hub_dev, "Port indicators are supported\n"); } dev_dbg(hub_dev, "power on to power good time: %dms\n", hub->descriptor->bPwrOn2PwrGood * 2); /* power budgeting mostly matters with bus-powered hubs, * and battery-powered root hubs (may provide just 8 mA). */ ret = usb_get_std_status(hdev, USB_RECIP_DEVICE, 0, &hubstatus); if (ret) { message = "can't get hub status"; goto fail; } hcd = bus_to_hcd(hdev->bus); if (hdev == hdev->bus->root_hub) { if (hcd->power_budget > 0) hdev->bus_mA = hcd->power_budget; else hdev->bus_mA = full_load * maxchild; if (hdev->bus_mA >= full_load) hub->mA_per_port = full_load; else { hub->mA_per_port = hdev->bus_mA; hub->limited_power = 1; } } else if ((hubstatus & (1 << USB_DEVICE_SELF_POWERED)) == 0) { int remaining = hdev->bus_mA - hub->descriptor->bHubContrCurrent; dev_dbg(hub_dev, "hub controller current requirement: %dmA\n", hub->descriptor->bHubContrCurrent); hub->limited_power = 1; if (remaining < maxchild * unit_load) dev_warn(hub_dev, "insufficient power available " "to use all downstream ports\n"); hub->mA_per_port = unit_load; /* 7.2.1 */ } else { /* Self-powered external hub */ /* FIXME: What about battery-powered external hubs that * provide less current per port? */ hub->mA_per_port = full_load; } if (hub->mA_per_port < full_load) dev_dbg(hub_dev, "%umA bus power budget for each child\n", hub->mA_per_port); ret = hub_hub_status(hub, &hubstatus, &hubchange); if (ret < 0) { message = "can't get hub status"; goto fail; } /* local power status reports aren't always correct */ if (hdev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_SELFPOWER) dev_dbg(hub_dev, "local power source is %s\n", (hubstatus & HUB_STATUS_LOCAL_POWER) ? "lost (inactive)" : "good"); if ((wHubCharacteristics & HUB_CHAR_OCPM) == 0) dev_dbg(hub_dev, "%sover-current condition exists\n", (hubstatus & HUB_STATUS_OVERCURRENT) ? "" : "no "); /* set up the interrupt endpoint * We use the EP's maxpacket size instead of (PORTS+1+7)/8 * bytes as USB2.0[11.12.3] says because some hubs are known * to send more data (and thus cause overflow). For root hubs, * maxpktsize is defined in hcd.c's fake endpoint descriptors * to be big enough for at least USB_MAXCHILDREN ports. */ pipe = usb_rcvintpipe(hdev, endpoint->bEndpointAddress); maxp = usb_maxpacket(hdev, pipe, usb_pipeout(pipe)); if (maxp > sizeof(*hub->buffer)) maxp = sizeof(*hub->buffer); hub->urb = usb_alloc_urb(0, GFP_KERNEL); if (!hub->urb) { ret = -ENOMEM; goto fail; } usb_fill_int_urb(hub->urb, hdev, pipe, *hub->buffer, maxp, hub_irq, hub, endpoint->bInterval); /* maybe cycle the hub leds */ if (hub->has_indicators && blinkenlights) hub->indicator[0] = INDICATOR_CYCLE; mutex_lock(&usb_port_peer_mutex); for (i = 0; i < maxchild; i++) { ret = usb_hub_create_port_device(hub, i + 1); if (ret < 0) { dev_err(hub->intfdev, "couldn't create port%d device.\n", i + 1); break; } } hdev->maxchild = i; for (i = 0; i < hdev->maxchild; i++) { struct usb_port *port_dev = hub->ports[i]; pm_runtime_put(&port_dev->dev); } mutex_unlock(&usb_port_peer_mutex); if (ret < 0) goto fail; /* Update the HCD's internal representation of this hub before hub_wq * starts getting port status changes for devices under the hub. */ if (hcd->driver->update_hub_device) { ret = hcd->driver->update_hub_device(hcd, hdev, &hub->tt, GFP_KERNEL); if (ret < 0) { message = "can't update HCD hub info"; goto fail; } } usb_hub_adjust_deviceremovable(hdev, hub->descriptor); hub_activate(hub, HUB_INIT); return 0; fail: dev_err(hub_dev, "config failed, %s (err %d)\n", message, ret); /* hub_disconnect() frees urb and descriptor */ return ret; } static void hub_release(struct kref *kref) { struct usb_hub *hub = container_of(kref, struct usb_hub, kref); usb_put_dev(hub->hdev); usb_put_intf(to_usb_interface(hub->intfdev)); kfree(hub); } static unsigned highspeed_hubs; static void hub_disconnect(struct usb_interface *intf) { struct usb_hub *hub = usb_get_intfdata(intf); struct usb_device *hdev = interface_to_usbdev(intf); int port1; /* * Stop adding new hub events. We do not want to block here and thus * will not try to remove any pending work item. */ hub->disconnected = 1; /* Disconnect all children and quiesce the hub */ hub->error = 0; hub_quiesce(hub, HUB_DISCONNECT); mutex_lock(&usb_port_peer_mutex); /* Avoid races with recursively_mark_NOTATTACHED() */ spin_lock_irq(&device_state_lock); port1 = hdev->maxchild; hdev->maxchild = 0; usb_set_intfdata(intf, NULL); spin_unlock_irq(&device_state_lock); for (; port1 > 0; --port1) usb_hub_remove_port_device(hub, port1); mutex_unlock(&usb_port_peer_mutex); if (hub->hdev->speed == USB_SPEED_HIGH) highspeed_hubs--; usb_free_urb(hub->urb); kfree(hub->ports); kfree(hub->descriptor); kfree(hub->status); kfree(hub->buffer); pm_suspend_ignore_children(&intf->dev, false); if (hub->quirk_disable_autosuspend) usb_autopm_put_interface(intf); kref_put(&hub->kref, hub_release); } static bool hub_descriptor_is_sane(struct usb_host_interface *desc) { /* Some hubs have a subclass of 1, which AFAICT according to the */ /* specs is not defined, but it works */ if (desc->desc.bInterfaceSubClass != 0 && desc->desc.bInterfaceSubClass != 1) return false; /* Multiple endpoints? What kind of mutant ninja-hub is this? */ if (desc->desc.bNumEndpoints != 1) return false; /* If the first endpoint is not interrupt IN, we'd better punt! */ if (!usb_endpoint_is_int_in(&desc->endpoint[0].desc)) return false; return true; } static int hub_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_host_interface *desc; struct usb_device *hdev; struct usb_hub *hub; desc = intf->cur_altsetting; hdev = interface_to_usbdev(intf); /* * Set default autosuspend delay as 0 to speedup bus suspend, * based on the below considerations: * * - Unlike other drivers, the hub driver does not rely on the * autosuspend delay to provide enough time to handle a wakeup * event, and the submitted status URB is just to check future * change on hub downstream ports, so it is safe to do it. * * - The patch might cause one or more auto supend/resume for * below very rare devices when they are plugged into hub * first time: * * devices having trouble initializing, and disconnect * themselves from the bus and then reconnect a second * or so later * * devices just for downloading firmware, and disconnects * themselves after completing it * * For these quite rare devices, their drivers may change the * autosuspend delay of their parent hub in the probe() to one * appropriate value to avoid the subtle problem if someone * does care it. * * - The patch may cause one or more auto suspend/resume on * hub during running 'lsusb', but it is probably too * infrequent to worry about. * * - Change autosuspend delay of hub can avoid unnecessary auto * suspend timer for hub, also may decrease power consumption * of USB bus. * * - If user has indicated to prevent autosuspend by passing * usbcore.autosuspend = -1 then keep autosuspend disabled. */ #ifdef CONFIG_PM if (hdev->dev.power.autosuspend_delay >= 0) pm_runtime_set_autosuspend_delay(&hdev->dev, 0); #endif /* * Hubs have proper suspend/resume support, except for root hubs * where the controller driver doesn't have bus_suspend and * bus_resume methods. */ if (hdev->parent) { /* normal device */ usb_enable_autosuspend(hdev); } else { /* root hub */ const struct hc_driver *drv = bus_to_hcd(hdev->bus)->driver; if (drv->bus_suspend && drv->bus_resume) usb_enable_autosuspend(hdev); } if (hdev->level == MAX_TOPO_LEVEL) { dev_err(&intf->dev, "Unsupported bus topology: hub nested too deep\n"); return -E2BIG; } #ifdef CONFIG_USB_OTG_DISABLE_EXTERNAL_HUB if (hdev->parent) { dev_warn(&intf->dev, "ignoring external hub\n"); return -ENODEV; } #endif if (!hub_descriptor_is_sane(desc)) { dev_err(&intf->dev, "bad descriptor, ignoring hub\n"); return -EIO; } /* We found a hub */ dev_info(&intf->dev, "USB hub found\n"); hub = kzalloc(sizeof(*hub), GFP_KERNEL); if (!hub) return -ENOMEM; kref_init(&hub->kref); hub->intfdev = &intf->dev; hub->hdev = hdev; INIT_DELAYED_WORK(&hub->leds, led_work); INIT_DELAYED_WORK(&hub->init_work, NULL); INIT_WORK(&hub->events, hub_event); spin_lock_init(&hub->irq_urb_lock); timer_setup(&hub->irq_urb_retry, hub_retry_irq_urb, 0); usb_get_intf(intf); usb_get_dev(hdev); usb_set_intfdata(intf, hub); intf->needs_remote_wakeup = 1; pm_suspend_ignore_children(&intf->dev, true); if (hdev->speed == USB_SPEED_HIGH) highspeed_hubs++; if (id->driver_info & HUB_QUIRK_CHECK_PORT_AUTOSUSPEND) hub->quirk_check_port_auto_suspend = 1; if (id->driver_info & HUB_QUIRK_DISABLE_AUTOSUSPEND) { hub->quirk_disable_autosuspend = 1; usb_autopm_get_interface_no_resume(intf); } if (hub_configure(hub, &desc->endpoint[0].desc) >= 0) return 0; hub_disconnect(intf); return -ENODEV; } static int hub_ioctl(struct usb_interface *intf, unsigned int code, void *user_data) { struct usb_device *hdev = interface_to_usbdev(intf); struct usb_hub *hub = usb_hub_to_struct_hub(hdev); /* assert ifno == 0 (part of hub spec) */ switch (code) { case USBDEVFS_HUB_PORTINFO: { struct usbdevfs_hub_portinfo *info = user_data; int i; spin_lock_irq(&device_state_lock); if (hdev->devnum <= 0) info->nports = 0; else { info->nports = hdev->maxchild; for (i = 0; i < info->nports; i++) { if (hub->ports[i]->child == NULL) info->port[i] = 0; else info->port[i] = hub->ports[i]->child->devnum; } } spin_unlock_irq(&device_state_lock); return info->nports + 1; } default: return -ENOSYS; } } /* * Allow user programs to claim ports on a hub. When a device is attached * to one of these "claimed" ports, the program will "own" the device. */ static int find_port_owner(struct usb_device *hdev, unsigned port1, struct usb_dev_state ***ppowner) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); if (hdev->state == USB_STATE_NOTATTACHED) return -ENODEV; if (port1 == 0 || port1 > hdev->maxchild) return -EINVAL; /* Devices not managed by the hub driver * will always have maxchild equal to 0. */ *ppowner = &(hub->ports[port1 - 1]->port_owner); return 0; } /* In the following three functions, the caller must hold hdev's lock */ int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, struct usb_dev_state *owner) { int rc; struct usb_dev_state **powner; rc = find_port_owner(hdev, port1, &powner); if (rc) return rc; if (*powner) return -EBUSY; *powner = owner; return rc; } EXPORT_SYMBOL_GPL(usb_hub_claim_port); int usb_hub_release_port(struct usb_device *hdev, unsigned port1, struct usb_dev_state *owner) { int rc; struct usb_dev_state **powner; rc = find_port_owner(hdev, port1, &powner); if (rc) return rc; if (*powner != owner) return -ENOENT; *powner = NULL; return rc; } EXPORT_SYMBOL_GPL(usb_hub_release_port); void usb_hub_release_all_ports(struct usb_device *hdev, struct usb_dev_state *owner) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); int n; for (n = 0; n < hdev->maxchild; n++) { if (hub->ports[n]->port_owner == owner) hub->ports[n]->port_owner = NULL; } } /* The caller must hold udev's lock */ bool usb_device_is_owned(struct usb_device *udev) { struct usb_hub *hub; if (udev->state == USB_STATE_NOTATTACHED || !udev->parent) return false; hub = usb_hub_to_struct_hub(udev->parent); return !!hub->ports[udev->portnum - 1]->port_owner; } static void recursively_mark_NOTATTACHED(struct usb_device *udev) { struct usb_hub *hub = usb_hub_to_struct_hub(udev); int i; for (i = 0; i < udev->maxchild; ++i) { if (hub->ports[i]->child) recursively_mark_NOTATTACHED(hub->ports[i]->child); } if (udev->state == USB_STATE_SUSPENDED) udev->active_duration -= jiffies; udev->state = USB_STATE_NOTATTACHED; } /** * usb_set_device_state - change a device's current state (usbcore, hcds) * @udev: pointer to device whose state should be changed * @new_state: new state value to be stored * * udev->state is _not_ fully protected by the device lock. Although * most transitions are made only while holding the lock, the state can * can change to USB_STATE_NOTATTACHED at almost any time. This * is so that devices can be marked as disconnected as soon as possible, * without having to wait for any semaphores to be released. As a result, * all changes to any device's state must be protected by the * device_state_lock spinlock. * * Once a device has been added to the device tree, all changes to its state * should be made using this routine. The state should _not_ be set directly. * * If udev->state is already USB_STATE_NOTATTACHED then no change is made. * Otherwise udev->state is set to new_state, and if new_state is * USB_STATE_NOTATTACHED then all of udev's descendants' states are also set * to USB_STATE_NOTATTACHED. */ void usb_set_device_state(struct usb_device *udev, enum usb_device_state new_state) { unsigned long flags; int wakeup = -1; spin_lock_irqsave(&device_state_lock, flags); if (udev->state == USB_STATE_NOTATTACHED) ; /* do nothing */ else if (new_state != USB_STATE_NOTATTACHED) { /* root hub wakeup capabilities are managed out-of-band * and may involve silicon errata ... ignore them here. */ if (udev->parent) { if (udev->state == USB_STATE_SUSPENDED || new_state == USB_STATE_SUSPENDED) ; /* No change to wakeup settings */ else if (new_state == USB_STATE_CONFIGURED) wakeup = (udev->quirks & USB_QUIRK_IGNORE_REMOTE_WAKEUP) ? 0 : udev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_WAKEUP; else wakeup = 0; } if (udev->state == USB_STATE_SUSPENDED && new_state != USB_STATE_SUSPENDED) udev->active_duration -= jiffies; else if (new_state == USB_STATE_SUSPENDED && udev->state != USB_STATE_SUSPENDED) udev->active_duration += jiffies; udev->state = new_state; } else recursively_mark_NOTATTACHED(udev); spin_unlock_irqrestore(&device_state_lock, flags); if (wakeup >= 0) device_set_wakeup_capable(&udev->dev, wakeup); } EXPORT_SYMBOL_GPL(usb_set_device_state); /* * Choose a device number. * * Device numbers are used as filenames in usbfs. On USB-1.1 and * USB-2.0 buses they are also used as device addresses, however on * USB-3.0 buses the address is assigned by the controller hardware * and it usually is not the same as the device number. * * WUSB devices are simple: they have no hubs behind, so the mapping * device <-> virtual port number becomes 1:1. Why? to simplify the * life of the device connection logic in * drivers/usb/wusbcore/devconnect.c. When we do the initial secret * handshake we need to assign a temporary address in the unauthorized * space. For simplicity we use the first virtual port number found to * be free [drivers/usb/wusbcore/devconnect.c:wusbhc_devconnect_ack()] * and that becomes it's address [X < 128] or its unauthorized address * [X | 0x80]. * * We add 1 as an offset to the one-based USB-stack port number * (zero-based wusb virtual port index) for two reasons: (a) dev addr * 0 is reserved by USB for default address; (b) Linux's USB stack * uses always #1 for the root hub of the controller. So USB stack's * port #1, which is wusb virtual-port #0 has address #2. * * Devices connected under xHCI are not as simple. The host controller * supports virtualization, so the hardware assigns device addresses and * the HCD must setup data structures before issuing a set address * command to the hardware. */ static void choose_devnum(struct usb_device *udev) { int devnum; struct usb_bus *bus = udev->bus; /* be safe when more hub events are proceed in parallel */ mutex_lock(&bus->devnum_next_mutex); if (udev->wusb) { devnum = udev->portnum + 1; BUG_ON(test_bit(devnum, bus->devmap.devicemap)); } else { /* Try to allocate the next devnum beginning at * bus->devnum_next. */ devnum = find_next_zero_bit(bus->devmap.devicemap, 128, bus->devnum_next); if (devnum >= 128) devnum = find_next_zero_bit(bus->devmap.devicemap, 128, 1); bus->devnum_next = (devnum >= 127 ? 1 : devnum + 1); } if (devnum < 128) { set_bit(devnum, bus->devmap.devicemap); udev->devnum = devnum; } mutex_unlock(&bus->devnum_next_mutex); } static void release_devnum(struct usb_device *udev) { if (udev->devnum > 0) { clear_bit(udev->devnum, udev->bus->devmap.devicemap); udev->devnum = -1; } } static void update_devnum(struct usb_device *udev, int devnum) { /* The address for a WUSB device is managed by wusbcore. */ if (!udev->wusb) udev->devnum = devnum; if (!udev->devaddr) udev->devaddr = (u8)devnum; } static void hub_free_dev(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); /* Root hubs aren't real devices, so don't free HCD resources */ if (hcd->driver->free_dev && udev->parent) hcd->driver->free_dev(hcd, udev); } static void hub_disconnect_children(struct usb_device *udev) { struct usb_hub *hub = usb_hub_to_struct_hub(udev); int i; /* Free up all the children before we remove this device */ for (i = 0; i < udev->maxchild; i++) { if (hub->ports[i]->child) usb_disconnect(&hub->ports[i]->child); } } /** * usb_disconnect - disconnect a device (usbcore-internal) * @pdev: pointer to device being disconnected * * Context: task context, might sleep * * Something got disconnected. Get rid of it and all of its children. * * If *pdev is a normal device then the parent hub must already be locked. * If *pdev is a root hub then the caller must hold the usb_bus_idr_lock, * which protects the set of root hubs as well as the list of buses. * * Only hub drivers (including virtual root hub drivers for host * controllers) should ever call this. * * This call is synchronous, and may not be used in an interrupt context. */ void usb_disconnect(struct usb_device **pdev) { struct usb_port *port_dev = NULL; struct usb_device *udev = *pdev; struct usb_hub *hub = NULL; int port1 = 1; /* mark the device as inactive, so any further urb submissions for * this device (and any of its children) will fail immediately. * this quiesces everything except pending urbs. */ usb_set_device_state(udev, USB_STATE_NOTATTACHED); dev_info(&udev->dev, "USB disconnect, device number %d\n", udev->devnum); /* * Ensure that the pm runtime code knows that the USB device * is in the process of being disconnected. */ pm_runtime_barrier(&udev->dev); usb_lock_device(udev); hub_disconnect_children(udev); /* deallocate hcd/hardware state ... nuking all pending urbs and * cleaning up all state associated with the current configuration * so that the hardware is now fully quiesced. */ dev_dbg(&udev->dev, "unregistering device\n"); usb_disable_device(udev, 0); usb_hcd_synchronize_unlinks(udev); if (udev->parent) { port1 = udev->portnum; hub = usb_hub_to_struct_hub(udev->parent); port_dev = hub->ports[port1 - 1]; sysfs_remove_link(&udev->dev.kobj, "port"); sysfs_remove_link(&port_dev->dev.kobj, "device"); /* * As usb_port_runtime_resume() de-references udev, make * sure no resumes occur during removal */ if (!test_and_set_bit(port1, hub->child_usage_bits)) pm_runtime_get_sync(&port_dev->dev); } usb_remove_ep_devs(&udev->ep0); usb_unlock_device(udev); /* Unregister the device. The device driver is responsible * for de-configuring the device and invoking the remove-device * notifier chain (used by usbfs and possibly others). */ device_del(&udev->dev); /* Free the device number and delete the parent's children[] * (or root_hub) pointer. */ release_devnum(udev); /* Avoid races with recursively_mark_NOTATTACHED() */ spin_lock_irq(&device_state_lock); *pdev = NULL; spin_unlock_irq(&device_state_lock); if (port_dev && test_and_clear_bit(port1, hub->child_usage_bits)) pm_runtime_put(&port_dev->dev); hub_free_dev(udev); put_device(&udev->dev); } #ifdef CONFIG_USB_ANNOUNCE_NEW_DEVICES static void show_string(struct usb_device *udev, char *id, char *string) { if (!string) return; dev_info(&udev->dev, "%s: %s\n", id, string); } static void announce_device(struct usb_device *udev) { u16 bcdDevice = le16_to_cpu(udev->descriptor.bcdDevice); dev_info(&udev->dev, "New USB device found, idVendor=%04x, idProduct=%04x, bcdDevice=%2x.%02x\n", le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct), bcdDevice >> 8, bcdDevice & 0xff); dev_info(&udev->dev, "New USB device strings: Mfr=%d, Product=%d, SerialNumber=%d\n", udev->descriptor.iManufacturer, udev->descriptor.iProduct, udev->descriptor.iSerialNumber); show_string(udev, "Product", udev->product); show_string(udev, "Manufacturer", udev->manufacturer); show_string(udev, "SerialNumber", udev->serial); } #else static inline void announce_device(struct usb_device *udev) { } #endif /** * usb_enumerate_device_otg - FIXME (usbcore-internal) * @udev: newly addressed device (in ADDRESS state) * * Finish enumeration for On-The-Go devices * * Return: 0 if successful. A negative error code otherwise. */ static int usb_enumerate_device_otg(struct usb_device *udev) { int err = 0; #ifdef CONFIG_USB_OTG /* * OTG-aware devices on OTG-capable root hubs may be able to use SRP, * to wake us after we've powered off VBUS; and HNP, switching roles * "host" to "peripheral". The OTG descriptor helps figure this out. */ if (!udev->bus->is_b_host && udev->config && udev->parent == udev->bus->root_hub) { struct usb_otg_descriptor *desc = NULL; struct usb_bus *bus = udev->bus; unsigned port1 = udev->portnum; /* descriptor may appear anywhere in config */ err = __usb_get_extra_descriptor(udev->rawdescriptors[0], le16_to_cpu(udev->config[0].desc.wTotalLength), USB_DT_OTG, (void **) &desc, sizeof(*desc)); if (err || !(desc->bmAttributes & USB_OTG_HNP)) return 0; dev_info(&udev->dev, "Dual-Role OTG device on %sHNP port\n", (port1 == bus->otg_port) ? "" : "non-"); /* enable HNP before suspend, it's simpler */ if (port1 == bus->otg_port) { bus->b_hnp_enable = 1; err = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, 0, USB_DEVICE_B_HNP_ENABLE, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (err < 0) { /* * OTG MESSAGE: report errors here, * customize to match your product. */ dev_err(&udev->dev, "can't set HNP mode: %d\n", err); bus->b_hnp_enable = 0; } } else if (desc->bLength == sizeof (struct usb_otg_descriptor)) { /* Set a_alt_hnp_support for legacy otg device */ err = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, 0, USB_DEVICE_A_ALT_HNP_SUPPORT, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (err < 0) dev_err(&udev->dev, "set a_alt_hnp_support failed: %d\n", err); } } #endif return err; } /** * usb_enumerate_device - Read device configs/intfs/otg (usbcore-internal) * @udev: newly addressed device (in ADDRESS state) * * This is only called by usb_new_device() and usb_authorize_device() * and FIXME -- all comments that apply to them apply here wrt to * environment. * * If the device is WUSB and not authorized, we don't attempt to read * the string descriptors, as they will be errored out by the device * until it has been authorized. * * Return: 0 if successful. A negative error code otherwise. */ static int usb_enumerate_device(struct usb_device *udev) { int err; struct usb_hcd *hcd = bus_to_hcd(udev->bus); if (udev->config == NULL) { err = usb_get_configuration(udev); if (err < 0) { if (err != -ENODEV) dev_err(&udev->dev, "can't read configurations, error %d\n", err); return err; } } /* read the standard strings and cache them if present */ udev->product = usb_cache_string(udev, udev->descriptor.iProduct); udev->manufacturer = usb_cache_string(udev, udev->descriptor.iManufacturer); udev->serial = usb_cache_string(udev, udev->descriptor.iSerialNumber); err = usb_enumerate_device_otg(udev); if (err < 0) return err; if (IS_ENABLED(CONFIG_USB_OTG_PRODUCTLIST) && hcd->tpl_support && !is_targeted(udev)) { /* Maybe it can talk to us, though we can't talk to it. * (Includes HNP test device.) */ if (IS_ENABLED(CONFIG_USB_OTG) && (udev->bus->b_hnp_enable || udev->bus->is_b_host)) { err = usb_port_suspend(udev, PMSG_AUTO_SUSPEND); if (err < 0) dev_dbg(&udev->dev, "HNP fail, %d\n", err); } return -ENOTSUPP; } usb_detect_interface_quirks(udev); return 0; } static void set_usb_port_removable(struct usb_device *udev) { struct usb_device *hdev = udev->parent; struct usb_hub *hub; u8 port = udev->portnum; u16 wHubCharacteristics; bool removable = true; dev_set_removable(&udev->dev, DEVICE_REMOVABLE_UNKNOWN); if (!hdev) return; hub = usb_hub_to_struct_hub(udev->parent); /* * If the platform firmware has provided information about a port, * use that to determine whether it's removable. */ switch (hub->ports[udev->portnum - 1]->connect_type) { case USB_PORT_CONNECT_TYPE_HOT_PLUG: dev_set_removable(&udev->dev, DEVICE_REMOVABLE); return; case USB_PORT_CONNECT_TYPE_HARD_WIRED: case USB_PORT_NOT_USED: dev_set_removable(&udev->dev, DEVICE_FIXED); return; default: break; } /* * Otherwise, check whether the hub knows whether a port is removable * or not */ wHubCharacteristics = le16_to_cpu(hub->descriptor->wHubCharacteristics); if (!(wHubCharacteristics & HUB_CHAR_COMPOUND)) return; if (hub_is_superspeed(hdev)) { if (le16_to_cpu(hub->descriptor->u.ss.DeviceRemovable) & (1 << port)) removable = false; } else { if (hub->descriptor->u.hs.DeviceRemovable[port / 8] & (1 << (port % 8))) removable = false; } if (removable) dev_set_removable(&udev->dev, DEVICE_REMOVABLE); else dev_set_removable(&udev->dev, DEVICE_FIXED); } /** * usb_new_device - perform initial device setup (usbcore-internal) * @udev: newly addressed device (in ADDRESS state) * * This is called with devices which have been detected but not fully * enumerated. The device descriptor is available, but not descriptors * for any device configuration. The caller must have locked either * the parent hub (if udev is a normal device) or else the * usb_bus_idr_lock (if udev is a root hub). The parent's pointer to * udev has already been installed, but udev is not yet visible through * sysfs or other filesystem code. * * This call is synchronous, and may not be used in an interrupt context. * * Only the hub driver or root-hub registrar should ever call this. * * Return: Whether the device is configured properly or not. Zero if the * interface was registered with the driver core; else a negative errno * value. * */ int usb_new_device(struct usb_device *udev) { int err; if (udev->parent) { /* Initialize non-root-hub device wakeup to disabled; * device (un)configuration controls wakeup capable * sysfs power/wakeup controls wakeup enabled/disabled */ device_init_wakeup(&udev->dev, 0); } /* Tell the runtime-PM framework the device is active */ pm_runtime_set_active(&udev->dev); pm_runtime_get_noresume(&udev->dev); pm_runtime_use_autosuspend(&udev->dev); pm_runtime_enable(&udev->dev); /* By default, forbid autosuspend for all devices. It will be * allowed for hubs during binding. */ usb_disable_autosuspend(udev); err = usb_enumerate_device(udev); /* Read descriptors */ if (err < 0) goto fail; dev_dbg(&udev->dev, "udev %d, busnum %d, minor = %d\n", udev->devnum, udev->bus->busnum, (((udev->bus->busnum-1) * 128) + (udev->devnum-1))); /* export the usbdev device-node for libusb */ udev->dev.devt = MKDEV(USB_DEVICE_MAJOR, (((udev->bus->busnum-1) * 128) + (udev->devnum-1))); /* Tell the world! */ announce_device(udev); if (udev->serial) add_device_randomness(udev->serial, strlen(udev->serial)); if (udev->product) add_device_randomness(udev->product, strlen(udev->product)); if (udev->manufacturer) add_device_randomness(udev->manufacturer, strlen(udev->manufacturer)); device_enable_async_suspend(&udev->dev); /* check whether the hub or firmware marks this port as non-removable */ set_usb_port_removable(udev); /* Register the device. The device driver is responsible * for configuring the device and invoking the add-device * notifier chain (used by usbfs and possibly others). */ err = device_add(&udev->dev); if (err) { dev_err(&udev->dev, "can't device_add, error %d\n", err); goto fail; } /* Create link files between child device and usb port device. */ if (udev->parent) { struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); int port1 = udev->portnum; struct usb_port *port_dev = hub->ports[port1 - 1]; err = sysfs_create_link(&udev->dev.kobj, &port_dev->dev.kobj, "port"); if (err) goto fail; err = sysfs_create_link(&port_dev->dev.kobj, &udev->dev.kobj, "device"); if (err) { sysfs_remove_link(&udev->dev.kobj, "port"); goto fail; } if (!test_and_set_bit(port1, hub->child_usage_bits)) pm_runtime_get_sync(&port_dev->dev); } (void) usb_create_ep_devs(&udev->dev, &udev->ep0, udev); usb_mark_last_busy(udev); pm_runtime_put_sync_autosuspend(&udev->dev); return err; fail: usb_set_device_state(udev, USB_STATE_NOTATTACHED); pm_runtime_disable(&udev->dev); pm_runtime_set_suspended(&udev->dev); return err; } /** * usb_deauthorize_device - deauthorize a device (usbcore-internal) * @usb_dev: USB device * * Move the USB device to a very basic state where interfaces are disabled * and the device is in fact unconfigured and unusable. * * We share a lock (that we have) with device_del(), so we need to * defer its call. * * Return: 0. */ int usb_deauthorize_device(struct usb_device *usb_dev) { usb_lock_device(usb_dev); if (usb_dev->authorized == 0) goto out_unauthorized; usb_dev->authorized = 0; usb_set_configuration(usb_dev, -1); out_unauthorized: usb_unlock_device(usb_dev); return 0; } int usb_authorize_device(struct usb_device *usb_dev) { int result = 0, c; usb_lock_device(usb_dev); if (usb_dev->authorized == 1) goto out_authorized; result = usb_autoresume_device(usb_dev); if (result < 0) { dev_err(&usb_dev->dev, "can't autoresume for authorization: %d\n", result); goto error_autoresume; } if (usb_dev->wusb) { result = usb_get_device_descriptor(usb_dev, sizeof(usb_dev->descriptor)); if (result < 0) { dev_err(&usb_dev->dev, "can't re-read device descriptor for " "authorization: %d\n", result); goto error_device_descriptor; } } usb_dev->authorized = 1; /* Choose and set the configuration. This registers the interfaces * with the driver core and lets interface drivers bind to them. */ c = usb_choose_configuration(usb_dev); if (c >= 0) { result = usb_set_configuration(usb_dev, c); if (result) { dev_err(&usb_dev->dev, "can't set config #%d, error %d\n", c, result); /* This need not be fatal. The user can try to * set other configurations. */ } } dev_info(&usb_dev->dev, "authorized to connect\n"); error_device_descriptor: usb_autosuspend_device(usb_dev); error_autoresume: out_authorized: usb_unlock_device(usb_dev); /* complements locktree */ return result; } /** * get_port_ssp_rate - Match the extended port status to SSP rate * @hdev: The hub device * @ext_portstatus: extended port status * * Match the extended port status speed id to the SuperSpeed Plus sublink speed * capability attributes. Base on the number of connected lanes and speed, * return the corresponding enum usb_ssp_rate. */ static enum usb_ssp_rate get_port_ssp_rate(struct usb_device *hdev, u32 ext_portstatus) { struct usb_ssp_cap_descriptor *ssp_cap = hdev->bos->ssp_cap; u32 attr; u8 speed_id; u8 ssac; u8 lanes; int i; if (!ssp_cap) goto out; speed_id = ext_portstatus & USB_EXT_PORT_STAT_RX_SPEED_ID; lanes = USB_EXT_PORT_RX_LANES(ext_portstatus) + 1; ssac = le32_to_cpu(ssp_cap->bmAttributes) & USB_SSP_SUBLINK_SPEED_ATTRIBS; for (i = 0; i <= ssac; i++) { u8 ssid; attr = le32_to_cpu(ssp_cap->bmSublinkSpeedAttr[i]); ssid = FIELD_GET(USB_SSP_SUBLINK_SPEED_SSID, attr); if (speed_id == ssid) { u16 mantissa; u8 lse; u8 type; /* * Note: currently asymmetric lane types are only * applicable for SSIC operate in SuperSpeed protocol */ type = FIELD_GET(USB_SSP_SUBLINK_SPEED_ST, attr); if (type == USB_SSP_SUBLINK_SPEED_ST_ASYM_RX || type == USB_SSP_SUBLINK_SPEED_ST_ASYM_TX) goto out; if (FIELD_GET(USB_SSP_SUBLINK_SPEED_LP, attr) != USB_SSP_SUBLINK_SPEED_LP_SSP) goto out; lse = FIELD_GET(USB_SSP_SUBLINK_SPEED_LSE, attr); mantissa = FIELD_GET(USB_SSP_SUBLINK_SPEED_LSM, attr); /* Convert to Gbps */ for (; lse < USB_SSP_SUBLINK_SPEED_LSE_GBPS; lse++) mantissa /= 1000; if (mantissa >= 10 && lanes == 1) return USB_SSP_GEN_2x1; if (mantissa >= 10 && lanes == 2) return USB_SSP_GEN_2x2; if (mantissa >= 5 && lanes == 2) return USB_SSP_GEN_1x2; goto out; } } out: return USB_SSP_GEN_UNKNOWN; } /* Returns 1 if @hub is a WUSB root hub, 0 otherwise */ static unsigned hub_is_wusb(struct usb_hub *hub) { struct usb_hcd *hcd; if (hub->hdev->parent != NULL) /* not a root hub? */ return 0; hcd = bus_to_hcd(hub->hdev->bus); return hcd->wireless; } #ifdef CONFIG_USB_FEW_INIT_RETRIES #define PORT_RESET_TRIES 2 #define SET_ADDRESS_TRIES 1 #define GET_DESCRIPTOR_TRIES 1 #define GET_MAXPACKET0_TRIES 1 #define PORT_INIT_TRIES 4 #else #define PORT_RESET_TRIES 5 #define SET_ADDRESS_TRIES 2 #define GET_DESCRIPTOR_TRIES 2 #define GET_MAXPACKET0_TRIES 3 #define PORT_INIT_TRIES 4 #endif /* CONFIG_USB_FEW_INIT_RETRIES */ #define HUB_ROOT_RESET_TIME 60 /* times are in msec */ #define HUB_SHORT_RESET_TIME 10 #define HUB_BH_RESET_TIME 50 #define HUB_LONG_RESET_TIME 200 #define HUB_RESET_TIMEOUT 800 static bool use_new_scheme(struct usb_device *udev, int retry, struct usb_port *port_dev) { int old_scheme_first_port = (port_dev->quirks & USB_PORT_QUIRK_OLD_SCHEME) || old_scheme_first; /* * "New scheme" enumeration causes an extra state transition to be * exposed to an xhci host and causes USB3 devices to receive control * commands in the default state. This has been seen to cause * enumeration failures, so disable this enumeration scheme for USB3 * devices. */ if (udev->speed >= USB_SPEED_SUPER) return false; /* * If use_both_schemes is set, use the first scheme (whichever * it is) for the larger half of the retries, then use the other * scheme. Otherwise, use the first scheme for all the retries. */ if (use_both_schemes && retry >= (PORT_INIT_TRIES + 1) / 2) return old_scheme_first_port; /* Second half */ return !old_scheme_first_port; /* First half or all */ } /* Is a USB 3.0 port in the Inactive or Compliance Mode state? * Port warm reset is required to recover */ static bool hub_port_warm_reset_required(struct usb_hub *hub, int port1, u16 portstatus) { u16 link_state; if (!hub_is_superspeed(hub->hdev)) return false; if (test_bit(port1, hub->warm_reset_bits)) return true; link_state = portstatus & USB_PORT_STAT_LINK_STATE; return link_state == USB_SS_PORT_LS_SS_INACTIVE || link_state == USB_SS_PORT_LS_COMP_MOD; } static int hub_port_wait_reset(struct usb_hub *hub, int port1, struct usb_device *udev, unsigned int delay, bool warm) { int delay_time, ret; u16 portstatus; u16 portchange; u32 ext_portstatus = 0; for (delay_time = 0; delay_time < HUB_RESET_TIMEOUT; delay_time += delay) { /* wait to give the device a chance to reset */ msleep(delay); /* read and decode port status */ if (hub_is_superspeedplus(hub->hdev)) ret = hub_ext_port_status(hub, port1, HUB_EXT_PORT_STATUS, &portstatus, &portchange, &ext_portstatus); else ret = hub_port_status(hub, port1, &portstatus, &portchange); if (ret < 0) return ret; /* * The port state is unknown until the reset completes. * * On top of that, some chips may require additional time * to re-establish a connection after the reset is complete, * so also wait for the connection to be re-established. */ if (!(portstatus & USB_PORT_STAT_RESET) && (portstatus & USB_PORT_STAT_CONNECTION)) break; /* switch to the long delay after two short delay failures */ if (delay_time >= 2 * HUB_SHORT_RESET_TIME) delay = HUB_LONG_RESET_TIME; dev_dbg(&hub->ports[port1 - 1]->dev, "not %sreset yet, waiting %dms\n", warm ? "warm " : "", delay); } if ((portstatus & USB_PORT_STAT_RESET)) return -EBUSY; if (hub_port_warm_reset_required(hub, port1, portstatus)) return -ENOTCONN; /* Device went away? */ if (!(portstatus & USB_PORT_STAT_CONNECTION)) return -ENOTCONN; /* Retry if connect change is set but status is still connected. * A USB 3.0 connection may bounce if multiple warm resets were issued, * but the device may have successfully re-connected. Ignore it. */ if (!hub_is_superspeed(hub->hdev) && (portchange & USB_PORT_STAT_C_CONNECTION)) { usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_CONNECTION); return -EAGAIN; } if (!(portstatus & USB_PORT_STAT_ENABLE)) return -EBUSY; if (!udev) return 0; if (hub_is_superspeedplus(hub->hdev)) { /* extended portstatus Rx and Tx lane count are zero based */ udev->rx_lanes = USB_EXT_PORT_RX_LANES(ext_portstatus) + 1; udev->tx_lanes = USB_EXT_PORT_TX_LANES(ext_portstatus) + 1; udev->ssp_rate = get_port_ssp_rate(hub->hdev, ext_portstatus); } else { udev->rx_lanes = 1; udev->tx_lanes = 1; udev->ssp_rate = USB_SSP_GEN_UNKNOWN; } if (hub_is_wusb(hub)) udev->speed = USB_SPEED_WIRELESS; else if (udev->ssp_rate != USB_SSP_GEN_UNKNOWN) udev->speed = USB_SPEED_SUPER_PLUS; else if (hub_is_superspeed(hub->hdev)) udev->speed = USB_SPEED_SUPER; else if (portstatus & USB_PORT_STAT_HIGH_SPEED) udev->speed = USB_SPEED_HIGH; else if (portstatus & USB_PORT_STAT_LOW_SPEED) udev->speed = USB_SPEED_LOW; else udev->speed = USB_SPEED_FULL; return 0; } /* Handle port reset and port warm(BH) reset (for USB3 protocol ports) */ static int hub_port_reset(struct usb_hub *hub, int port1, struct usb_device *udev, unsigned int delay, bool warm) { int i, status; u16 portchange, portstatus; struct usb_port *port_dev = hub->ports[port1 - 1]; int reset_recovery_time; if (!hub_is_superspeed(hub->hdev)) { if (warm) { dev_err(hub->intfdev, "only USB3 hub support " "warm reset\n"); return -EINVAL; } /* Block EHCI CF initialization during the port reset. * Some companion controllers don't like it when they mix. */ down_read(&ehci_cf_port_reset_rwsem); } else if (!warm) { /* * If the caller hasn't explicitly requested a warm reset, * double check and see if one is needed. */ if (hub_port_status(hub, port1, &portstatus, &portchange) == 0) if (hub_port_warm_reset_required(hub, port1, portstatus)) warm = true; } clear_bit(port1, hub->warm_reset_bits); /* Reset the port */ for (i = 0; i < PORT_RESET_TRIES; i++) { status = set_port_feature(hub->hdev, port1, (warm ? USB_PORT_FEAT_BH_PORT_RESET : USB_PORT_FEAT_RESET)); if (status == -ENODEV) { ; /* The hub is gone */ } else if (status) { dev_err(&port_dev->dev, "cannot %sreset (err = %d)\n", warm ? "warm " : "", status); } else { status = hub_port_wait_reset(hub, port1, udev, delay, warm); if (status && status != -ENOTCONN && status != -ENODEV) dev_dbg(hub->intfdev, "port_wait_reset: err = %d\n", status); } /* Check for disconnect or reset */ if (status == 0 || status == -ENOTCONN || status == -ENODEV) { usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_RESET); if (!hub_is_superspeed(hub->hdev)) goto done; usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_BH_PORT_RESET); usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_PORT_LINK_STATE); if (udev) usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_CONNECTION); /* * If a USB 3.0 device migrates from reset to an error * state, re-issue the warm reset. */ if (hub_port_status(hub, port1, &portstatus, &portchange) < 0) goto done; if (!hub_port_warm_reset_required(hub, port1, portstatus)) goto done; /* * If the port is in SS.Inactive or Compliance Mode, the * hot or warm reset failed. Try another warm reset. */ if (!warm) { dev_dbg(&port_dev->dev, "hot reset failed, warm reset\n"); warm = true; } } dev_dbg(&port_dev->dev, "not enabled, trying %sreset again...\n", warm ? "warm " : ""); delay = HUB_LONG_RESET_TIME; } dev_err(&port_dev->dev, "Cannot enable. Maybe the USB cable is bad?\n"); done: if (status == 0) { if (port_dev->quirks & USB_PORT_QUIRK_FAST_ENUM) usleep_range(10000, 12000); else { /* TRSTRCY = 10 ms; plus some extra */ reset_recovery_time = 10 + 40; /* Hub needs extra delay after resetting its port. */ if (hub->hdev->quirks & USB_QUIRK_HUB_SLOW_RESET) reset_recovery_time += 100; msleep(reset_recovery_time); } if (udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); update_devnum(udev, 0); /* The xHC may think the device is already reset, * so ignore the status. */ if (hcd->driver->reset_device) hcd->driver->reset_device(hcd, udev); usb_set_device_state(udev, USB_STATE_DEFAULT); } } else { if (udev) usb_set_device_state(udev, USB_STATE_NOTATTACHED); } if (!hub_is_superspeed(hub->hdev)) up_read(&ehci_cf_port_reset_rwsem); return status; } /* Check if a port is power on */ static int port_is_power_on(struct usb_hub *hub, unsigned portstatus) { int ret = 0; if (hub_is_superspeed(hub->hdev)) { if (portstatus & USB_SS_PORT_STAT_POWER) ret = 1; } else { if (portstatus & USB_PORT_STAT_POWER) ret = 1; } return ret; } static void usb_lock_port(struct usb_port *port_dev) __acquires(&port_dev->status_lock) { mutex_lock(&port_dev->status_lock); __acquire(&port_dev->status_lock); } static void usb_unlock_port(struct usb_port *port_dev) __releases(&port_dev->status_lock) { mutex_unlock(&port_dev->status_lock); __release(&port_dev->status_lock); } #ifdef CONFIG_PM /* Check if a port is suspended(USB2.0 port) or in U3 state(USB3.0 port) */ static int port_is_suspended(struct usb_hub *hub, unsigned portstatus) { int ret = 0; if (hub_is_superspeed(hub->hdev)) { if ((portstatus & USB_PORT_STAT_LINK_STATE) == USB_SS_PORT_LS_U3) ret = 1; } else { if (portstatus & USB_PORT_STAT_SUSPEND) ret = 1; } return ret; } /* Determine whether the device on a port is ready for a normal resume, * is ready for a reset-resume, or should be disconnected. */ static int check_port_resume_type(struct usb_device *udev, struct usb_hub *hub, int port1, int status, u16 portchange, u16 portstatus) { struct usb_port *port_dev = hub->ports[port1 - 1]; int retries = 3; retry: /* Is a warm reset needed to recover the connection? */ if (status == 0 && udev->reset_resume && hub_port_warm_reset_required(hub, port1, portstatus)) { /* pass */; } /* Is the device still present? */ else if (status || port_is_suspended(hub, portstatus) || !port_is_power_on(hub, portstatus)) { if (status >= 0) status = -ENODEV; } else if (!(portstatus & USB_PORT_STAT_CONNECTION)) { if (retries--) { usleep_range(200, 300); status = hub_port_status(hub, port1, &portstatus, &portchange); goto retry; } status = -ENODEV; } /* Can't do a normal resume if the port isn't enabled, * so try a reset-resume instead. */ else if (!(portstatus & USB_PORT_STAT_ENABLE) && !udev->reset_resume) { if (udev->persist_enabled) udev->reset_resume = 1; else status = -ENODEV; } if (status) { dev_dbg(&port_dev->dev, "status %04x.%04x after resume, %d\n", portchange, portstatus, status); } else if (udev->reset_resume) { /* Late port handoff can set status-change bits */ if (portchange & USB_PORT_STAT_C_CONNECTION) usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_CONNECTION); if (portchange & USB_PORT_STAT_C_ENABLE) usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_ENABLE); /* * Whatever made this reset-resume necessary may have * turned on the port1 bit in hub->change_bits. But after * a successful reset-resume we want the bit to be clear; * if it was on it would indicate that something happened * following the reset-resume. */ clear_bit(port1, hub->change_bits); } return status; } int usb_disable_ltm(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); /* Check if the roothub and device supports LTM. */ if (!usb_device_supports_ltm(hcd->self.root_hub) || !usb_device_supports_ltm(udev)) return 0; /* Clear Feature LTM Enable can only be sent if the device is * configured. */ if (!udev->actconfig) return 0; return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_DEVICE, USB_DEVICE_LTM_ENABLE, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } EXPORT_SYMBOL_GPL(usb_disable_ltm); void usb_enable_ltm(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); /* Check if the roothub and device supports LTM. */ if (!usb_device_supports_ltm(hcd->self.root_hub) || !usb_device_supports_ltm(udev)) return; /* Set Feature LTM Enable can only be sent if the device is * configured. */ if (!udev->actconfig) return; usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_DEVICE, USB_DEVICE_LTM_ENABLE, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } EXPORT_SYMBOL_GPL(usb_enable_ltm); /* * usb_enable_remote_wakeup - enable remote wakeup for a device * @udev: target device * * For USB-2 devices: Set the device's remote wakeup feature. * * For USB-3 devices: Assume there's only one function on the device and * enable remote wake for the first interface. FIXME if the interface * association descriptor shows there's more than one function. */ static int usb_enable_remote_wakeup(struct usb_device *udev) { if (udev->speed < USB_SPEED_SUPER) return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_DEVICE, USB_DEVICE_REMOTE_WAKEUP, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); else return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_INTERFACE, USB_INTRF_FUNC_SUSPEND, USB_INTRF_FUNC_SUSPEND_RW | USB_INTRF_FUNC_SUSPEND_LP, NULL, 0, USB_CTRL_SET_TIMEOUT); } /* * usb_disable_remote_wakeup - disable remote wakeup for a device * @udev: target device * * For USB-2 devices: Clear the device's remote wakeup feature. * * For USB-3 devices: Assume there's only one function on the device and * disable remote wake for the first interface. FIXME if the interface * association descriptor shows there's more than one function. */ static int usb_disable_remote_wakeup(struct usb_device *udev) { if (udev->speed < USB_SPEED_SUPER) return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_DEVICE, USB_DEVICE_REMOTE_WAKEUP, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); else return usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_INTERFACE, USB_INTRF_FUNC_SUSPEND, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } /* Count of wakeup-enabled devices at or below udev */ unsigned usb_wakeup_enabled_descendants(struct usb_device *udev) { struct usb_hub *hub = usb_hub_to_struct_hub(udev); return udev->do_remote_wakeup + (hub ? hub->wakeup_enabled_descendants : 0); } EXPORT_SYMBOL_GPL(usb_wakeup_enabled_descendants); /* * usb_port_suspend - suspend a usb device's upstream port * @udev: device that's no longer in active use, not a root hub * Context: must be able to sleep; device not locked; pm locks held * * Suspends a USB device that isn't in active use, conserving power. * Devices may wake out of a suspend, if anything important happens, * using the remote wakeup mechanism. They may also be taken out of * suspend by the host, using usb_port_resume(). It's also routine * to disconnect devices while they are suspended. * * This only affects the USB hardware for a device; its interfaces * (and, for hubs, child devices) must already have been suspended. * * Selective port suspend reduces power; most suspended devices draw * less than 500 uA. It's also used in OTG, along with remote wakeup. * All devices below the suspended port are also suspended. * * Devices leave suspend state when the host wakes them up. Some devices * also support "remote wakeup", where the device can activate the USB * tree above them to deliver data, such as a keypress or packet. In * some cases, this wakes the USB host. * * Suspending OTG devices may trigger HNP, if that's been enabled * between a pair of dual-role devices. That will change roles, such * as from A-Host to A-Peripheral or from B-Host back to B-Peripheral. * * Devices on USB hub ports have only one "suspend" state, corresponding * to ACPI D2, "may cause the device to lose some context". * State transitions include: * * - suspend, resume ... when the VBUS power link stays live * - suspend, disconnect ... VBUS lost * * Once VBUS drop breaks the circuit, the port it's using has to go through * normal re-enumeration procedures, starting with enabling VBUS power. * Other than re-initializing the hub (plug/unplug, except for root hubs), * Linux (2.6) currently has NO mechanisms to initiate that: no hub_wq * timer, no SRP, no requests through sysfs. * * If Runtime PM isn't enabled or used, non-SuperSpeed devices may not get * suspended until their bus goes into global suspend (i.e., the root * hub is suspended). Nevertheless, we change @udev->state to * USB_STATE_SUSPENDED as this is the device's "logical" state. The actual * upstream port setting is stored in @udev->port_is_suspended. * * Returns 0 on success, else negative errno. */ int usb_port_suspend(struct usb_device *udev, pm_message_t msg) { struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); struct usb_port *port_dev = hub->ports[udev->portnum - 1]; int port1 = udev->portnum; int status; bool really_suspend = true; usb_lock_port(port_dev); /* enable remote wakeup when appropriate; this lets the device * wake up the upstream hub (including maybe the root hub). * * NOTE: OTG devices may issue remote wakeup (or SRP) even when * we don't explicitly enable it here. */ if (udev->do_remote_wakeup) { status = usb_enable_remote_wakeup(udev); if (status) { dev_dbg(&udev->dev, "won't remote wakeup, status %d\n", status); /* bail if autosuspend is requested */ if (PMSG_IS_AUTO(msg)) goto err_wakeup; } } /* disable USB2 hardware LPM */ usb_disable_usb2_hardware_lpm(udev); if (usb_disable_ltm(udev)) { dev_err(&udev->dev, "Failed to disable LTM before suspend\n"); status = -ENOMEM; if (PMSG_IS_AUTO(msg)) goto err_ltm; } /* see 7.1.7.6 */ if (hub_is_superspeed(hub->hdev)) status = hub_set_port_link_state(hub, port1, USB_SS_PORT_LS_U3); /* * For system suspend, we do not need to enable the suspend feature * on individual USB-2 ports. The devices will automatically go * into suspend a few ms after the root hub stops sending packets. * The USB 2.0 spec calls this "global suspend". * * However, many USB hubs have a bug: They don't relay wakeup requests * from a downstream port if the port's suspend feature isn't on. * Therefore we will turn on the suspend feature if udev or any of its * descendants is enabled for remote wakeup. */ else if (PMSG_IS_AUTO(msg) || usb_wakeup_enabled_descendants(udev) > 0) status = set_port_feature(hub->hdev, port1, USB_PORT_FEAT_SUSPEND); else { really_suspend = false; status = 0; } if (status) { /* Check if the port has been suspended for the timeout case * to prevent the suspended port from incorrect handling. */ if (status == -ETIMEDOUT) { int ret; u16 portstatus, portchange; portstatus = portchange = 0; ret = hub_port_status(hub, port1, &portstatus, &portchange); dev_dbg(&port_dev->dev, "suspend timeout, status %04x\n", portstatus); if (ret == 0 && port_is_suspended(hub, portstatus)) { status = 0; goto suspend_done; } } dev_dbg(&port_dev->dev, "can't suspend, status %d\n", status); /* Try to enable USB3 LTM again */ usb_enable_ltm(udev); err_ltm: /* Try to enable USB2 hardware LPM again */ usb_enable_usb2_hardware_lpm(udev); if (udev->do_remote_wakeup) (void) usb_disable_remote_wakeup(udev); err_wakeup: /* System sleep transitions should never fail */ if (!PMSG_IS_AUTO(msg)) status = 0; } else { suspend_done: dev_dbg(&udev->dev, "usb %ssuspend, wakeup %d\n", (PMSG_IS_AUTO(msg) ? "auto-" : ""), udev->do_remote_wakeup); if (really_suspend) { udev->port_is_suspended = 1; /* device has up to 10 msec to fully suspend */ msleep(10); } usb_set_device_state(udev, USB_STATE_SUSPENDED); } if (status == 0 && !udev->do_remote_wakeup && udev->persist_enabled && test_and_clear_bit(port1, hub->child_usage_bits)) pm_runtime_put_sync(&port_dev->dev); usb_mark_last_busy(hub->hdev); usb_unlock_port(port_dev); return status; } /* * If the USB "suspend" state is in use (rather than "global suspend"), * many devices will be individually taken out of suspend state using * special "resume" signaling. This routine kicks in shortly after * hardware resume signaling is finished, either because of selective * resume (by host) or remote wakeup (by device) ... now see what changed * in the tree that's rooted at this device. * * If @udev->reset_resume is set then the device is reset before the * status check is done. */ static int finish_port_resume(struct usb_device *udev) { int status = 0; u16 devstatus = 0; /* caller owns the udev device lock */ dev_dbg(&udev->dev, "%s\n", udev->reset_resume ? "finish reset-resume" : "finish resume"); /* usb ch9 identifies four variants of SUSPENDED, based on what * state the device resumes to. Linux currently won't see the * first two on the host side; they'd be inside hub_port_init() * during many timeouts, but hub_wq can't suspend until later. */ usb_set_device_state(udev, udev->actconfig ? USB_STATE_CONFIGURED : USB_STATE_ADDRESS); /* 10.5.4.5 says not to reset a suspended port if the attached * device is enabled for remote wakeup. Hence the reset * operation is carried out here, after the port has been * resumed. */ if (udev->reset_resume) { /* * If the device morphs or switches modes when it is reset, * we don't want to perform a reset-resume. We'll fail the * resume, which will cause a logical disconnect, and then * the device will be rediscovered. */ retry_reset_resume: if (udev->quirks & USB_QUIRK_RESET) status = -ENODEV; else status = usb_reset_and_verify_device(udev); } /* 10.5.4.5 says be sure devices in the tree are still there. * For now let's assume the device didn't go crazy on resume, * and device drivers will know about any resume quirks. */ if (status == 0) { devstatus = 0; status = usb_get_std_status(udev, USB_RECIP_DEVICE, 0, &devstatus); /* If a normal resume failed, try doing a reset-resume */ if (status && !udev->reset_resume && udev->persist_enabled) { dev_dbg(&udev->dev, "retry with reset-resume\n"); udev->reset_resume = 1; goto retry_reset_resume; } } if (status) { dev_dbg(&udev->dev, "gone after usb resume? status %d\n", status); /* * There are a few quirky devices which violate the standard * by claiming to have remote wakeup enabled after a reset, * which crash if the feature is cleared, hence check for * udev->reset_resume */ } else if (udev->actconfig && !udev->reset_resume) { if (udev->speed < USB_SPEED_SUPER) { if (devstatus & (1 << USB_DEVICE_REMOTE_WAKEUP)) status = usb_disable_remote_wakeup(udev); } else { status = usb_get_std_status(udev, USB_RECIP_INTERFACE, 0, &devstatus); if (!status && devstatus & (USB_INTRF_STAT_FUNC_RW_CAP | USB_INTRF_STAT_FUNC_RW)) status = usb_disable_remote_wakeup(udev); } if (status) dev_dbg(&udev->dev, "disable remote wakeup, status %d\n", status); status = 0; } return status; } /* * There are some SS USB devices which take longer time for link training. * XHCI specs 4.19.4 says that when Link training is successful, port * sets CCS bit to 1. So if SW reads port status before successful link * training, then it will not find device to be present. * USB Analyzer log with such buggy devices show that in some cases * device switch on the RX termination after long delay of host enabling * the VBUS. In few other cases it has been seen that device fails to * negotiate link training in first attempt. It has been * reported till now that few devices take as long as 2000 ms to train * the link after host enabling its VBUS and termination. Following * routine implements a 2000 ms timeout for link training. If in a case * link trains before timeout, loop will exit earlier. * * There are also some 2.0 hard drive based devices and 3.0 thumb * drives that, when plugged into a 2.0 only port, take a long * time to set CCS after VBUS enable. * * FIXME: If a device was connected before suspend, but was removed * while system was asleep, then the loop in the following routine will * only exit at timeout. * * This routine should only be called when persist is enabled. */ static int wait_for_connected(struct usb_device *udev, struct usb_hub *hub, int *port1, u16 *portchange, u16 *portstatus) { int status = 0, delay_ms = 0; while (delay_ms < 2000) { if (status || *portstatus & USB_PORT_STAT_CONNECTION) break; if (!port_is_power_on(hub, *portstatus)) { status = -ENODEV; break; } msleep(20); delay_ms += 20; status = hub_port_status(hub, *port1, portstatus, portchange); } dev_dbg(&udev->dev, "Waited %dms for CONNECT\n", delay_ms); return status; } /* * usb_port_resume - re-activate a suspended usb device's upstream port * @udev: device to re-activate, not a root hub * Context: must be able to sleep; device not locked; pm locks held * * This will re-activate the suspended device, increasing power usage * while letting drivers communicate again with its endpoints. * USB resume explicitly guarantees that the power session between * the host and the device is the same as it was when the device * suspended. * * If @udev->reset_resume is set then this routine won't check that the * port is still enabled. Furthermore, finish_port_resume() above will * reset @udev. The end result is that a broken power session can be * recovered and @udev will appear to persist across a loss of VBUS power. * * For example, if a host controller doesn't maintain VBUS suspend current * during a system sleep or is reset when the system wakes up, all the USB * power sessions below it will be broken. This is especially troublesome * for mass-storage devices containing mounted filesystems, since the * device will appear to have disconnected and all the memory mappings * to it will be lost. Using the USB_PERSIST facility, the device can be * made to appear as if it had not disconnected. * * This facility can be dangerous. Although usb_reset_and_verify_device() makes * every effort to insure that the same device is present after the * reset as before, it cannot provide a 100% guarantee. Furthermore it's * quite possible for a device to remain unaltered but its media to be * changed. If the user replaces a flash memory card while the system is * asleep, he will have only himself to blame when the filesystem on the * new card is corrupted and the system crashes. * * Returns 0 on success, else negative errno. */ int usb_port_resume(struct usb_device *udev, pm_message_t msg) { struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); struct usb_port *port_dev = hub->ports[udev->portnum - 1]; int port1 = udev->portnum; int status; u16 portchange, portstatus; if (!test_and_set_bit(port1, hub->child_usage_bits)) { status = pm_runtime_resume_and_get(&port_dev->dev); if (status < 0) { dev_dbg(&udev->dev, "can't resume usb port, status %d\n", status); return status; } } usb_lock_port(port_dev); /* Skip the initial Clear-Suspend step for a remote wakeup */ status = hub_port_status(hub, port1, &portstatus, &portchange); if (status == 0 && !port_is_suspended(hub, portstatus)) { if (portchange & USB_PORT_STAT_C_SUSPEND) pm_wakeup_event(&udev->dev, 0); goto SuspendCleared; } /* see 7.1.7.7; affects power usage, but not budgeting */ if (hub_is_superspeed(hub->hdev)) status = hub_set_port_link_state(hub, port1, USB_SS_PORT_LS_U0); else status = usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_SUSPEND); if (status) { dev_dbg(&port_dev->dev, "can't resume, status %d\n", status); } else { /* drive resume for USB_RESUME_TIMEOUT msec */ dev_dbg(&udev->dev, "usb %sresume\n", (PMSG_IS_AUTO(msg) ? "auto-" : "")); msleep(USB_RESUME_TIMEOUT); /* Virtual root hubs can trigger on GET_PORT_STATUS to * stop resume signaling. Then finish the resume * sequence. */ status = hub_port_status(hub, port1, &portstatus, &portchange); } SuspendCleared: if (status == 0) { udev->port_is_suspended = 0; if (hub_is_superspeed(hub->hdev)) { if (portchange & USB_PORT_STAT_C_LINK_STATE) usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_PORT_LINK_STATE); } else { if (portchange & USB_PORT_STAT_C_SUSPEND) usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_SUSPEND); } /* TRSMRCY = 10 msec */ msleep(10); } if (udev->persist_enabled) status = wait_for_connected(udev, hub, &port1, &portchange, &portstatus); status = check_port_resume_type(udev, hub, port1, status, portchange, portstatus); if (status == 0) status = finish_port_resume(udev); if (status < 0) { dev_dbg(&udev->dev, "can't resume, status %d\n", status); hub_port_logical_disconnect(hub, port1); } else { /* Try to enable USB2 hardware LPM */ usb_enable_usb2_hardware_lpm(udev); /* Try to enable USB3 LTM */ usb_enable_ltm(udev); } usb_unlock_port(port_dev); return status; } int usb_remote_wakeup(struct usb_device *udev) { int status = 0; usb_lock_device(udev); if (udev->state == USB_STATE_SUSPENDED) { dev_dbg(&udev->dev, "usb %sresume\n", "wakeup-"); status = usb_autoresume_device(udev); if (status == 0) { /* Let the drivers do their thing, then... */ usb_autosuspend_device(udev); } } usb_unlock_device(udev); return status; } /* Returns 1 if there was a remote wakeup and a connect status change. */ static int hub_handle_remote_wakeup(struct usb_hub *hub, unsigned int port, u16 portstatus, u16 portchange) __must_hold(&port_dev->status_lock) { struct usb_port *port_dev = hub->ports[port - 1]; struct usb_device *hdev; struct usb_device *udev; int connect_change = 0; u16 link_state; int ret; hdev = hub->hdev; udev = port_dev->child; if (!hub_is_superspeed(hdev)) { if (!(portchange & USB_PORT_STAT_C_SUSPEND)) return 0; usb_clear_port_feature(hdev, port, USB_PORT_FEAT_C_SUSPEND); } else { link_state = portstatus & USB_PORT_STAT_LINK_STATE; if (!udev || udev->state != USB_STATE_SUSPENDED || (link_state != USB_SS_PORT_LS_U0 && link_state != USB_SS_PORT_LS_U1 && link_state != USB_SS_PORT_LS_U2)) return 0; } if (udev) { /* TRSMRCY = 10 msec */ msleep(10); usb_unlock_port(port_dev); ret = usb_remote_wakeup(udev); usb_lock_port(port_dev); if (ret < 0) connect_change = 1; } else { ret = -ENODEV; hub_port_disable(hub, port, 1); } dev_dbg(&port_dev->dev, "resume, status %d\n", ret); return connect_change; } static int check_ports_changed(struct usb_hub *hub) { int port1; for (port1 = 1; port1 <= hub->hdev->maxchild; ++port1) { u16 portstatus, portchange; int status; status = hub_port_status(hub, port1, &portstatus, &portchange); if (!status && portchange) return 1; } return 0; } static int hub_suspend(struct usb_interface *intf, pm_message_t msg) { struct usb_hub *hub = usb_get_intfdata(intf); struct usb_device *hdev = hub->hdev; unsigned port1; /* * Warn if children aren't already suspended. * Also, add up the number of wakeup-enabled descendants. */ hub->wakeup_enabled_descendants = 0; for (port1 = 1; port1 <= hdev->maxchild; port1++) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; if (udev && udev->can_submit) { dev_warn(&port_dev->dev, "device %s not suspended yet\n", dev_name(&udev->dev)); if (PMSG_IS_AUTO(msg)) return -EBUSY; } if (udev) hub->wakeup_enabled_descendants += usb_wakeup_enabled_descendants(udev); } if (hdev->do_remote_wakeup && hub->quirk_check_port_auto_suspend) { /* check if there are changes pending on hub ports */ if (check_ports_changed(hub)) { if (PMSG_IS_AUTO(msg)) return -EBUSY; pm_wakeup_event(&hdev->dev, 2000); } } if (hub_is_superspeed(hdev) && hdev->do_remote_wakeup) { /* Enable hub to send remote wakeup for all ports. */ for (port1 = 1; port1 <= hdev->maxchild; port1++) { set_port_feature(hdev, port1 | USB_PORT_FEAT_REMOTE_WAKE_CONNECT | USB_PORT_FEAT_REMOTE_WAKE_DISCONNECT | USB_PORT_FEAT_REMOTE_WAKE_OVER_CURRENT, USB_PORT_FEAT_REMOTE_WAKE_MASK); } } dev_dbg(&intf->dev, "%s\n", __func__); /* stop hub_wq and related activity */ hub_quiesce(hub, HUB_SUSPEND); return 0; } /* Report wakeup requests from the ports of a resuming root hub */ static void report_wakeup_requests(struct usb_hub *hub) { struct usb_device *hdev = hub->hdev; struct usb_device *udev; struct usb_hcd *hcd; unsigned long resuming_ports; int i; if (hdev->parent) return; /* Not a root hub */ hcd = bus_to_hcd(hdev->bus); if (hcd->driver->get_resuming_ports) { /* * The get_resuming_ports() method returns a bitmap (origin 0) * of ports which have started wakeup signaling but have not * yet finished resuming. During system resume we will * resume all the enabled ports, regardless of any wakeup * signals, which means the wakeup requests would be lost. * To prevent this, report them to the PM core here. */ resuming_ports = hcd->driver->get_resuming_ports(hcd); for (i = 0; i < hdev->maxchild; ++i) { if (test_bit(i, &resuming_ports)) { udev = hub->ports[i]->child; if (udev) pm_wakeup_event(&udev->dev, 0); } } } } static int hub_resume(struct usb_interface *intf) { struct usb_hub *hub = usb_get_intfdata(intf); dev_dbg(&intf->dev, "%s\n", __func__); hub_activate(hub, HUB_RESUME); /* * This should be called only for system resume, not runtime resume. * We can't tell the difference here, so some wakeup requests will be * reported at the wrong time or more than once. This shouldn't * matter much, so long as they do get reported. */ report_wakeup_requests(hub); return 0; } static int hub_reset_resume(struct usb_interface *intf) { struct usb_hub *hub = usb_get_intfdata(intf); dev_dbg(&intf->dev, "%s\n", __func__); hub_activate(hub, HUB_RESET_RESUME); return 0; } /** * usb_root_hub_lost_power - called by HCD if the root hub lost Vbus power * @rhdev: struct usb_device for the root hub * * The USB host controller driver calls this function when its root hub * is resumed and Vbus power has been interrupted or the controller * has been reset. The routine marks @rhdev as having lost power. * When the hub driver is resumed it will take notice and carry out * power-session recovery for all the "USB-PERSIST"-enabled child devices; * the others will be disconnected. */ void usb_root_hub_lost_power(struct usb_device *rhdev) { dev_notice(&rhdev->dev, "root hub lost power or was reset\n"); rhdev->reset_resume = 1; } EXPORT_SYMBOL_GPL(usb_root_hub_lost_power); static const char * const usb3_lpm_names[] = { "U0", "U1", "U2", "U3", }; /* * Send a Set SEL control transfer to the device, prior to enabling * device-initiated U1 or U2. This lets the device know the exit latencies from * the time the device initiates a U1 or U2 exit, to the time it will receive a * packet from the host. * * This function will fail if the SEL or PEL values for udev are greater than * the maximum allowed values for the link state to be enabled. */ static int usb_req_set_sel(struct usb_device *udev, enum usb3_link_state state) { struct usb_set_sel_req *sel_values; unsigned long long u1_sel; unsigned long long u1_pel; unsigned long long u2_sel; unsigned long long u2_pel; int ret; if (udev->state != USB_STATE_CONFIGURED) return 0; /* Convert SEL and PEL stored in ns to us */ u1_sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); u1_pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); u2_sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); u2_pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); /* * Make sure that the calculated SEL and PEL values for the link * state we're enabling aren't bigger than the max SEL/PEL * value that will fit in the SET SEL control transfer. * Otherwise the device would get an incorrect idea of the exit * latency for the link state, and could start a device-initiated * U1/U2 when the exit latencies are too high. */ if ((state == USB3_LPM_U1 && (u1_sel > USB3_LPM_MAX_U1_SEL_PEL || u1_pel > USB3_LPM_MAX_U1_SEL_PEL)) || (state == USB3_LPM_U2 && (u2_sel > USB3_LPM_MAX_U2_SEL_PEL || u2_pel > USB3_LPM_MAX_U2_SEL_PEL))) { dev_dbg(&udev->dev, "Device-initiated %s disabled due to long SEL %llu us or PEL %llu us\n", usb3_lpm_names[state], u1_sel, u1_pel); return -EINVAL; } /* * If we're enabling device-initiated LPM for one link state, * but the other link state has a too high SEL or PEL value, * just set those values to the max in the Set SEL request. */ if (u1_sel > USB3_LPM_MAX_U1_SEL_PEL) u1_sel = USB3_LPM_MAX_U1_SEL_PEL; if (u1_pel > USB3_LPM_MAX_U1_SEL_PEL) u1_pel = USB3_LPM_MAX_U1_SEL_PEL; if (u2_sel > USB3_LPM_MAX_U2_SEL_PEL) u2_sel = USB3_LPM_MAX_U2_SEL_PEL; if (u2_pel > USB3_LPM_MAX_U2_SEL_PEL) u2_pel = USB3_LPM_MAX_U2_SEL_PEL; /* * usb_enable_lpm() can be called as part of a failed device reset, * which may be initiated by an error path of a mass storage driver. * Therefore, use GFP_NOIO. */ sel_values = kmalloc(sizeof *(sel_values), GFP_NOIO); if (!sel_values) return -ENOMEM; sel_values->u1_sel = u1_sel; sel_values->u1_pel = u1_pel; sel_values->u2_sel = cpu_to_le16(u2_sel); sel_values->u2_pel = cpu_to_le16(u2_pel); ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_SEL, USB_RECIP_DEVICE, 0, 0, sel_values, sizeof *(sel_values), USB_CTRL_SET_TIMEOUT); kfree(sel_values); return ret; } /* * Enable or disable device-initiated U1 or U2 transitions. */ static int usb_set_device_initiated_lpm(struct usb_device *udev, enum usb3_link_state state, bool enable) { int ret; int feature; switch (state) { case USB3_LPM_U1: feature = USB_DEVICE_U1_ENABLE; break; case USB3_LPM_U2: feature = USB_DEVICE_U2_ENABLE; break; default: dev_warn(&udev->dev, "%s: Can't %s non-U1 or U2 state.\n", __func__, enable ? "enable" : "disable"); return -EINVAL; } if (udev->state != USB_STATE_CONFIGURED) { dev_dbg(&udev->dev, "%s: Can't %s %s state " "for unconfigured device.\n", __func__, enable ? "enable" : "disable", usb3_lpm_names[state]); return 0; } if (enable) { /* * Now send the control transfer to enable device-initiated LPM * for either U1 or U2. */ ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_FEATURE, USB_RECIP_DEVICE, feature, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } else { ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_CLEAR_FEATURE, USB_RECIP_DEVICE, feature, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); } if (ret < 0) { dev_warn(&udev->dev, "%s of device-initiated %s failed.\n", enable ? "Enable" : "Disable", usb3_lpm_names[state]); return -EBUSY; } return 0; } static int usb_set_lpm_timeout(struct usb_device *udev, enum usb3_link_state state, int timeout) { int ret; int feature; switch (state) { case USB3_LPM_U1: feature = USB_PORT_FEAT_U1_TIMEOUT; break; case USB3_LPM_U2: feature = USB_PORT_FEAT_U2_TIMEOUT; break; default: dev_warn(&udev->dev, "%s: Can't set timeout for non-U1 or U2 state.\n", __func__); return -EINVAL; } if (state == USB3_LPM_U1 && timeout > USB3_LPM_U1_MAX_TIMEOUT && timeout != USB3_LPM_DEVICE_INITIATED) { dev_warn(&udev->dev, "Failed to set %s timeout to 0x%x, " "which is a reserved value.\n", usb3_lpm_names[state], timeout); return -EINVAL; } ret = set_port_feature(udev->parent, USB_PORT_LPM_TIMEOUT(timeout) | udev->portnum, feature); if (ret < 0) { dev_warn(&udev->dev, "Failed to set %s timeout to 0x%x," "error code %i\n", usb3_lpm_names[state], timeout, ret); return -EBUSY; } if (state == USB3_LPM_U1) udev->u1_params.timeout = timeout; else udev->u2_params.timeout = timeout; return 0; } /* * Don't allow device intiated U1/U2 if the system exit latency + one bus * interval is greater than the minimum service interval of any active * periodic endpoint. See USB 3.2 section 9.4.9 */ static bool usb_device_may_initiate_lpm(struct usb_device *udev, enum usb3_link_state state) { unsigned int sel; /* us */ int i, j; if (state == USB3_LPM_U1) sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); else if (state == USB3_LPM_U2) sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); else return false; for (i = 0; i < udev->actconfig->desc.bNumInterfaces; i++) { struct usb_interface *intf; struct usb_endpoint_descriptor *desc; unsigned int interval; intf = udev->actconfig->interface[i]; if (!intf) continue; for (j = 0; j < intf->cur_altsetting->desc.bNumEndpoints; j++) { desc = &intf->cur_altsetting->endpoint[j].desc; if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { interval = (1 << (desc->bInterval - 1)) * 125; if (sel + 125 > interval) return false; } } } return true; } /* * Enable the hub-initiated U1/U2 idle timeouts, and enable device-initiated * U1/U2 entry. * * We will attempt to enable U1 or U2, but there are no guarantees that the * control transfers to set the hub timeout or enable device-initiated U1/U2 * will be successful. * * If the control transfer to enable device-initiated U1/U2 entry fails, then * hub-initiated U1/U2 will be disabled. * * If we cannot set the parent hub U1/U2 timeout, we attempt to let the xHCI * driver know about it. If that call fails, it should be harmless, and just * take up more slightly more bus bandwidth for unnecessary U1/U2 exit latency. */ static void usb_enable_link_state(struct usb_hcd *hcd, struct usb_device *udev, enum usb3_link_state state) { int timeout, ret; __u8 u1_mel = udev->bos->ss_cap->bU1devExitLat; __le16 u2_mel = udev->bos->ss_cap->bU2DevExitLat; /* If the device says it doesn't have *any* exit latency to come out of * U1 or U2, it's probably lying. Assume it doesn't implement that link * state. */ if ((state == USB3_LPM_U1 && u1_mel == 0) || (state == USB3_LPM_U2 && u2_mel == 0)) return; /* * First, let the device know about the exit latencies * associated with the link state we're about to enable. */ ret = usb_req_set_sel(udev, state); if (ret < 0) { dev_warn(&udev->dev, "Set SEL for device-initiated %s failed.\n", usb3_lpm_names[state]); return; } /* We allow the host controller to set the U1/U2 timeout internally * first, so that it can change its schedule to account for the * additional latency to send data to a device in a lower power * link state. */ timeout = hcd->driver->enable_usb3_lpm_timeout(hcd, udev, state); /* xHCI host controller doesn't want to enable this LPM state. */ if (timeout == 0) return; if (timeout < 0) { dev_warn(&udev->dev, "Could not enable %s link state, " "xHCI error %i.\n", usb3_lpm_names[state], timeout); return; } if (usb_set_lpm_timeout(udev, state, timeout)) { /* If we can't set the parent hub U1/U2 timeout, * device-initiated LPM won't be allowed either, so let the xHCI * host know that this link state won't be enabled. */ hcd->driver->disable_usb3_lpm_timeout(hcd, udev, state); return; } /* Only a configured device will accept the Set Feature * U1/U2_ENABLE */ if (udev->actconfig && usb_device_may_initiate_lpm(udev, state)) { if (usb_set_device_initiated_lpm(udev, state, true)) { /* * Request to enable device initiated U1/U2 failed, * better to turn off lpm in this case. */ usb_set_lpm_timeout(udev, state, 0); hcd->driver->disable_usb3_lpm_timeout(hcd, udev, state); return; } } if (state == USB3_LPM_U1) udev->usb3_lpm_u1_enabled = 1; else if (state == USB3_LPM_U2) udev->usb3_lpm_u2_enabled = 1; } /* * Disable the hub-initiated U1/U2 idle timeouts, and disable device-initiated * U1/U2 entry. * * If this function returns -EBUSY, the parent hub will still allow U1/U2 entry. * If zero is returned, the parent will not allow the link to go into U1/U2. * * If zero is returned, device-initiated U1/U2 entry may still be enabled, but * it won't have an effect on the bus link state because the parent hub will * still disallow device-initiated U1/U2 entry. * * If zero is returned, the xHCI host controller may still think U1/U2 entry is * possible. The result will be slightly more bus bandwidth will be taken up * (to account for U1/U2 exit latency), but it should be harmless. */ static int usb_disable_link_state(struct usb_hcd *hcd, struct usb_device *udev, enum usb3_link_state state) { switch (state) { case USB3_LPM_U1: case USB3_LPM_U2: break; default: dev_warn(&udev->dev, "%s: Can't disable non-U1 or U2 state.\n", __func__); return -EINVAL; } if (usb_set_lpm_timeout(udev, state, 0)) return -EBUSY; usb_set_device_initiated_lpm(udev, state, false); if (hcd->driver->disable_usb3_lpm_timeout(hcd, udev, state)) dev_warn(&udev->dev, "Could not disable xHCI %s timeout, " "bus schedule bandwidth may be impacted.\n", usb3_lpm_names[state]); /* As soon as usb_set_lpm_timeout(0) return 0, hub initiated LPM * is disabled. Hub will disallows link to enter U1/U2 as well, * even device is initiating LPM. Hence LPM is disabled if hub LPM * timeout set to 0, no matter device-initiated LPM is disabled or * not. */ if (state == USB3_LPM_U1) udev->usb3_lpm_u1_enabled = 0; else if (state == USB3_LPM_U2) udev->usb3_lpm_u2_enabled = 0; return 0; } /* * Disable hub-initiated and device-initiated U1 and U2 entry. * Caller must own the bandwidth_mutex. * * This will call usb_enable_lpm() on failure, which will decrement * lpm_disable_count, and will re-enable LPM if lpm_disable_count reaches zero. */ int usb_disable_lpm(struct usb_device *udev) { struct usb_hcd *hcd; if (!udev || !udev->parent || udev->speed < USB_SPEED_SUPER || !udev->lpm_capable || udev->state < USB_STATE_CONFIGURED) return 0; hcd = bus_to_hcd(udev->bus); if (!hcd || !hcd->driver->disable_usb3_lpm_timeout) return 0; udev->lpm_disable_count++; if ((udev->u1_params.timeout == 0 && udev->u2_params.timeout == 0)) return 0; /* If LPM is enabled, attempt to disable it. */ if (usb_disable_link_state(hcd, udev, USB3_LPM_U1)) goto enable_lpm; if (usb_disable_link_state(hcd, udev, USB3_LPM_U2)) goto enable_lpm; return 0; enable_lpm: usb_enable_lpm(udev); return -EBUSY; } EXPORT_SYMBOL_GPL(usb_disable_lpm); /* Grab the bandwidth_mutex before calling usb_disable_lpm() */ int usb_unlocked_disable_lpm(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); int ret; if (!hcd) return -EINVAL; mutex_lock(hcd->bandwidth_mutex); ret = usb_disable_lpm(udev); mutex_unlock(hcd->bandwidth_mutex); return ret; } EXPORT_SYMBOL_GPL(usb_unlocked_disable_lpm); /* * Attempt to enable device-initiated and hub-initiated U1 and U2 entry. The * xHCI host policy may prevent U1 or U2 from being enabled. * * Other callers may have disabled link PM, so U1 and U2 entry will be disabled * until the lpm_disable_count drops to zero. Caller must own the * bandwidth_mutex. */ void usb_enable_lpm(struct usb_device *udev) { struct usb_hcd *hcd; struct usb_hub *hub; struct usb_port *port_dev; if (!udev || !udev->parent || udev->speed < USB_SPEED_SUPER || !udev->lpm_capable || udev->state < USB_STATE_CONFIGURED) return; udev->lpm_disable_count--; hcd = bus_to_hcd(udev->bus); /* Double check that we can both enable and disable LPM. * Device must be configured to accept set feature U1/U2 timeout. */ if (!hcd || !hcd->driver->enable_usb3_lpm_timeout || !hcd->driver->disable_usb3_lpm_timeout) return; if (udev->lpm_disable_count > 0) return; hub = usb_hub_to_struct_hub(udev->parent); if (!hub) return; port_dev = hub->ports[udev->portnum - 1]; if (port_dev->usb3_lpm_u1_permit) usb_enable_link_state(hcd, udev, USB3_LPM_U1); if (port_dev->usb3_lpm_u2_permit) usb_enable_link_state(hcd, udev, USB3_LPM_U2); } EXPORT_SYMBOL_GPL(usb_enable_lpm); /* Grab the bandwidth_mutex before calling usb_enable_lpm() */ void usb_unlocked_enable_lpm(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); if (!hcd) return; mutex_lock(hcd->bandwidth_mutex); usb_enable_lpm(udev); mutex_unlock(hcd->bandwidth_mutex); } EXPORT_SYMBOL_GPL(usb_unlocked_enable_lpm); /* usb3 devices use U3 for disabled, make sure remote wakeup is disabled */ static void hub_usb3_port_prepare_disable(struct usb_hub *hub, struct usb_port *port_dev) { struct usb_device *udev = port_dev->child; int ret; if (udev && udev->port_is_suspended && udev->do_remote_wakeup) { ret = hub_set_port_link_state(hub, port_dev->portnum, USB_SS_PORT_LS_U0); if (!ret) { msleep(USB_RESUME_TIMEOUT); ret = usb_disable_remote_wakeup(udev); } if (ret) dev_warn(&udev->dev, "Port disable: can't disable remote wake\n"); udev->do_remote_wakeup = 0; } } #else /* CONFIG_PM */ #define hub_suspend NULL #define hub_resume NULL #define hub_reset_resume NULL static inline void hub_usb3_port_prepare_disable(struct usb_hub *hub, struct usb_port *port_dev) { } int usb_disable_lpm(struct usb_device *udev) { return 0; } EXPORT_SYMBOL_GPL(usb_disable_lpm); void usb_enable_lpm(struct usb_device *udev) { } EXPORT_SYMBOL_GPL(usb_enable_lpm); int usb_unlocked_disable_lpm(struct usb_device *udev) { return 0; } EXPORT_SYMBOL_GPL(usb_unlocked_disable_lpm); void usb_unlocked_enable_lpm(struct usb_device *udev) { } EXPORT_SYMBOL_GPL(usb_unlocked_enable_lpm); int usb_disable_ltm(struct usb_device *udev) { return 0; } EXPORT_SYMBOL_GPL(usb_disable_ltm); void usb_enable_ltm(struct usb_device *udev) { } EXPORT_SYMBOL_GPL(usb_enable_ltm); static int hub_handle_remote_wakeup(struct usb_hub *hub, unsigned int port, u16 portstatus, u16 portchange) { return 0; } #endif /* CONFIG_PM */ /* * USB-3 does not have a similar link state as USB-2 that will avoid negotiating * a connection with a plugged-in cable but will signal the host when the cable * is unplugged. Disable remote wake and set link state to U3 for USB-3 devices */ static int hub_port_disable(struct usb_hub *hub, int port1, int set_state) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *hdev = hub->hdev; int ret = 0; if (!hub->error) { if (hub_is_superspeed(hub->hdev)) { hub_usb3_port_prepare_disable(hub, port_dev); ret = hub_set_port_link_state(hub, port_dev->portnum, USB_SS_PORT_LS_U3); } else { ret = usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_ENABLE); } } if (port_dev->child && set_state) usb_set_device_state(port_dev->child, USB_STATE_NOTATTACHED); if (ret && ret != -ENODEV) dev_err(&port_dev->dev, "cannot disable (err = %d)\n", ret); return ret; } /* * usb_port_disable - disable a usb device's upstream port * @udev: device to disable * Context: @udev locked, must be able to sleep. * * Disables a USB device that isn't in active use. */ int usb_port_disable(struct usb_device *udev) { struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); return hub_port_disable(hub, udev->portnum, 0); } /* USB 2.0 spec, 7.1.7.3 / fig 7-29: * * Between connect detection and reset signaling there must be a delay * of 100ms at least for debounce and power-settling. The corresponding * timer shall restart whenever the downstream port detects a disconnect. * * Apparently there are some bluetooth and irda-dongles and a number of * low-speed devices for which this debounce period may last over a second. * Not covered by the spec - but easy to deal with. * * This implementation uses a 1500ms total debounce timeout; if the * connection isn't stable by then it returns -ETIMEDOUT. It checks * every 25ms for transient disconnects. When the port status has been * unchanged for 100ms it returns the port status. */ int hub_port_debounce(struct usb_hub *hub, int port1, bool must_be_connected) { int ret; u16 portchange, portstatus; unsigned connection = 0xffff; int total_time, stable_time = 0; struct usb_port *port_dev = hub->ports[port1 - 1]; for (total_time = 0; ; total_time += HUB_DEBOUNCE_STEP) { ret = hub_port_status(hub, port1, &portstatus, &portchange); if (ret < 0) return ret; if (!(portchange & USB_PORT_STAT_C_CONNECTION) && (portstatus & USB_PORT_STAT_CONNECTION) == connection) { if (!must_be_connected || (connection == USB_PORT_STAT_CONNECTION)) stable_time += HUB_DEBOUNCE_STEP; if (stable_time >= HUB_DEBOUNCE_STABLE) break; } else { stable_time = 0; connection = portstatus & USB_PORT_STAT_CONNECTION; } if (portchange & USB_PORT_STAT_C_CONNECTION) { usb_clear_port_feature(hub->hdev, port1, USB_PORT_FEAT_C_CONNECTION); } if (total_time >= HUB_DEBOUNCE_TIMEOUT) break; msleep(HUB_DEBOUNCE_STEP); } dev_dbg(&port_dev->dev, "debounce total %dms stable %dms status 0x%x\n", total_time, stable_time, portstatus); if (stable_time < HUB_DEBOUNCE_STABLE) return -ETIMEDOUT; return portstatus; } void usb_ep0_reinit(struct usb_device *udev) { usb_disable_endpoint(udev, 0 + USB_DIR_IN, true); usb_disable_endpoint(udev, 0 + USB_DIR_OUT, true); usb_enable_endpoint(udev, &udev->ep0, true); } EXPORT_SYMBOL_GPL(usb_ep0_reinit); #define usb_sndaddr0pipe() (PIPE_CONTROL << 30) #define usb_rcvaddr0pipe() ((PIPE_CONTROL << 30) | USB_DIR_IN) static int hub_set_address(struct usb_device *udev, int devnum) { int retval; struct usb_hcd *hcd = bus_to_hcd(udev->bus); /* * The host controller will choose the device address, * instead of the core having chosen it earlier */ if (!hcd->driver->address_device && devnum <= 1) return -EINVAL; if (udev->state == USB_STATE_ADDRESS) return 0; if (udev->state != USB_STATE_DEFAULT) return -EINVAL; if (hcd->driver->address_device) retval = hcd->driver->address_device(hcd, udev); else retval = usb_control_msg(udev, usb_sndaddr0pipe(), USB_REQ_SET_ADDRESS, 0, devnum, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (retval == 0) { update_devnum(udev, devnum); /* Device now using proper address. */ usb_set_device_state(udev, USB_STATE_ADDRESS); usb_ep0_reinit(udev); } return retval; } /* * There are reports of USB 3.0 devices that say they support USB 2.0 Link PM * when they're plugged into a USB 2.0 port, but they don't work when LPM is * enabled. * * Only enable USB 2.0 Link PM if the port is internal (hardwired), or the * device says it supports the new USB 2.0 Link PM errata by setting the BESL * support bit in the BOS descriptor. */ static void hub_set_initial_usb2_lpm_policy(struct usb_device *udev) { struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); int connect_type = USB_PORT_CONNECT_TYPE_UNKNOWN; if (!udev->usb2_hw_lpm_capable || !udev->bos) return; if (hub) connect_type = hub->ports[udev->portnum - 1]->connect_type; if ((udev->bos->ext_cap->bmAttributes & cpu_to_le32(USB_BESL_SUPPORT)) || connect_type == USB_PORT_CONNECT_TYPE_HARD_WIRED) { udev->usb2_hw_lpm_allowed = 1; usb_enable_usb2_hardware_lpm(udev); } } static int hub_enable_device(struct usb_device *udev) { struct usb_hcd *hcd = bus_to_hcd(udev->bus); if (!hcd->driver->enable_device) return 0; if (udev->state == USB_STATE_ADDRESS) return 0; if (udev->state != USB_STATE_DEFAULT) return -EINVAL; return hcd->driver->enable_device(hcd, udev); } /* Reset device, (re)assign address, get device descriptor. * Device connection must be stable, no more debouncing needed. * Returns device in USB_STATE_ADDRESS, except on error. * * If this is called for an already-existing device (as part of * usb_reset_and_verify_device), the caller must own the device lock and * the port lock. For a newly detected device that is not accessible * through any global pointers, it's not necessary to lock the device, * but it is still necessary to lock the port. */ static int hub_port_init(struct usb_hub *hub, struct usb_device *udev, int port1, int retry_counter) { struct usb_device *hdev = hub->hdev; struct usb_hcd *hcd = bus_to_hcd(hdev->bus); struct usb_port *port_dev = hub->ports[port1 - 1]; int retries, operations, retval, i; unsigned delay = HUB_SHORT_RESET_TIME; enum usb_device_speed oldspeed = udev->speed; const char *speed; int devnum = udev->devnum; const char *driver_name; bool do_new_scheme; /* root hub ports have a slightly longer reset period * (from USB 2.0 spec, section 7.1.7.5) */ if (!hdev->parent) { delay = HUB_ROOT_RESET_TIME; if (port1 == hdev->bus->otg_port) hdev->bus->b_hnp_enable = 0; } /* Some low speed devices have problems with the quick delay, so */ /* be a bit pessimistic with those devices. RHbug #23670 */ if (oldspeed == USB_SPEED_LOW) delay = HUB_LONG_RESET_TIME; /* Reset the device; full speed may morph to high speed */ /* FIXME a USB 2.0 device may morph into SuperSpeed on reset. */ retval = hub_port_reset(hub, port1, udev, delay, false); if (retval < 0) /* error or disconnect */ goto fail; /* success, speed is known */ retval = -ENODEV; /* Don't allow speed changes at reset, except usb 3.0 to faster */ if (oldspeed != USB_SPEED_UNKNOWN && oldspeed != udev->speed && !(oldspeed == USB_SPEED_SUPER && udev->speed > oldspeed)) { dev_dbg(&udev->dev, "device reset changed speed!\n"); goto fail; } oldspeed = udev->speed; /* USB 2.0 section 5.5.3 talks about ep0 maxpacket ... * it's fixed size except for full speed devices. * For Wireless USB devices, ep0 max packet is always 512 (tho * reported as 0xff in the device descriptor). WUSB1.0[4.8.1]. */ switch (udev->speed) { case USB_SPEED_SUPER_PLUS: case USB_SPEED_SUPER: case USB_SPEED_WIRELESS: /* fixed at 512 */ udev->ep0.desc.wMaxPacketSize = cpu_to_le16(512); break; case USB_SPEED_HIGH: /* fixed at 64 */ udev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); break; case USB_SPEED_FULL: /* 8, 16, 32, or 64 */ /* to determine the ep0 maxpacket size, try to read * the device descriptor to get bMaxPacketSize0 and * then correct our initial guess. */ udev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); break; case USB_SPEED_LOW: /* fixed at 8 */ udev->ep0.desc.wMaxPacketSize = cpu_to_le16(8); break; default: goto fail; } if (udev->speed == USB_SPEED_WIRELESS) speed = "variable speed Wireless"; else speed = usb_speed_string(udev->speed); /* * The controller driver may be NULL if the controller device * is the middle device between platform device and roothub. * This middle device may not need a device driver due to * all hardware control can be at platform device driver, this * platform device is usually a dual-role USB controller device. */ if (udev->bus->controller->driver) driver_name = udev->bus->controller->driver->name; else driver_name = udev->bus->sysdev->driver->name; if (udev->speed < USB_SPEED_SUPER) dev_info(&udev->dev, "%s %s USB device number %d using %s\n", (udev->config) ? "reset" : "new", speed, devnum, driver_name); /* Set up TT records, if needed */ if (hdev->tt) { udev->tt = hdev->tt; udev->ttport = hdev->ttport; } else if (udev->speed != USB_SPEED_HIGH && hdev->speed == USB_SPEED_HIGH) { if (!hub->tt.hub) { dev_err(&udev->dev, "parent hub has no TT\n"); retval = -EINVAL; goto fail; } udev->tt = &hub->tt; udev->ttport = port1; } /* Why interleave GET_DESCRIPTOR and SET_ADDRESS this way? * Because device hardware and firmware is sometimes buggy in * this area, and this is how Linux has done it for ages. * Change it cautiously. * * NOTE: If use_new_scheme() is true we will start by issuing * a 64-byte GET_DESCRIPTOR request. This is what Windows does, * so it may help with some non-standards-compliant devices. * Otherwise we start with SET_ADDRESS and then try to read the * first 8 bytes of the device descriptor to get the ep0 maxpacket * value. */ do_new_scheme = use_new_scheme(udev, retry_counter, port_dev); for (retries = 0; retries < GET_DESCRIPTOR_TRIES; (++retries, msleep(100))) { if (do_new_scheme) { struct usb_device_descriptor *buf; int r = 0; retval = hub_enable_device(udev); if (retval < 0) { dev_err(&udev->dev, "hub failed to enable device, error %d\n", retval); goto fail; } #define GET_DESCRIPTOR_BUFSIZE 64 buf = kmalloc(GET_DESCRIPTOR_BUFSIZE, GFP_NOIO); if (!buf) { retval = -ENOMEM; continue; } /* Retry on all errors; some devices are flakey. * 255 is for WUSB devices, we actually need to use * 512 (WUSB1.0[4.8.1]). */ for (operations = 0; operations < GET_MAXPACKET0_TRIES; ++operations) { buf->bMaxPacketSize0 = 0; r = usb_control_msg(udev, usb_rcvaddr0pipe(), USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, USB_DT_DEVICE << 8, 0, buf, GET_DESCRIPTOR_BUFSIZE, initial_descriptor_timeout); switch (buf->bMaxPacketSize0) { case 8: case 16: case 32: case 64: case 255: if (buf->bDescriptorType == USB_DT_DEVICE) { r = 0; break; } fallthrough; default: if (r == 0) r = -EPROTO; break; } /* * Some devices time out if they are powered on * when already connected. They need a second * reset. But only on the first attempt, * lest we get into a time out/reset loop */ if (r == 0 || (r == -ETIMEDOUT && retries == 0 && udev->speed > USB_SPEED_FULL)) break; } udev->descriptor.bMaxPacketSize0 = buf->bMaxPacketSize0; kfree(buf); retval = hub_port_reset(hub, port1, udev, delay, false); if (retval < 0) /* error or disconnect */ goto fail; if (oldspeed != udev->speed) { dev_dbg(&udev->dev, "device reset changed speed!\n"); retval = -ENODEV; goto fail; } if (r) { if (r != -ENODEV) dev_err(&udev->dev, "device descriptor read/64, error %d\n", r); retval = -EMSGSIZE; continue; } #undef GET_DESCRIPTOR_BUFSIZE } /* * If device is WUSB, we already assigned an * unauthorized address in the Connect Ack sequence; * authorization will assign the final address. */ if (udev->wusb == 0) { for (operations = 0; operations < SET_ADDRESS_TRIES; ++operations) { retval = hub_set_address(udev, devnum); if (retval >= 0) break; msleep(200); } if (retval < 0) { if (retval != -ENODEV) dev_err(&udev->dev, "device not accepting address %d, error %d\n", devnum, retval); goto fail; } if (udev->speed >= USB_SPEED_SUPER) { devnum = udev->devnum; dev_info(&udev->dev, "%s SuperSpeed%s%s USB device number %d using %s\n", (udev->config) ? "reset" : "new", (udev->speed == USB_SPEED_SUPER_PLUS) ? " Plus" : "", (udev->ssp_rate == USB_SSP_GEN_2x2) ? " Gen 2x2" : (udev->ssp_rate == USB_SSP_GEN_2x1) ? " Gen 2x1" : (udev->ssp_rate == USB_SSP_GEN_1x2) ? " Gen 1x2" : "", devnum, driver_name); } /* cope with hardware quirkiness: * - let SET_ADDRESS settle, some device hardware wants it * - read ep0 maxpacket even for high and low speed, */ msleep(10); if (do_new_scheme) break; } retval = usb_get_device_descriptor(udev, 8); if (retval < 8) { if (retval != -ENODEV) dev_err(&udev->dev, "device descriptor read/8, error %d\n", retval); if (retval >= 0) retval = -EMSGSIZE; } else { u32 delay; retval = 0; delay = udev->parent->hub_delay; udev->hub_delay = min_t(u32, delay, USB_TP_TRANSMISSION_DELAY_MAX); retval = usb_set_isoch_delay(udev); if (retval) { dev_dbg(&udev->dev, "Failed set isoch delay, error %d\n", retval); retval = 0; } break; } } if (retval) goto fail; /* * Some superspeed devices have finished the link training process * and attached to a superspeed hub port, but the device descriptor * got from those devices show they aren't superspeed devices. Warm * reset the port attached by the devices can fix them. */ if ((udev->speed >= USB_SPEED_SUPER) && (le16_to_cpu(udev->descriptor.bcdUSB) < 0x0300)) { dev_err(&udev->dev, "got a wrong device descriptor, " "warm reset device\n"); hub_port_reset(hub, port1, udev, HUB_BH_RESET_TIME, true); retval = -EINVAL; goto fail; } if (udev->descriptor.bMaxPacketSize0 == 0xff || udev->speed >= USB_SPEED_SUPER) i = 512; else i = udev->descriptor.bMaxPacketSize0; if (usb_endpoint_maxp(&udev->ep0.desc) != i) { if (udev->speed == USB_SPEED_LOW || !(i == 8 || i == 16 || i == 32 || i == 64)) { dev_err(&udev->dev, "Invalid ep0 maxpacket: %d\n", i); retval = -EMSGSIZE; goto fail; } if (udev->speed == USB_SPEED_FULL) dev_dbg(&udev->dev, "ep0 maxpacket = %d\n", i); else dev_warn(&udev->dev, "Using ep0 maxpacket: %d\n", i); udev->ep0.desc.wMaxPacketSize = cpu_to_le16(i); usb_ep0_reinit(udev); } retval = usb_get_device_descriptor(udev, USB_DT_DEVICE_SIZE); if (retval < (signed)sizeof(udev->descriptor)) { if (retval != -ENODEV) dev_err(&udev->dev, "device descriptor read/all, error %d\n", retval); if (retval >= 0) retval = -ENOMSG; goto fail; } usb_detect_quirks(udev); if (udev->wusb == 0 && le16_to_cpu(udev->descriptor.bcdUSB) >= 0x0201) { retval = usb_get_bos_descriptor(udev); if (!retval) { udev->lpm_capable = usb_device_supports_lpm(udev); usb_set_lpm_parameters(udev); } } retval = 0; /* notify HCD that we have a device connected and addressed */ if (hcd->driver->update_device) hcd->driver->update_device(hcd, udev); hub_set_initial_usb2_lpm_policy(udev); fail: if (retval) { hub_port_disable(hub, port1, 0); update_devnum(udev, devnum); /* for disconnect processing */ } return retval; } static void check_highspeed(struct usb_hub *hub, struct usb_device *udev, int port1) { struct usb_qualifier_descriptor *qual; int status; if (udev->quirks & USB_QUIRK_DEVICE_QUALIFIER) return; qual = kmalloc(sizeof *qual, GFP_KERNEL); if (qual == NULL) return; status = usb_get_descriptor(udev, USB_DT_DEVICE_QUALIFIER, 0, qual, sizeof *qual); if (status == sizeof *qual) { dev_info(&udev->dev, "not running at top speed; " "connect to a high speed hub\n"); /* hub LEDs are probably harder to miss than syslog */ if (hub->has_indicators) { hub->indicator[port1-1] = INDICATOR_GREEN_BLINK; queue_delayed_work(system_power_efficient_wq, &hub->leds, 0); } } kfree(qual); } static unsigned hub_power_remaining(struct usb_hub *hub) { struct usb_device *hdev = hub->hdev; int remaining; int port1; if (!hub->limited_power) return 0; remaining = hdev->bus_mA - hub->descriptor->bHubContrCurrent; for (port1 = 1; port1 <= hdev->maxchild; ++port1) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; unsigned unit_load; int delta; if (!udev) continue; if (hub_is_superspeed(udev)) unit_load = 150; else unit_load = 100; /* * Unconfigured devices may not use more than one unit load, * or 8mA for OTG ports */ if (udev->actconfig) delta = usb_get_max_power(udev, udev->actconfig); else if (port1 != udev->bus->otg_port || hdev->parent) delta = unit_load; else delta = 8; if (delta > hub->mA_per_port) dev_warn(&port_dev->dev, "%dmA is over %umA budget!\n", delta, hub->mA_per_port); remaining -= delta; } if (remaining < 0) { dev_warn(hub->intfdev, "%dmA over power budget!\n", -remaining); remaining = 0; } return remaining; } static int descriptors_changed(struct usb_device *udev, struct usb_device_descriptor *old_device_descriptor, struct usb_host_bos *old_bos) { int changed = 0; unsigned index; unsigned serial_len = 0; unsigned len; unsigned old_length; int length; char *buf; if (memcmp(&udev->descriptor, old_device_descriptor, sizeof(*old_device_descriptor)) != 0) return 1; if ((old_bos && !udev->bos) || (!old_bos && udev->bos)) return 1; if (udev->bos) { len = le16_to_cpu(udev->bos->desc->wTotalLength); if (len != le16_to_cpu(old_bos->desc->wTotalLength)) return 1; if (memcmp(udev->bos->desc, old_bos->desc, len)) return 1; } /* Since the idVendor, idProduct, and bcdDevice values in the * device descriptor haven't changed, we will assume the * Manufacturer and Product strings haven't changed either. * But the SerialNumber string could be different (e.g., a * different flash card of the same brand). */ if (udev->serial) serial_len = strlen(udev->serial) + 1; len = serial_len; for (index = 0; index < udev->descriptor.bNumConfigurations; index++) { old_length = le16_to_cpu(udev->config[index].desc.wTotalLength); len = max(len, old_length); } buf = kmalloc(len, GFP_NOIO); if (!buf) /* assume the worst */ return 1; for (index = 0; index < udev->descriptor.bNumConfigurations; index++) { old_length = le16_to_cpu(udev->config[index].desc.wTotalLength); length = usb_get_descriptor(udev, USB_DT_CONFIG, index, buf, old_length); if (length != old_length) { dev_dbg(&udev->dev, "config index %d, error %d\n", index, length); changed = 1; break; } if (memcmp(buf, udev->rawdescriptors[index], old_length) != 0) { dev_dbg(&udev->dev, "config index %d changed (#%d)\n", index, ((struct usb_config_descriptor *) buf)-> bConfigurationValue); changed = 1; break; } } if (!changed && serial_len) { length = usb_string(udev, udev->descriptor.iSerialNumber, buf, serial_len); if (length + 1 != serial_len) { dev_dbg(&udev->dev, "serial string error %d\n", length); changed = 1; } else if (memcmp(buf, udev->serial, length) != 0) { dev_dbg(&udev->dev, "serial string changed\n"); changed = 1; } } kfree(buf); return changed; } static void hub_port_connect(struct usb_hub *hub, int port1, u16 portstatus, u16 portchange) { int status = -ENODEV; int i; unsigned unit_load; struct usb_device *hdev = hub->hdev; struct usb_hcd *hcd = bus_to_hcd(hdev->bus); struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; static int unreliable_port = -1; bool retry_locked; /* Disconnect any existing devices under this port */ if (udev) { if (hcd->usb_phy && !hdev->parent) usb_phy_notify_disconnect(hcd->usb_phy, udev->speed); usb_disconnect(&port_dev->child); } /* We can forget about a "removed" device when there's a physical * disconnect or the connect status changes. */ if (!(portstatus & USB_PORT_STAT_CONNECTION) || (portchange & USB_PORT_STAT_C_CONNECTION)) clear_bit(port1, hub->removed_bits); if (portchange & (USB_PORT_STAT_C_CONNECTION | USB_PORT_STAT_C_ENABLE)) { status = hub_port_debounce_be_stable(hub, port1); if (status < 0) { if (status != -ENODEV && port1 != unreliable_port && printk_ratelimit()) dev_err(&port_dev->dev, "connect-debounce failed\n"); portstatus &= ~USB_PORT_STAT_CONNECTION; unreliable_port = port1; } else { portstatus = status; } } /* Return now if debouncing failed or nothing is connected or * the device was "removed". */ if (!(portstatus & USB_PORT_STAT_CONNECTION) || test_bit(port1, hub->removed_bits)) { /* * maybe switch power back on (e.g. root hub was reset) * but only if the port isn't owned by someone else. */ if (hub_is_port_power_switchable(hub) && !port_is_power_on(hub, portstatus) && !port_dev->port_owner) set_port_feature(hdev, port1, USB_PORT_FEAT_POWER); if (portstatus & USB_PORT_STAT_ENABLE) goto done; return; } if (hub_is_superspeed(hub->hdev)) unit_load = 150; else unit_load = 100; status = 0; for (i = 0; i < PORT_INIT_TRIES; i++) { usb_lock_port(port_dev); mutex_lock(hcd->address0_mutex); retry_locked = true; /* reallocate for each attempt, since references * to the previous one can escape in various ways */ udev = usb_alloc_dev(hdev, hdev->bus, port1); if (!udev) { dev_err(&port_dev->dev, "couldn't allocate usb_device\n"); mutex_unlock(hcd->address0_mutex); usb_unlock_port(port_dev); goto done; } usb_set_device_state(udev, USB_STATE_POWERED); udev->bus_mA = hub->mA_per_port; udev->level = hdev->level + 1; udev->wusb = hub_is_wusb(hub); /* Devices connected to SuperSpeed hubs are USB 3.0 or later */ if (hub_is_superspeed(hub->hdev)) udev->speed = USB_SPEED_SUPER; else udev->speed = USB_SPEED_UNKNOWN; choose_devnum(udev); if (udev->devnum <= 0) { status = -ENOTCONN; /* Don't retry */ goto loop; } /* reset (non-USB 3.0 devices) and get descriptor */ status = hub_port_init(hub, udev, port1, i); if (status < 0) goto loop; mutex_unlock(hcd->address0_mutex); usb_unlock_port(port_dev); retry_locked = false; if (udev->quirks & USB_QUIRK_DELAY_INIT) msleep(2000); /* consecutive bus-powered hubs aren't reliable; they can * violate the voltage drop budget. if the new child has * a "powered" LED, users should notice we didn't enable it * (without reading syslog), even without per-port LEDs * on the parent. */ if (udev->descriptor.bDeviceClass == USB_CLASS_HUB && udev->bus_mA <= unit_load) { u16 devstat; status = usb_get_std_status(udev, USB_RECIP_DEVICE, 0, &devstat); if (status) { dev_dbg(&udev->dev, "get status %d ?\n", status); goto loop_disable; } if ((devstat & (1 << USB_DEVICE_SELF_POWERED)) == 0) { dev_err(&udev->dev, "can't connect bus-powered hub " "to this port\n"); if (hub->has_indicators) { hub->indicator[port1-1] = INDICATOR_AMBER_BLINK; queue_delayed_work( system_power_efficient_wq, &hub->leds, 0); } status = -ENOTCONN; /* Don't retry */ goto loop_disable; } } /* check for devices running slower than they could */ if (le16_to_cpu(udev->descriptor.bcdUSB) >= 0x0200 && udev->speed == USB_SPEED_FULL && highspeed_hubs != 0) check_highspeed(hub, udev, port1); /* Store the parent's children[] pointer. At this point * udev becomes globally accessible, although presumably * no one will look at it until hdev is unlocked. */ status = 0; mutex_lock(&usb_port_peer_mutex); /* We mustn't add new devices if the parent hub has * been disconnected; we would race with the * recursively_mark_NOTATTACHED() routine. */ spin_lock_irq(&device_state_lock); if (hdev->state == USB_STATE_NOTATTACHED) status = -ENOTCONN; else port_dev->child = udev; spin_unlock_irq(&device_state_lock); mutex_unlock(&usb_port_peer_mutex); /* Run it through the hoops (find a driver, etc) */ if (!status) { status = usb_new_device(udev); if (status) { mutex_lock(&usb_port_peer_mutex); spin_lock_irq(&device_state_lock); port_dev->child = NULL; spin_unlock_irq(&device_state_lock); mutex_unlock(&usb_port_peer_mutex); } else { if (hcd->usb_phy && !hdev->parent) usb_phy_notify_connect(hcd->usb_phy, udev->speed); } } if (status) goto loop_disable; status = hub_power_remaining(hub); if (status) dev_dbg(hub->intfdev, "%dmA power budget left\n", status); return; loop_disable: hub_port_disable(hub, port1, 1); loop: usb_ep0_reinit(udev); release_devnum(udev); hub_free_dev(udev); if (retry_locked) { mutex_unlock(hcd->address0_mutex); usb_unlock_port(port_dev); } usb_put_dev(udev); if ((status == -ENOTCONN) || (status == -ENOTSUPP)) break; /* When halfway through our retry count, power-cycle the port */ if (i == (PORT_INIT_TRIES - 1) / 2) { dev_info(&port_dev->dev, "attempt power cycle\n"); usb_hub_set_port_power(hdev, hub, port1, false); msleep(2 * hub_power_on_good_delay(hub)); usb_hub_set_port_power(hdev, hub, port1, true); msleep(hub_power_on_good_delay(hub)); } } if (hub->hdev->parent || !hcd->driver->port_handed_over || !(hcd->driver->port_handed_over)(hcd, port1)) { if (status != -ENOTCONN && status != -ENODEV) dev_err(&port_dev->dev, "unable to enumerate USB device\n"); } done: hub_port_disable(hub, port1, 1); if (hcd->driver->relinquish_port && !hub->hdev->parent) { if (status != -ENOTCONN && status != -ENODEV) hcd->driver->relinquish_port(hcd, port1); } } /* Handle physical or logical connection change events. * This routine is called when: * a port connection-change occurs; * a port enable-change occurs (often caused by EMI); * usb_reset_and_verify_device() encounters changed descriptors (as from * a firmware download) * caller already locked the hub */ static void hub_port_connect_change(struct usb_hub *hub, int port1, u16 portstatus, u16 portchange) __must_hold(&port_dev->status_lock) { struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; struct usb_device_descriptor descriptor; int status = -ENODEV; int retval; dev_dbg(&port_dev->dev, "status %04x, change %04x, %s\n", portstatus, portchange, portspeed(hub, portstatus)); if (hub->has_indicators) { set_port_led(hub, port1, HUB_LED_AUTO); hub->indicator[port1-1] = INDICATOR_AUTO; } #ifdef CONFIG_USB_OTG /* during HNP, don't repeat the debounce */ if (hub->hdev->bus->is_b_host) portchange &= ~(USB_PORT_STAT_C_CONNECTION | USB_PORT_STAT_C_ENABLE); #endif /* Try to resuscitate an existing device */ if ((portstatus & USB_PORT_STAT_CONNECTION) && udev && udev->state != USB_STATE_NOTATTACHED) { if (portstatus & USB_PORT_STAT_ENABLE) { /* * USB-3 connections are initialized automatically by * the hostcontroller hardware. Therefore check for * changed device descriptors before resuscitating the * device. */ descriptor = udev->descriptor; retval = usb_get_device_descriptor(udev, sizeof(udev->descriptor)); if (retval < 0) { dev_dbg(&udev->dev, "can't read device descriptor %d\n", retval); } else { if (descriptors_changed(udev, &descriptor, udev->bos)) { dev_dbg(&udev->dev, "device descriptor has changed\n"); /* for disconnect() calls */ udev->descriptor = descriptor; } else { status = 0; /* Nothing to do */ } } #ifdef CONFIG_PM } else if (udev->state == USB_STATE_SUSPENDED && udev->persist_enabled) { /* For a suspended device, treat this as a * remote wakeup event. */ usb_unlock_port(port_dev); status = usb_remote_wakeup(udev); usb_lock_port(port_dev); #endif } else { /* Don't resuscitate */; } } clear_bit(port1, hub->change_bits); /* successfully revalidated the connection */ if (status == 0) return; usb_unlock_port(port_dev); hub_port_connect(hub, port1, portstatus, portchange); usb_lock_port(port_dev); } /* Handle notifying userspace about hub over-current events */ static void port_over_current_notify(struct usb_port *port_dev) { char *envp[3]; struct device *hub_dev; char *port_dev_path; sysfs_notify(&port_dev->dev.kobj, NULL, "over_current_count"); hub_dev = port_dev->dev.parent; if (!hub_dev) return; port_dev_path = kobject_get_path(&port_dev->dev.kobj, GFP_KERNEL); if (!port_dev_path) return; envp[0] = kasprintf(GFP_KERNEL, "OVER_CURRENT_PORT=%s", port_dev_path); if (!envp[0]) goto exit_path; envp[1] = kasprintf(GFP_KERNEL, "OVER_CURRENT_COUNT=%u", port_dev->over_current_count); if (!envp[1]) goto exit; envp[2] = NULL; kobject_uevent_env(&hub_dev->kobj, KOBJ_CHANGE, envp); kfree(envp[1]); exit: kfree(envp[0]); exit_path: kfree(port_dev_path); } static void port_event(struct usb_hub *hub, int port1) __must_hold(&port_dev->status_lock) { int connect_change; struct usb_port *port_dev = hub->ports[port1 - 1]; struct usb_device *udev = port_dev->child; struct usb_device *hdev = hub->hdev; u16 portstatus, portchange; connect_change = test_bit(port1, hub->change_bits); clear_bit(port1, hub->event_bits); clear_bit(port1, hub->wakeup_bits); if (hub_port_status(hub, port1, &portstatus, &portchange) < 0) return; if (portchange & USB_PORT_STAT_C_CONNECTION) { usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_CONNECTION); connect_change = 1; } if (portchange & USB_PORT_STAT_C_ENABLE) { if (!connect_change) dev_dbg(&port_dev->dev, "enable change, status %08x\n", portstatus); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_ENABLE); /* * EM interference sometimes causes badly shielded USB devices * to be shutdown by the hub, this hack enables them again. * Works at least with mouse driver. */ if (!(portstatus & USB_PORT_STAT_ENABLE) && !connect_change && udev) { dev_err(&port_dev->dev, "disabled by hub (EMI?), re-enabling...\n"); connect_change = 1; } } if (portchange & USB_PORT_STAT_C_OVERCURRENT) { u16 status = 0, unused; port_dev->over_current_count++; port_over_current_notify(port_dev); dev_dbg(&port_dev->dev, "over-current change #%u\n", port_dev->over_current_count); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_OVER_CURRENT); msleep(100); /* Cool down */ hub_power_on(hub, true); hub_port_status(hub, port1, &status, &unused); if (status & USB_PORT_STAT_OVERCURRENT) dev_err(&port_dev->dev, "over-current condition\n"); } if (portchange & USB_PORT_STAT_C_RESET) { dev_dbg(&port_dev->dev, "reset change\n"); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_RESET); } if ((portchange & USB_PORT_STAT_C_BH_RESET) && hub_is_superspeed(hdev)) { dev_dbg(&port_dev->dev, "warm reset change\n"); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_BH_PORT_RESET); } if (portchange & USB_PORT_STAT_C_LINK_STATE) { dev_dbg(&port_dev->dev, "link state change\n"); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_PORT_LINK_STATE); } if (portchange & USB_PORT_STAT_C_CONFIG_ERROR) { dev_warn(&port_dev->dev, "config error\n"); usb_clear_port_feature(hdev, port1, USB_PORT_FEAT_C_PORT_CONFIG_ERROR); } /* skip port actions that require the port to be powered on */ if (!pm_runtime_active(&port_dev->dev)) return; if (hub_handle_remote_wakeup(hub, port1, portstatus, portchange)) connect_change = 1; /* * Warm reset a USB3 protocol port if it's in * SS.Inactive state. */ if (hub_port_warm_reset_required(hub, port1, portstatus)) { dev_dbg(&port_dev->dev, "do warm reset\n"); if (!udev || !(portstatus & USB_PORT_STAT_CONNECTION) || udev->state == USB_STATE_NOTATTACHED) { if (hub_port_reset(hub, port1, NULL, HUB_BH_RESET_TIME, true) < 0) hub_port_disable(hub, port1, 1); } else { usb_unlock_port(port_dev); usb_lock_device(udev); usb_reset_device(udev); usb_unlock_device(udev); usb_lock_port(port_dev); connect_change = 0; } } if (connect_change) hub_port_connect_change(hub, port1, portstatus, portchange); } static void hub_event(struct work_struct *work) { struct usb_device *hdev; struct usb_interface *intf; struct usb_hub *hub; struct device *hub_dev; u16 hubstatus; u16 hubchange; int i, ret; hub = container_of(work, struct usb_hub, events); hdev = hub->hdev; hub_dev = hub->intfdev; intf = to_usb_interface(hub_dev); kcov_remote_start_usb((u64)hdev->bus->busnum); dev_dbg(hub_dev, "state %d ports %d chg %04x evt %04x\n", hdev->state, hdev->maxchild, /* NOTE: expects max 15 ports... */ (u16) hub->change_bits[0], (u16) hub->event_bits[0]); /* Lock the device, then check to see if we were * disconnected while waiting for the lock to succeed. */ usb_lock_device(hdev); if (unlikely(hub->disconnected)) goto out_hdev_lock; /* If the hub has died, clean up after it */ if (hdev->state == USB_STATE_NOTATTACHED) { hub->error = -ENODEV; hub_quiesce(hub, HUB_DISCONNECT); goto out_hdev_lock; } /* Autoresume */ ret = usb_autopm_get_interface(intf); if (ret) { dev_dbg(hub_dev, "Can't autoresume: %d\n", ret); goto out_hdev_lock; } /* If this is an inactive hub, do nothing */ if (hub->quiescing) goto out_autopm; if (hub->error) { dev_dbg(hub_dev, "resetting for error %d\n", hub->error); ret = usb_reset_device(hdev); if (ret) { dev_dbg(hub_dev, "error resetting hub: %d\n", ret); goto out_autopm; } hub->nerrors = 0; hub->error = 0; } /* deal with port status changes */ for (i = 1; i <= hdev->maxchild; i++) { struct usb_port *port_dev = hub->ports[i - 1]; if (test_bit(i, hub->event_bits) || test_bit(i, hub->change_bits) || test_bit(i, hub->wakeup_bits)) { /* * The get_noresume and barrier ensure that if * the port was in the process of resuming, we * flush that work and keep the port active for * the duration of the port_event(). However, * if the port is runtime pm suspended * (powered-off), we leave it in that state, run * an abbreviated port_event(), and move on. */ pm_runtime_get_noresume(&port_dev->dev); pm_runtime_barrier(&port_dev->dev); usb_lock_port(port_dev); port_event(hub, i); usb_unlock_port(port_dev); pm_runtime_put_sync(&port_dev->dev); } } /* deal with hub status changes */ if (test_and_clear_bit(0, hub->event_bits) == 0) ; /* do nothing */ else if (hub_hub_status(hub, &hubstatus, &hubchange) < 0) dev_err(hub_dev, "get_hub_status failed\n"); else { if (hubchange & HUB_CHANGE_LOCAL_POWER) { dev_dbg(hub_dev, "power change\n"); clear_hub_feature(hdev, C_HUB_LOCAL_POWER); if (hubstatus & HUB_STATUS_LOCAL_POWER) /* FIXME: Is this always true? */ hub->limited_power = 1; else hub->limited_power = 0; } if (hubchange & HUB_CHANGE_OVERCURRENT) { u16 status = 0; u16 unused; dev_dbg(hub_dev, "over-current change\n"); clear_hub_feature(hdev, C_HUB_OVER_CURRENT); msleep(500); /* Cool down */ hub_power_on(hub, true); hub_hub_status(hub, &status, &unused); if (status & HUB_STATUS_OVERCURRENT) dev_err(hub_dev, "over-current condition\n"); } } out_autopm: /* Balance the usb_autopm_get_interface() above */ usb_autopm_put_interface_no_suspend(intf); out_hdev_lock: usb_unlock_device(hdev); /* Balance the stuff in kick_hub_wq() and allow autosuspend */ usb_autopm_put_interface(intf); kref_put(&hub->kref, hub_release); kcov_remote_stop(); } static const struct usb_device_id hub_id_table[] = { { .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT | USB_DEVICE_ID_MATCH_INT_CLASS, .idVendor = USB_VENDOR_SMSC, .idProduct = USB_PRODUCT_USB5534B, .bInterfaceClass = USB_CLASS_HUB, .driver_info = HUB_QUIRK_DISABLE_AUTOSUSPEND}, { .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT, .idVendor = USB_VENDOR_CYPRESS, .idProduct = USB_PRODUCT_CY7C65632, .driver_info = HUB_QUIRK_DISABLE_AUTOSUSPEND}, { .match_flags = USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_INT_CLASS, .idVendor = USB_VENDOR_GENESYS_LOGIC, .bInterfaceClass = USB_CLASS_HUB, .driver_info = HUB_QUIRK_CHECK_PORT_AUTOSUSPEND}, { .match_flags = USB_DEVICE_ID_MATCH_DEV_CLASS, .bDeviceClass = USB_CLASS_HUB}, { .match_flags = USB_DEVICE_ID_MATCH_INT_CLASS, .bInterfaceClass = USB_CLASS_HUB}, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, hub_id_table); static struct usb_driver hub_driver = { .name = "hub", .probe = hub_probe, .disconnect = hub_disconnect, .suspend = hub_suspend, .resume = hub_resume, .reset_resume = hub_reset_resume, .pre_reset = hub_pre_reset, .post_reset = hub_post_reset, .unlocked_ioctl = hub_ioctl, .id_table = hub_id_table, .supports_autosuspend = 1, }; int usb_hub_init(void) { if (usb_register(&hub_driver) < 0) { printk(KERN_ERR "%s: can't register hub driver\n", usbcore_name); return -1; } /* * The workqueue needs to be freezable to avoid interfering with * USB-PERSIST port handover. Otherwise it might see that a full-speed * device was gone before the EHCI controller had handed its port * over to the companion full-speed controller. */ hub_wq = alloc_workqueue("usb_hub_wq", WQ_FREEZABLE, 0); if (hub_wq) return 0; /* Fall through if kernel_thread failed */ usb_deregister(&hub_driver); pr_err("%s: can't allocate workqueue for usb hub\n", usbcore_name); return -1; } void usb_hub_cleanup(void) { destroy_workqueue(hub_wq); /* * Hub resources are freed for us by usb_deregister. It calls * usb_driver_purge on every device which in turn calls that * devices disconnect function if it is using this driver. * The hub_disconnect function takes care of releasing the * individual hub resources. -greg */ usb_deregister(&hub_driver); } /* usb_hub_cleanup() */ /** * usb_reset_and_verify_device - perform a USB port reset to reinitialize a device * @udev: device to reset (not in SUSPENDED or NOTATTACHED state) * * WARNING - don't use this routine to reset a composite device * (one with multiple interfaces owned by separate drivers)! * Use usb_reset_device() instead. * * Do a port reset, reassign the device's address, and establish its * former operating configuration. If the reset fails, or the device's * descriptors change from their values before the reset, or the original * configuration and altsettings cannot be restored, a flag will be set * telling hub_wq to pretend the device has been disconnected and then * re-connected. All drivers will be unbound, and the device will be * re-enumerated and probed all over again. * * Return: 0 if the reset succeeded, -ENODEV if the device has been * flagged for logical disconnection, or some other negative error code * if the reset wasn't even attempted. * * Note: * The caller must own the device lock and the port lock, the latter is * taken by usb_reset_device(). For example, it's safe to use * usb_reset_device() from a driver probe() routine after downloading * new firmware. For calls that might not occur during probe(), drivers * should lock the device using usb_lock_device_for_reset(). * * Locking exception: This routine may also be called from within an * autoresume handler. Such usage won't conflict with other tasks * holding the device lock because these tasks should always call * usb_autopm_resume_device(), thereby preventing any unwanted * autoresume. The autoresume handler is expected to have already * acquired the port lock before calling this routine. */ static int usb_reset_and_verify_device(struct usb_device *udev) { struct usb_device *parent_hdev = udev->parent; struct usb_hub *parent_hub; struct usb_hcd *hcd = bus_to_hcd(udev->bus); struct usb_device_descriptor descriptor = udev->descriptor; struct usb_host_bos *bos; int i, j, ret = 0; int port1 = udev->portnum; if (udev->state == USB_STATE_NOTATTACHED || udev->state == USB_STATE_SUSPENDED) { dev_dbg(&udev->dev, "device reset not allowed in state %d\n", udev->state); return -EINVAL; } if (!parent_hdev) return -EISDIR; parent_hub = usb_hub_to_struct_hub(parent_hdev); /* Disable USB2 hardware LPM. * It will be re-enabled by the enumeration process. */ usb_disable_usb2_hardware_lpm(udev); /* Disable LPM while we reset the device and reinstall the alt settings. * Device-initiated LPM, and system exit latency settings are cleared * when the device is reset, so we have to set them up again. */ ret = usb_unlocked_disable_lpm(udev); if (ret) { dev_err(&udev->dev, "%s Failed to disable LPM\n", __func__); goto re_enumerate_no_bos; } bos = udev->bos; udev->bos = NULL; mutex_lock(hcd->address0_mutex); for (i = 0; i < PORT_INIT_TRIES; ++i) { /* ep0 maxpacket size may change; let the HCD know about it. * Other endpoints will be handled by re-enumeration. */ usb_ep0_reinit(udev); ret = hub_port_init(parent_hub, udev, port1, i); if (ret >= 0 || ret == -ENOTCONN || ret == -ENODEV) break; } mutex_unlock(hcd->address0_mutex); if (ret < 0) goto re_enumerate; /* Device might have changed firmware (DFU or similar) */ if (descriptors_changed(udev, &descriptor, bos)) { dev_info(&udev->dev, "device firmware changed\n"); udev->descriptor = descriptor; /* for disconnect() calls */ goto re_enumerate; } /* Restore the device's previous configuration */ if (!udev->actconfig) goto done; mutex_lock(hcd->bandwidth_mutex); ret = usb_hcd_alloc_bandwidth(udev, udev->actconfig, NULL, NULL); if (ret < 0) { dev_warn(&udev->dev, "Busted HC? Not enough HCD resources for " "old configuration.\n"); mutex_unlock(hcd->bandwidth_mutex); goto re_enumerate; } ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_SET_CONFIGURATION, 0, udev->actconfig->desc.bConfigurationValue, 0, NULL, 0, USB_CTRL_SET_TIMEOUT); if (ret < 0) { dev_err(&udev->dev, "can't restore configuration #%d (error=%d)\n", udev->actconfig->desc.bConfigurationValue, ret); mutex_unlock(hcd->bandwidth_mutex); goto re_enumerate; } mutex_unlock(hcd->bandwidth_mutex); usb_set_device_state(udev, USB_STATE_CONFIGURED); /* Put interfaces back into the same altsettings as before. * Don't bother to send the Set-Interface request for interfaces * that were already in altsetting 0; besides being unnecessary, * many devices can't handle it. Instead just reset the host-side * endpoint state. */ for (i = 0; i < udev->actconfig->desc.bNumInterfaces; i++) { struct usb_host_config *config = udev->actconfig; struct usb_interface *intf = config->interface[i]; struct usb_interface_descriptor *desc; desc = &intf->cur_altsetting->desc; if (desc->bAlternateSetting == 0) { usb_disable_interface(udev, intf, true); usb_enable_interface(udev, intf, true); ret = 0; } else { /* Let the bandwidth allocation function know that this * device has been reset, and it will have to use * alternate setting 0 as the current alternate setting. */ intf->resetting_device = 1; ret = usb_set_interface(udev, desc->bInterfaceNumber, desc->bAlternateSetting); intf->resetting_device = 0; } if (ret < 0) { dev_err(&udev->dev, "failed to restore interface %d " "altsetting %d (error=%d)\n", desc->bInterfaceNumber, desc->bAlternateSetting, ret); goto re_enumerate; } /* Resetting also frees any allocated streams */ for (j = 0; j < intf->cur_altsetting->desc.bNumEndpoints; j++) intf->cur_altsetting->endpoint[j].streams = 0; } done: /* Now that the alt settings are re-installed, enable LTM and LPM. */ usb_enable_usb2_hardware_lpm(udev); usb_unlocked_enable_lpm(udev); usb_enable_ltm(udev); usb_release_bos_descriptor(udev); udev->bos = bos; return 0; re_enumerate: usb_release_bos_descriptor(udev); udev->bos = bos; re_enumerate_no_bos: /* LPM state doesn't matter when we're about to destroy the device. */ hub_port_logical_disconnect(parent_hub, port1); return -ENODEV; } /** * usb_reset_device - warn interface drivers and perform a USB port reset * @udev: device to reset (not in NOTATTACHED state) * * Warns all drivers bound to registered interfaces (using their pre_reset * method), performs the port reset, and then lets the drivers know that * the reset is over (using their post_reset method). * * Return: The same as for usb_reset_and_verify_device(). * * Note: * The caller must own the device lock. For example, it's safe to use * this from a driver probe() routine after downloading new firmware. * For calls that might not occur during probe(), drivers should lock * the device using usb_lock_device_for_reset(). * * If an interface is currently being probed or disconnected, we assume * its driver knows how to handle resets. For all other interfaces, * if the driver doesn't have pre_reset and post_reset methods then * we attempt to unbind it and rebind afterward. */ int usb_reset_device(struct usb_device *udev) { int ret; int i; unsigned int noio_flag; struct usb_port *port_dev; struct usb_host_config *config = udev->actconfig; struct usb_hub *hub = usb_hub_to_struct_hub(udev->parent); if (udev->state == USB_STATE_NOTATTACHED) { dev_dbg(&udev->dev, "device reset not allowed in state %d\n", udev->state); return -EINVAL; } if (!udev->parent) { /* this requires hcd-specific logic; see ohci_restart() */ dev_dbg(&udev->dev, "%s for root hub!\n", __func__); return -EISDIR; } port_dev = hub->ports[udev->portnum - 1]; /* * Don't allocate memory with GFP_KERNEL in current * context to avoid possible deadlock if usb mass * storage interface or usbnet interface(iSCSI case) * is included in current configuration. The easist * approach is to do it for every device reset, * because the device 'memalloc_noio' flag may have * not been set before reseting the usb device. */ noio_flag = memalloc_noio_save(); /* Prevent autosuspend during the reset */ usb_autoresume_device(udev); if (config) { for (i = 0; i < config->desc.bNumInterfaces; ++i) { struct usb_interface *cintf = config->interface[i]; struct usb_driver *drv; int unbind = 0; if (cintf->dev.driver) { drv = to_usb_driver(cintf->dev.driver); if (drv->pre_reset && drv->post_reset) unbind = (drv->pre_reset)(cintf); else if (cintf->condition == USB_INTERFACE_BOUND) unbind = 1; if (unbind) usb_forced_unbind_intf(cintf); } } } usb_lock_port(port_dev); ret = usb_reset_and_verify_device(udev); usb_unlock_port(port_dev); if (config) { for (i = config->desc.bNumInterfaces - 1; i >= 0; --i) { struct usb_interface *cintf = config->interface[i]; struct usb_driver *drv; int rebind = cintf->needs_binding; if (!rebind && cintf->dev.driver) { drv = to_usb_driver(cintf->dev.driver); if (drv->post_reset) rebind = (drv->post_reset)(cintf); else if (cintf->condition == USB_INTERFACE_BOUND) rebind = 1; if (rebind) cintf->needs_binding = 1; } } /* If the reset failed, hub_wq will unbind drivers later */ if (ret == 0) usb_unbind_and_rebind_marked_interfaces(udev); } usb_autosuspend_device(udev); memalloc_noio_restore(noio_flag); return ret; } EXPORT_SYMBOL_GPL(usb_reset_device); /** * usb_queue_reset_device - Reset a USB device from an atomic context * @iface: USB interface belonging to the device to reset * * This function can be used to reset a USB device from an atomic * context, where usb_reset_device() won't work (as it blocks). * * Doing a reset via this method is functionally equivalent to calling * usb_reset_device(), except for the fact that it is delayed to a * workqueue. This means that any drivers bound to other interfaces * might be unbound, as well as users from usbfs in user space. * * Corner cases: * * - Scheduling two resets at the same time from two different drivers * attached to two different interfaces of the same device is * possible; depending on how the driver attached to each interface * handles ->pre_reset(), the second reset might happen or not. * * - If the reset is delayed so long that the interface is unbound from * its driver, the reset will be skipped. * * - This function can be called during .probe(). It can also be called * during .disconnect(), but doing so is pointless because the reset * will not occur. If you really want to reset the device during * .disconnect(), call usb_reset_device() directly -- but watch out * for nested unbinding issues! */ void usb_queue_reset_device(struct usb_interface *iface) { if (schedule_work(&iface->reset_ws)) usb_get_intf(iface); } EXPORT_SYMBOL_GPL(usb_queue_reset_device); /** * usb_hub_find_child - Get the pointer of child device * attached to the port which is specified by @port1. * @hdev: USB device belonging to the usb hub * @port1: port num to indicate which port the child device * is attached to. * * USB drivers call this function to get hub's child device * pointer. * * Return: %NULL if input param is invalid and * child's usb_device pointer if non-NULL. */ struct usb_device *usb_hub_find_child(struct usb_device *hdev, int port1) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); if (port1 < 1 || port1 > hdev->maxchild) return NULL; return hub->ports[port1 - 1]->child; } EXPORT_SYMBOL_GPL(usb_hub_find_child); void usb_hub_adjust_deviceremovable(struct usb_device *hdev, struct usb_hub_descriptor *desc) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); enum usb_port_connect_type connect_type; int i; if (!hub) return; if (!hub_is_superspeed(hdev)) { for (i = 1; i <= hdev->maxchild; i++) { struct usb_port *port_dev = hub->ports[i - 1]; connect_type = port_dev->connect_type; if (connect_type == USB_PORT_CONNECT_TYPE_HARD_WIRED) { u8 mask = 1 << (i%8); if (!(desc->u.hs.DeviceRemovable[i/8] & mask)) { dev_dbg(&port_dev->dev, "DeviceRemovable is changed to 1 according to platform information.\n"); desc->u.hs.DeviceRemovable[i/8] |= mask; } } } } else { u16 port_removable = le16_to_cpu(desc->u.ss.DeviceRemovable); for (i = 1; i <= hdev->maxchild; i++) { struct usb_port *port_dev = hub->ports[i - 1]; connect_type = port_dev->connect_type; if (connect_type == USB_PORT_CONNECT_TYPE_HARD_WIRED) { u16 mask = 1 << i; if (!(port_removable & mask)) { dev_dbg(&port_dev->dev, "DeviceRemovable is changed to 1 according to platform information.\n"); port_removable |= mask; } } } desc->u.ss.DeviceRemovable = cpu_to_le16(port_removable); } } #ifdef CONFIG_ACPI /** * usb_get_hub_port_acpi_handle - Get the usb port's acpi handle * @hdev: USB device belonging to the usb hub * @port1: port num of the port * * Return: Port's acpi handle if successful, %NULL if params are * invalid. */ acpi_handle usb_get_hub_port_acpi_handle(struct usb_device *hdev, int port1) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); if (!hub) return NULL; return ACPI_HANDLE(&hub->ports[port1 - 1]->dev); } #endif