// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "backpointers.h" #include "bkey_buf.h" #include "btree_gc.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_write_buffer.h" #include "disk_groups.h" #include "ec.h" #include "errcode.h" #include "error.h" #include "inode.h" #include "io_read.h" #include "io_write.h" #include "journal_reclaim.h" #include "keylist.h" #include "move.h" #include "replicas.h" #include "snapshot.h" #include "super-io.h" #include "trace.h" #include #include static void trace_move_extent2(struct bch_fs *c, struct bkey_s_c k) { if (trace_move_extent_enabled()) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, k); trace_move_extent(c, buf.buf); printbuf_exit(&buf); } } static void trace_move_extent_read2(struct bch_fs *c, struct bkey_s_c k) { if (trace_move_extent_read_enabled()) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, k); trace_move_extent_read(c, buf.buf); printbuf_exit(&buf); } } static void trace_move_extent_alloc_mem_fail2(struct bch_fs *c, struct bkey_s_c k) { if (trace_move_extent_alloc_mem_fail_enabled()) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, k); trace_move_extent_alloc_mem_fail(c, buf.buf); printbuf_exit(&buf); } } struct moving_io { struct list_head read_list; struct list_head io_list; struct move_bucket_in_flight *b; struct closure cl; bool read_completed; unsigned read_sectors; unsigned write_sectors; struct bch_read_bio rbio; struct data_update write; /* Must be last since it is variable size */ struct bio_vec bi_inline_vecs[0]; }; static void move_free(struct moving_io *io) { struct moving_context *ctxt = io->write.ctxt; if (io->b) atomic_dec(&io->b->count); bch2_data_update_exit(&io->write); mutex_lock(&ctxt->lock); list_del(&io->io_list); wake_up(&ctxt->wait); mutex_unlock(&ctxt->lock); kfree(io); } static void move_write_done(struct bch_write_op *op) { struct moving_io *io = container_of(op, struct moving_io, write.op); struct moving_context *ctxt = io->write.ctxt; if (io->write.op.error) ctxt->write_error = true; atomic_sub(io->write_sectors, &io->write.ctxt->write_sectors); atomic_dec(&io->write.ctxt->write_ios); move_free(io); closure_put(&ctxt->cl); } static void move_write(struct moving_io *io) { if (unlikely(io->rbio.bio.bi_status || io->rbio.hole)) { move_free(io); return; } closure_get(&io->write.ctxt->cl); atomic_add(io->write_sectors, &io->write.ctxt->write_sectors); atomic_inc(&io->write.ctxt->write_ios); bch2_data_update_read_done(&io->write, io->rbio.pick.crc); } struct moving_io *bch2_moving_ctxt_next_pending_write(struct moving_context *ctxt) { struct moving_io *io = list_first_entry_or_null(&ctxt->reads, struct moving_io, read_list); return io && io->read_completed ? io : NULL; } static void move_read_endio(struct bio *bio) { struct moving_io *io = container_of(bio, struct moving_io, rbio.bio); struct moving_context *ctxt = io->write.ctxt; atomic_sub(io->read_sectors, &ctxt->read_sectors); atomic_dec(&ctxt->read_ios); io->read_completed = true; wake_up(&ctxt->wait); closure_put(&ctxt->cl); } void bch2_moving_ctxt_do_pending_writes(struct moving_context *ctxt) { struct moving_io *io; bch2_trans_unlock(ctxt->trans); while ((io = bch2_moving_ctxt_next_pending_write(ctxt))) { list_del(&io->read_list); move_write(io); } } void bch2_move_ctxt_wait_for_io(struct moving_context *ctxt) { unsigned sectors_pending = atomic_read(&ctxt->write_sectors); move_ctxt_wait_event(ctxt, !atomic_read(&ctxt->write_sectors) || atomic_read(&ctxt->write_sectors) != sectors_pending); } void bch2_moving_ctxt_exit(struct moving_context *ctxt) { struct bch_fs *c = ctxt->trans->c; move_ctxt_wait_event(ctxt, list_empty(&ctxt->reads)); closure_sync(&ctxt->cl); EBUG_ON(atomic_read(&ctxt->write_sectors)); EBUG_ON(atomic_read(&ctxt->write_ios)); EBUG_ON(atomic_read(&ctxt->read_sectors)); EBUG_ON(atomic_read(&ctxt->read_ios)); mutex_lock(&c->moving_context_lock); list_del(&ctxt->list); mutex_unlock(&c->moving_context_lock); bch2_trans_put(ctxt->trans); memset(ctxt, 0, sizeof(*ctxt)); } void bch2_moving_ctxt_init(struct moving_context *ctxt, struct bch_fs *c, struct bch_ratelimit *rate, struct bch_move_stats *stats, struct write_point_specifier wp, bool wait_on_copygc) { memset(ctxt, 0, sizeof(*ctxt)); ctxt->trans = bch2_trans_get(c); ctxt->fn = (void *) _RET_IP_; ctxt->rate = rate; ctxt->stats = stats; ctxt->wp = wp; ctxt->wait_on_copygc = wait_on_copygc; closure_init_stack(&ctxt->cl); mutex_init(&ctxt->lock); INIT_LIST_HEAD(&ctxt->reads); INIT_LIST_HEAD(&ctxt->ios); init_waitqueue_head(&ctxt->wait); mutex_lock(&c->moving_context_lock); list_add(&ctxt->list, &c->moving_context_list); mutex_unlock(&c->moving_context_lock); } void bch2_move_stats_exit(struct bch_move_stats *stats, struct bch_fs *c) { trace_move_data(c, stats); } void bch2_move_stats_init(struct bch_move_stats *stats, char *name) { memset(stats, 0, sizeof(*stats)); stats->data_type = BCH_DATA_user; scnprintf(stats->name, sizeof(stats->name), "%s", name); } static int bch2_extent_drop_ptrs(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k, struct data_update_opts data_opts) { struct bch_fs *c = trans->c; struct bkey_i *n; int ret; n = bch2_bkey_make_mut_noupdate(trans, k); ret = PTR_ERR_OR_ZERO(n); if (ret) return ret; while (data_opts.kill_ptrs) { unsigned i = 0, drop = __fls(data_opts.kill_ptrs); struct bch_extent_ptr *ptr; bch2_bkey_drop_ptrs(bkey_i_to_s(n), ptr, i++ == drop); data_opts.kill_ptrs ^= 1U << drop; } /* * If the new extent no longer has any pointers, bch2_extent_normalize() * will do the appropriate thing with it (turning it into a * KEY_TYPE_error key, or just a discard if it was a cached extent) */ bch2_extent_normalize(c, bkey_i_to_s(n)); /* * Since we're not inserting through an extent iterator * (BTREE_ITER_ALL_SNAPSHOTS iterators aren't extent iterators), * we aren't using the extent overwrite path to delete, we're * just using the normal key deletion path: */ if (bkey_deleted(&n->k)) n->k.size = 0; return bch2_trans_relock(trans) ?: bch2_trans_update(trans, iter, n, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?: bch2_trans_commit(trans, NULL, NULL, BTREE_INSERT_NOFAIL); } int bch2_move_extent(struct moving_context *ctxt, struct move_bucket_in_flight *bucket_in_flight, struct btree_iter *iter, struct bkey_s_c k, struct bch_io_opts io_opts, struct data_update_opts data_opts) { struct btree_trans *trans = ctxt->trans; struct bch_fs *c = trans->c; struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); struct moving_io *io; const union bch_extent_entry *entry; struct extent_ptr_decoded p; unsigned sectors = k.k->size, pages; int ret = -ENOMEM; if (ctxt->stats) ctxt->stats->pos = BBPOS(iter->btree_id, iter->pos); trace_move_extent2(c, k); bch2_data_update_opts_normalize(k, &data_opts); if (!data_opts.rewrite_ptrs && !data_opts.extra_replicas) { if (data_opts.kill_ptrs) return bch2_extent_drop_ptrs(trans, iter, k, data_opts); return 0; } /* * Before memory allocations & taking nocow locks in * bch2_data_update_init(): */ bch2_trans_unlock(trans); /* write path might have to decompress data: */ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) sectors = max_t(unsigned, sectors, p.crc.uncompressed_size); pages = DIV_ROUND_UP(sectors, PAGE_SECTORS); io = kzalloc(sizeof(struct moving_io) + sizeof(struct bio_vec) * pages, GFP_KERNEL); if (!io) goto err; INIT_LIST_HEAD(&io->io_list); io->write.ctxt = ctxt; io->read_sectors = k.k->size; io->write_sectors = k.k->size; bio_init(&io->write.op.wbio.bio, NULL, io->bi_inline_vecs, pages, 0); bio_set_prio(&io->write.op.wbio.bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); if (bch2_bio_alloc_pages(&io->write.op.wbio.bio, sectors << 9, GFP_KERNEL)) goto err_free; io->rbio.c = c; io->rbio.opts = io_opts; bio_init(&io->rbio.bio, NULL, io->bi_inline_vecs, pages, 0); io->rbio.bio.bi_vcnt = pages; bio_set_prio(&io->rbio.bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); io->rbio.bio.bi_iter.bi_size = sectors << 9; io->rbio.bio.bi_opf = REQ_OP_READ; io->rbio.bio.bi_iter.bi_sector = bkey_start_offset(k.k); io->rbio.bio.bi_end_io = move_read_endio; ret = bch2_data_update_init(trans, ctxt, &io->write, ctxt->wp, io_opts, data_opts, iter->btree_id, k); if (ret && ret != -BCH_ERR_unwritten_extent_update) goto err_free_pages; if (ret == -BCH_ERR_unwritten_extent_update) { bch2_update_unwritten_extent(trans, &io->write); move_free(io); return 0; } BUG_ON(ret); io->write.op.end_io = move_write_done; if (ctxt->rate) bch2_ratelimit_increment(ctxt->rate, k.k->size); if (ctxt->stats) { atomic64_inc(&ctxt->stats->keys_moved); atomic64_add(k.k->size, &ctxt->stats->sectors_moved); } if (bucket_in_flight) { io->b = bucket_in_flight; atomic_inc(&io->b->count); } this_cpu_add(c->counters[BCH_COUNTER_io_move], k.k->size); this_cpu_add(c->counters[BCH_COUNTER_move_extent_read], k.k->size); trace_move_extent_read2(c, k); mutex_lock(&ctxt->lock); atomic_add(io->read_sectors, &ctxt->read_sectors); atomic_inc(&ctxt->read_ios); list_add_tail(&io->read_list, &ctxt->reads); list_add_tail(&io->io_list, &ctxt->ios); mutex_unlock(&ctxt->lock); /* * dropped by move_read_endio() - guards against use after free of * ctxt when doing wakeup */ closure_get(&ctxt->cl); bch2_read_extent(trans, &io->rbio, bkey_start_pos(k.k), iter->btree_id, k, 0, BCH_READ_NODECODE| BCH_READ_LAST_FRAGMENT); return 0; err_free_pages: bio_free_pages(&io->write.op.wbio.bio); err_free: kfree(io); err: this_cpu_inc(c->counters[BCH_COUNTER_move_extent_alloc_mem_fail]); trace_move_extent_alloc_mem_fail2(c, k); return ret; } struct bch_io_opts *bch2_move_get_io_opts(struct btree_trans *trans, struct per_snapshot_io_opts *io_opts, struct bkey_s_c extent_k) { struct bch_fs *c = trans->c; u32 restart_count = trans->restart_count; int ret = 0; if (io_opts->cur_inum != extent_k.k->p.inode) { struct btree_iter iter; struct bkey_s_c k; io_opts->d.nr = 0; for_each_btree_key(trans, iter, BTREE_ID_inodes, POS(0, extent_k.k->p.inode), BTREE_ITER_ALL_SNAPSHOTS, k, ret) { if (k.k->p.offset != extent_k.k->p.inode) break; if (!bkey_is_inode(k.k)) continue; struct bch_inode_unpacked inode; BUG_ON(bch2_inode_unpack(k, &inode)); struct snapshot_io_opts_entry e = { .snapshot = k.k->p.snapshot }; bch2_inode_opts_get(&e.io_opts, trans->c, &inode); ret = darray_push(&io_opts->d, e); if (ret) break; } bch2_trans_iter_exit(trans, &iter); io_opts->cur_inum = extent_k.k->p.inode; } ret = ret ?: trans_was_restarted(trans, restart_count); if (ret) return ERR_PTR(ret); if (extent_k.k->p.snapshot) { struct snapshot_io_opts_entry *i; darray_for_each(io_opts->d, i) if (bch2_snapshot_is_ancestor(c, extent_k.k->p.snapshot, i->snapshot)) return &i->io_opts; } return &io_opts->fs_io_opts; } int bch2_move_get_io_opts_one(struct btree_trans *trans, struct bch_io_opts *io_opts, struct bkey_s_c extent_k) { struct btree_iter iter; struct bkey_s_c k; int ret; /* reflink btree? */ if (!extent_k.k->p.inode) { *io_opts = bch2_opts_to_inode_opts(trans->c->opts); return 0; } k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, SPOS(0, extent_k.k->p.inode, extent_k.k->p.snapshot), BTREE_ITER_CACHED); ret = bkey_err(k); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) return ret; if (!ret && bkey_is_inode(k.k)) { struct bch_inode_unpacked inode; bch2_inode_unpack(k, &inode); bch2_inode_opts_get(io_opts, trans->c, &inode); } else { *io_opts = bch2_opts_to_inode_opts(trans->c->opts); } bch2_trans_iter_exit(trans, &iter); return 0; } int bch2_move_ratelimit(struct moving_context *ctxt) { struct bch_fs *c = ctxt->trans->c; u64 delay; if (ctxt->wait_on_copygc) { bch2_trans_unlock(ctxt->trans); wait_event_killable(c->copygc_running_wq, !c->copygc_running || kthread_should_stop()); } do { delay = ctxt->rate ? bch2_ratelimit_delay(ctxt->rate) : 0; if (delay) { bch2_trans_unlock(ctxt->trans); set_current_state(TASK_INTERRUPTIBLE); } if ((current->flags & PF_KTHREAD) && kthread_should_stop()) { __set_current_state(TASK_RUNNING); return 1; } if (delay) schedule_timeout(delay); if (unlikely(freezing(current))) { move_ctxt_wait_event(ctxt, list_empty(&ctxt->reads)); try_to_freeze(); } } while (delay); /* * XXX: these limits really ought to be per device, SSDs and hard drives * will want different limits */ move_ctxt_wait_event(ctxt, atomic_read(&ctxt->write_sectors) < c->opts.move_bytes_in_flight >> 9 && atomic_read(&ctxt->read_sectors) < c->opts.move_bytes_in_flight >> 9 && atomic_read(&ctxt->write_ios) < c->opts.move_ios_in_flight && atomic_read(&ctxt->read_ios) < c->opts.move_ios_in_flight); return 0; } static int bch2_move_data_btree(struct moving_context *ctxt, struct bpos start, struct bpos end, move_pred_fn pred, void *arg, enum btree_id btree_id) { struct btree_trans *trans = ctxt->trans; struct bch_fs *c = trans->c; struct per_snapshot_io_opts snapshot_io_opts; struct bch_io_opts *io_opts; struct bkey_buf sk; struct btree_iter iter; struct bkey_s_c k; struct data_update_opts data_opts; int ret = 0, ret2; per_snapshot_io_opts_init(&snapshot_io_opts, c); bch2_bkey_buf_init(&sk); if (ctxt->stats) { ctxt->stats->data_type = BCH_DATA_user; ctxt->stats->pos = BBPOS(btree_id, start); } bch2_trans_iter_init(trans, &iter, btree_id, start, BTREE_ITER_PREFETCH| BTREE_ITER_ALL_SNAPSHOTS); if (ctxt->rate) bch2_ratelimit_reset(ctxt->rate); while (!bch2_move_ratelimit(ctxt)) { bch2_trans_begin(trans); k = bch2_btree_iter_peek(&iter); if (!k.k) break; ret = bkey_err(k); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) break; if (bkey_ge(bkey_start_pos(k.k), end)) break; if (ctxt->stats) ctxt->stats->pos = BBPOS(iter.btree_id, iter.pos); if (!bkey_extent_is_direct_data(k.k)) goto next_nondata; io_opts = bch2_move_get_io_opts(trans, &snapshot_io_opts, k); ret = PTR_ERR_OR_ZERO(io_opts); if (ret) continue; memset(&data_opts, 0, sizeof(data_opts)); if (!pred(c, arg, k, io_opts, &data_opts)) goto next; /* * The iterator gets unlocked by __bch2_read_extent - need to * save a copy of @k elsewhere: */ bch2_bkey_buf_reassemble(&sk, c, k); k = bkey_i_to_s_c(sk.k); ret2 = bch2_move_extent(ctxt, NULL, &iter, k, *io_opts, data_opts); if (ret2) { if (bch2_err_matches(ret2, BCH_ERR_transaction_restart)) continue; if (ret2 == -ENOMEM) { /* memory allocation failure, wait for some IO to finish */ bch2_move_ctxt_wait_for_io(ctxt); continue; } /* XXX signal failure */ goto next; } next: if (ctxt->stats) atomic64_add(k.k->size, &ctxt->stats->sectors_seen); next_nondata: bch2_btree_iter_advance(&iter); } bch2_trans_iter_exit(trans, &iter); bch2_bkey_buf_exit(&sk, c); per_snapshot_io_opts_exit(&snapshot_io_opts); return ret; } int __bch2_move_data(struct moving_context *ctxt, struct bbpos start, struct bbpos end, move_pred_fn pred, void *arg) { struct bch_fs *c = ctxt->trans->c; enum btree_id id; int ret = 0; for (id = start.btree; id <= min_t(unsigned, end.btree, btree_id_nr_alive(c) - 1); id++) { ctxt->stats->pos = BBPOS(id, POS_MIN); if (!btree_type_has_ptrs(id) || !bch2_btree_id_root(c, id)->b) continue; ret = bch2_move_data_btree(ctxt, id == start.btree ? start.pos : POS_MIN, id == end.btree ? end.pos : POS_MAX, pred, arg, id); if (ret) break; } return ret; } int bch2_move_data(struct bch_fs *c, struct bbpos start, struct bbpos end, struct bch_ratelimit *rate, struct bch_move_stats *stats, struct write_point_specifier wp, bool wait_on_copygc, move_pred_fn pred, void *arg) { struct moving_context ctxt; int ret; bch2_moving_ctxt_init(&ctxt, c, rate, stats, wp, wait_on_copygc); ret = __bch2_move_data(&ctxt, start, end, pred, arg); bch2_moving_ctxt_exit(&ctxt); return ret; } int __bch2_evacuate_bucket(struct moving_context *ctxt, struct move_bucket_in_flight *bucket_in_flight, struct bpos bucket, int gen, struct data_update_opts _data_opts) { struct btree_trans *trans = ctxt->trans; struct bch_fs *c = trans->c; struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts); struct btree_iter iter; struct bkey_buf sk; struct bch_backpointer bp; struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a; struct bkey_s_c k; struct data_update_opts data_opts; unsigned dirty_sectors, bucket_size; u64 fragmentation; struct bpos bp_pos = POS_MIN; int ret = 0; trace_bucket_evacuate(c, &bucket); bch2_bkey_buf_init(&sk); /* * We're not run in a context that handles transaction restarts: */ bch2_trans_begin(trans); bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, bucket, BTREE_ITER_CACHED); ret = lockrestart_do(trans, bkey_err(k = bch2_btree_iter_peek_slot(&iter))); bch2_trans_iter_exit(trans, &iter); if (ret) { bch_err_msg(c, ret, "looking up alloc key"); goto err; } a = bch2_alloc_to_v4(k, &a_convert); dirty_sectors = a->dirty_sectors; bucket_size = bch_dev_bkey_exists(c, bucket.inode)->mi.bucket_size; fragmentation = a->fragmentation_lru; ret = bch2_btree_write_buffer_flush(trans); if (ret) { bch_err_msg(c, ret, "flushing btree write buffer"); goto err; } while (!(ret = bch2_move_ratelimit(ctxt))) { bch2_trans_begin(trans); ret = bch2_get_next_backpointer(trans, bucket, gen, &bp_pos, &bp, BTREE_ITER_CACHED); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) goto err; if (bkey_eq(bp_pos, POS_MAX)) break; if (!bp.level) { const struct bch_extent_ptr *ptr; unsigned i = 0; k = bch2_backpointer_get_key(trans, &iter, bp_pos, bp, 0); ret = bkey_err(k); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) goto err; if (!k.k) goto next; bch2_bkey_buf_reassemble(&sk, c, k); k = bkey_i_to_s_c(sk.k); ret = bch2_move_get_io_opts_one(trans, &io_opts, k); if (ret) { bch2_trans_iter_exit(trans, &iter); continue; } data_opts = _data_opts; data_opts.target = io_opts.background_target; data_opts.rewrite_ptrs = 0; bkey_for_each_ptr(bch2_bkey_ptrs_c(k), ptr) { if (ptr->dev == bucket.inode) { data_opts.rewrite_ptrs |= 1U << i; if (ptr->cached) { bch2_trans_iter_exit(trans, &iter); goto next; } } i++; } ret = bch2_move_extent(ctxt, bucket_in_flight, &iter, k, io_opts, data_opts); bch2_trans_iter_exit(trans, &iter); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret == -ENOMEM) { /* memory allocation failure, wait for some IO to finish */ bch2_move_ctxt_wait_for_io(ctxt); continue; } if (ret) goto err; if (ctxt->stats) atomic64_add(k.k->size, &ctxt->stats->sectors_seen); } else { struct btree *b; b = bch2_backpointer_get_node(trans, &iter, bp_pos, bp); ret = PTR_ERR_OR_ZERO(b); if (ret == -BCH_ERR_backpointer_to_overwritten_btree_node) continue; if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) goto err; if (!b) goto next; ret = bch2_btree_node_rewrite(trans, &iter, b, 0); bch2_trans_iter_exit(trans, &iter); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) goto err; if (ctxt->rate) bch2_ratelimit_increment(ctxt->rate, c->opts.btree_node_size >> 9); if (ctxt->stats) { atomic64_add(c->opts.btree_node_size >> 9, &ctxt->stats->sectors_seen); atomic64_add(c->opts.btree_node_size >> 9, &ctxt->stats->sectors_moved); } } next: bp_pos = bpos_nosnap_successor(bp_pos); } trace_evacuate_bucket(c, &bucket, dirty_sectors, bucket_size, fragmentation, ret); err: bch2_bkey_buf_exit(&sk, c); return ret; } int bch2_evacuate_bucket(struct bch_fs *c, struct bpos bucket, int gen, struct data_update_opts data_opts, struct bch_ratelimit *rate, struct bch_move_stats *stats, struct write_point_specifier wp, bool wait_on_copygc) { struct moving_context ctxt; int ret; bch2_moving_ctxt_init(&ctxt, c, rate, stats, wp, wait_on_copygc); ret = __bch2_evacuate_bucket(&ctxt, NULL, bucket, gen, data_opts); bch2_moving_ctxt_exit(&ctxt); return ret; } typedef bool (*move_btree_pred)(struct bch_fs *, void *, struct btree *, struct bch_io_opts *, struct data_update_opts *); static int bch2_move_btree(struct bch_fs *c, enum btree_id start_btree_id, struct bpos start_pos, enum btree_id end_btree_id, struct bpos end_pos, move_btree_pred pred, void *arg, struct bch_move_stats *stats) { bool kthread = (current->flags & PF_KTHREAD) != 0; struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts); struct moving_context ctxt; struct btree_trans *trans; struct btree_iter iter; struct btree *b; enum btree_id id; struct data_update_opts data_opts; int ret = 0; bch2_moving_ctxt_init(&ctxt, c, NULL, stats, writepoint_ptr(&c->btree_write_point), true); trans = ctxt.trans; stats->data_type = BCH_DATA_btree; for (id = start_btree_id; id <= min_t(unsigned, end_btree_id, btree_id_nr_alive(c) - 1); id++) { stats->pos = BBPOS(id, POS_MIN); if (!bch2_btree_id_root(c, id)->b) continue; bch2_trans_node_iter_init(trans, &iter, id, POS_MIN, 0, 0, BTREE_ITER_PREFETCH); retry: ret = 0; while (bch2_trans_begin(trans), (b = bch2_btree_iter_peek_node(&iter)) && !(ret = PTR_ERR_OR_ZERO(b))) { if (kthread && kthread_should_stop()) break; if ((cmp_int(id, end_btree_id) ?: bpos_cmp(b->key.k.p, end_pos)) > 0) break; stats->pos = BBPOS(iter.btree_id, iter.pos); if (!pred(c, arg, b, &io_opts, &data_opts)) goto next; ret = bch2_btree_node_rewrite(trans, &iter, b, 0) ?: ret; if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) break; next: bch2_btree_iter_next_node(&iter); } if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto retry; bch2_trans_iter_exit(trans, &iter); if (kthread && kthread_should_stop()) break; } bch_err_fn(c, ret); bch2_moving_ctxt_exit(&ctxt); bch2_btree_interior_updates_flush(c); return ret; } static bool rereplicate_pred(struct bch_fs *c, void *arg, struct bkey_s_c k, struct bch_io_opts *io_opts, struct data_update_opts *data_opts) { unsigned nr_good = bch2_bkey_durability(c, k); unsigned replicas = bkey_is_btree_ptr(k.k) ? c->opts.metadata_replicas : io_opts->data_replicas; if (!nr_good || nr_good >= replicas) return false; data_opts->target = 0; data_opts->extra_replicas = replicas - nr_good; data_opts->btree_insert_flags = 0; return true; } static bool migrate_pred(struct bch_fs *c, void *arg, struct bkey_s_c k, struct bch_io_opts *io_opts, struct data_update_opts *data_opts) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const struct bch_extent_ptr *ptr; struct bch_ioctl_data *op = arg; unsigned i = 0; data_opts->rewrite_ptrs = 0; data_opts->target = 0; data_opts->extra_replicas = 0; data_opts->btree_insert_flags = 0; bkey_for_each_ptr(ptrs, ptr) { if (ptr->dev == op->migrate.dev) data_opts->rewrite_ptrs |= 1U << i; i++; } return data_opts->rewrite_ptrs != 0; } static bool rereplicate_btree_pred(struct bch_fs *c, void *arg, struct btree *b, struct bch_io_opts *io_opts, struct data_update_opts *data_opts) { return rereplicate_pred(c, arg, bkey_i_to_s_c(&b->key), io_opts, data_opts); } static bool migrate_btree_pred(struct bch_fs *c, void *arg, struct btree *b, struct bch_io_opts *io_opts, struct data_update_opts *data_opts) { return migrate_pred(c, arg, bkey_i_to_s_c(&b->key), io_opts, data_opts); } static bool bformat_needs_redo(struct bkey_format *f) { unsigned i; for (i = 0; i < f->nr_fields; i++) { unsigned unpacked_bits = bch2_bkey_format_current.bits_per_field[i]; u64 unpacked_mask = ~((~0ULL << 1) << (unpacked_bits - 1)); u64 field_offset = le64_to_cpu(f->field_offset[i]); if (f->bits_per_field[i] > unpacked_bits) return true; if ((f->bits_per_field[i] == unpacked_bits) && field_offset) return true; if (((field_offset + ((1ULL << f->bits_per_field[i]) - 1)) & unpacked_mask) < field_offset) return true; } return false; } static bool rewrite_old_nodes_pred(struct bch_fs *c, void *arg, struct btree *b, struct bch_io_opts *io_opts, struct data_update_opts *data_opts) { if (b->version_ondisk != c->sb.version || btree_node_need_rewrite(b) || bformat_needs_redo(&b->format)) { data_opts->target = 0; data_opts->extra_replicas = 0; data_opts->btree_insert_flags = 0; return true; } return false; } int bch2_scan_old_btree_nodes(struct bch_fs *c, struct bch_move_stats *stats) { int ret; ret = bch2_move_btree(c, 0, POS_MIN, BTREE_ID_NR, SPOS_MAX, rewrite_old_nodes_pred, c, stats); if (!ret) { mutex_lock(&c->sb_lock); c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done); c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done); c->disk_sb.sb->version_min = c->disk_sb.sb->version; bch2_write_super(c); mutex_unlock(&c->sb_lock); } bch_err_fn(c, ret); return ret; } int bch2_data_job(struct bch_fs *c, struct bch_move_stats *stats, struct bch_ioctl_data op) { int ret = 0; switch (op.op) { case BCH_DATA_OP_REREPLICATE: bch2_move_stats_init(stats, "rereplicate"); stats->data_type = BCH_DATA_journal; ret = bch2_journal_flush_device_pins(&c->journal, -1); ret = bch2_move_btree(c, op.start_btree, op.start_pos, op.end_btree, op.end_pos, rereplicate_btree_pred, c, stats) ?: ret; ret = bch2_replicas_gc2(c) ?: ret; ret = bch2_move_data(c, (struct bbpos) { op.start_btree, op.start_pos }, (struct bbpos) { op.end_btree, op.end_pos }, NULL, stats, writepoint_hashed((unsigned long) current), true, rereplicate_pred, c) ?: ret; ret = bch2_replicas_gc2(c) ?: ret; bch2_move_stats_exit(stats, c); break; case BCH_DATA_OP_MIGRATE: if (op.migrate.dev >= c->sb.nr_devices) return -EINVAL; bch2_move_stats_init(stats, "migrate"); stats->data_type = BCH_DATA_journal; ret = bch2_journal_flush_device_pins(&c->journal, op.migrate.dev); ret = bch2_move_btree(c, op.start_btree, op.start_pos, op.end_btree, op.end_pos, migrate_btree_pred, &op, stats) ?: ret; ret = bch2_replicas_gc2(c) ?: ret; ret = bch2_move_data(c, (struct bbpos) { op.start_btree, op.start_pos }, (struct bbpos) { op.end_btree, op.end_pos }, NULL, stats, writepoint_hashed((unsigned long) current), true, migrate_pred, &op) ?: ret; ret = bch2_replicas_gc2(c) ?: ret; bch2_move_stats_exit(stats, c); break; case BCH_DATA_OP_REWRITE_OLD_NODES: bch2_move_stats_init(stats, "rewrite_old_nodes"); ret = bch2_scan_old_btree_nodes(c, stats); bch2_move_stats_exit(stats, c); break; default: ret = -EINVAL; } return ret; } void bch2_move_stats_to_text(struct printbuf *out, struct bch_move_stats *stats) { prt_printf(out, "%s: data type=%s pos=", stats->name, bch2_data_types[stats->data_type]); bch2_bbpos_to_text(out, stats->pos); prt_newline(out); printbuf_indent_add(out, 2); prt_str(out, "keys moved: "); prt_u64(out, atomic64_read(&stats->keys_moved)); prt_newline(out); prt_str(out, "keys raced: "); prt_u64(out, atomic64_read(&stats->keys_raced)); prt_newline(out); prt_str(out, "bytes seen: "); prt_human_readable_u64(out, atomic64_read(&stats->sectors_seen) << 9); prt_newline(out); prt_str(out, "bytes moved: "); prt_human_readable_u64(out, atomic64_read(&stats->sectors_moved) << 9); prt_newline(out); prt_str(out, "bytes raced: "); prt_human_readable_u64(out, atomic64_read(&stats->sectors_raced) << 9); prt_newline(out); printbuf_indent_sub(out, 2); } static void bch2_moving_ctxt_to_text(struct printbuf *out, struct bch_fs *c, struct moving_context *ctxt) { struct moving_io *io; bch2_move_stats_to_text(out, ctxt->stats); printbuf_indent_add(out, 2); prt_printf(out, "reads: ios %u/%u sectors %u/%u", atomic_read(&ctxt->read_ios), c->opts.move_ios_in_flight, atomic_read(&ctxt->read_sectors), c->opts.move_bytes_in_flight >> 9); prt_newline(out); prt_printf(out, "writes: ios %u/%u sectors %u/%u", atomic_read(&ctxt->write_ios), c->opts.move_ios_in_flight, atomic_read(&ctxt->write_sectors), c->opts.move_bytes_in_flight >> 9); prt_newline(out); printbuf_indent_add(out, 2); mutex_lock(&ctxt->lock); list_for_each_entry(io, &ctxt->ios, io_list) bch2_write_op_to_text(out, &io->write.op); mutex_unlock(&ctxt->lock); printbuf_indent_sub(out, 4); } void bch2_fs_moving_ctxts_to_text(struct printbuf *out, struct bch_fs *c) { struct moving_context *ctxt; mutex_lock(&c->moving_context_lock); list_for_each_entry(ctxt, &c->moving_context_list, list) bch2_moving_ctxt_to_text(out, c, ctxt); mutex_unlock(&c->moving_context_lock); } void bch2_fs_move_init(struct bch_fs *c) { INIT_LIST_HEAD(&c->moving_context_list); mutex_init(&c->moving_context_lock); }