/* SPDX-License-Identifier: GPL-2.0 */ #ifndef BTRFS_FS_H #define BTRFS_FS_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "extent-io-tree.h" #include "async-thread.h" #include "block-rsv.h" struct inode; struct super_block; struct kobject; struct reloc_control; struct crypto_shash; struct ulist; struct btrfs_device; struct btrfs_block_group; struct btrfs_root; struct btrfs_fs_devices; struct btrfs_transaction; struct btrfs_delayed_root; struct btrfs_balance_control; struct btrfs_subpage_info; struct btrfs_stripe_hash_table; struct btrfs_space_info; #define BTRFS_MAX_EXTENT_SIZE SZ_128M #define BTRFS_OLDEST_GENERATION 0ULL #define BTRFS_EMPTY_DIR_SIZE 0 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M #define BTRFS_SUPER_INFO_OFFSET SZ_64K #define BTRFS_SUPER_INFO_SIZE 4096 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); /* * Number of metadata items necessary for an unlink operation: * * 1 for the possible orphan item * 1 for the dir item * 1 for the dir index * 1 for the inode ref * 1 for the inode * 1 for the parent inode */ #define BTRFS_UNLINK_METADATA_UNITS 6 /* * The reserved space at the beginning of each device. It covers the primary * super block and leaves space for potential use by other tools like * bootloaders or to lower potential damage of accidental overwrite. */ #define BTRFS_DEVICE_RANGE_RESERVED (SZ_1M) /* * Runtime (in-memory) states of filesystem */ enum { /* * Filesystem is being remounted, allow to skip some operations, like * defrag */ BTRFS_FS_STATE_REMOUNTING, /* Filesystem in RO mode */ BTRFS_FS_STATE_RO, /* Track if a transaction abort has been reported on this filesystem */ BTRFS_FS_STATE_TRANS_ABORTED, /* * Bio operations should be blocked on this filesystem because a source * or target device is being destroyed as part of a device replace */ BTRFS_FS_STATE_DEV_REPLACING, /* The btrfs_fs_info created for self-tests */ BTRFS_FS_STATE_DUMMY_FS_INFO, /* Checksum errors are ignored. */ BTRFS_FS_STATE_NO_DATA_CSUMS, BTRFS_FS_STATE_SKIP_META_CSUMS, /* Indicates there was an error cleaning up a log tree. */ BTRFS_FS_STATE_LOG_CLEANUP_ERROR, BTRFS_FS_STATE_COUNT }; enum { BTRFS_FS_CLOSING_START, BTRFS_FS_CLOSING_DONE, BTRFS_FS_LOG_RECOVERING, BTRFS_FS_OPEN, BTRFS_FS_QUOTA_ENABLED, BTRFS_FS_UPDATE_UUID_TREE_GEN, BTRFS_FS_CREATING_FREE_SPACE_TREE, BTRFS_FS_BTREE_ERR, BTRFS_FS_LOG1_ERR, BTRFS_FS_LOG2_ERR, BTRFS_FS_QUOTA_OVERRIDE, /* Used to record internally whether fs has been frozen */ BTRFS_FS_FROZEN, /* * Indicate that balance has been set up from the ioctl and is in the * main phase. The fs_info::balance_ctl is initialized. */ BTRFS_FS_BALANCE_RUNNING, /* * Indicate that relocation of a chunk has started, it's set per chunk * and is toggled between chunks. */ BTRFS_FS_RELOC_RUNNING, /* Indicate that the cleaner thread is awake and doing something. */ BTRFS_FS_CLEANER_RUNNING, /* * The checksumming has an optimized version and is considered fast, * so we don't need to offload checksums to workqueues. */ BTRFS_FS_CSUM_IMPL_FAST, /* Indicate that the discard workqueue can service discards. */ BTRFS_FS_DISCARD_RUNNING, /* Indicate that we need to cleanup space cache v1 */ BTRFS_FS_CLEANUP_SPACE_CACHE_V1, /* Indicate that we can't trust the free space tree for caching yet */ BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, /* Indicate whether there are any tree modification log users */ BTRFS_FS_TREE_MOD_LOG_USERS, /* Indicate that we want the transaction kthread to commit right now. */ BTRFS_FS_COMMIT_TRANS, /* Indicate we have half completed snapshot deletions pending. */ BTRFS_FS_UNFINISHED_DROPS, /* Indicate we have to finish a zone to do next allocation. */ BTRFS_FS_NEED_ZONE_FINISH, /* Indicate that we want to commit the transaction. */ BTRFS_FS_NEED_TRANS_COMMIT, /* This is set when active zone tracking is needed. */ BTRFS_FS_ACTIVE_ZONE_TRACKING, /* * Indicate if we have some features changed, this is mostly for * cleaner thread to update the sysfs interface. */ BTRFS_FS_FEATURE_CHANGED, /* * Indicate that we have found a tree block which is only aligned to * sectorsize, but not to nodesize. This should be rare nowadays. */ BTRFS_FS_UNALIGNED_TREE_BLOCK, #if BITS_PER_LONG == 32 /* Indicate if we have error/warn message printed on 32bit systems */ BTRFS_FS_32BIT_ERROR, BTRFS_FS_32BIT_WARN, #endif }; /* * Flags for mount options. * * Note: don't forget to add new options to btrfs_show_options() */ enum { BTRFS_MOUNT_NODATASUM = (1UL << 0), BTRFS_MOUNT_NODATACOW = (1UL << 1), BTRFS_MOUNT_NOBARRIER = (1UL << 2), BTRFS_MOUNT_SSD = (1UL << 3), BTRFS_MOUNT_DEGRADED = (1UL << 4), BTRFS_MOUNT_COMPRESS = (1UL << 5), BTRFS_MOUNT_NOTREELOG = (1UL << 6), BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), BTRFS_MOUNT_NOSSD = (1UL << 9), BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 19), BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 20), BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 21), BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 22), BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 23), BTRFS_MOUNT_NOLOGREPLAY = (1UL << 24), BTRFS_MOUNT_REF_VERIFY = (1UL << 25), BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 26), BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 27), BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 28), BTRFS_MOUNT_NODISCARD = (1UL << 29), BTRFS_MOUNT_NOSPACECACHE = (1UL << 30), BTRFS_MOUNT_IGNOREMETACSUMS = (1UL << 31), BTRFS_MOUNT_IGNORESUPERFLAGS = (1ULL << 32), }; /* * Compat flags that we support. If any incompat flags are set other than the * ones specified below then we will fail to mount */ #define BTRFS_FEATURE_COMPAT_SUPP 0ULL #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL #define BTRFS_FEATURE_COMPAT_RO_SUPP \ (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ BTRFS_FEATURE_COMPAT_RO_VERITY | \ BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE) #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL #define BTRFS_FEATURE_INCOMPAT_SUPP_STABLE \ (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ BTRFS_FEATURE_INCOMPAT_RAID56 | \ BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ BTRFS_FEATURE_INCOMPAT_ZONED | \ BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA) #ifdef CONFIG_BTRFS_DEBUG /* * Features under developmen like Extent tree v2 support is enabled * only under CONFIG_BTRFS_DEBUG. */ #define BTRFS_FEATURE_INCOMPAT_SUPP \ (BTRFS_FEATURE_INCOMPAT_SUPP_STABLE | \ BTRFS_FEATURE_INCOMPAT_RAID_STRIPE_TREE | \ BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2) #else #define BTRFS_FEATURE_INCOMPAT_SUPP \ (BTRFS_FEATURE_INCOMPAT_SUPP_STABLE) #endif #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) #define BTRFS_DEFAULT_MAX_INLINE (2048) struct btrfs_dev_replace { /* See #define above */ u64 replace_state; /* Seconds since 1-Jan-1970 */ time64_t time_started; /* Seconds since 1-Jan-1970 */ time64_t time_stopped; atomic64_t num_write_errors; atomic64_t num_uncorrectable_read_errors; u64 cursor_left; u64 committed_cursor_left; u64 cursor_left_last_write_of_item; u64 cursor_right; /* See #define above */ u64 cont_reading_from_srcdev_mode; int is_valid; int item_needs_writeback; struct btrfs_device *srcdev; struct btrfs_device *tgtdev; struct mutex lock_finishing_cancel_unmount; struct rw_semaphore rwsem; struct btrfs_scrub_progress scrub_progress; struct percpu_counter bio_counter; wait_queue_head_t replace_wait; }; /* * Free clusters are used to claim free space in relatively large chunks, * allowing us to do less seeky writes. They are used for all metadata * allocations. In ssd_spread mode they are also used for data allocations. */ struct btrfs_free_cluster { spinlock_t lock; spinlock_t refill_lock; struct rb_root root; /* Largest extent in this cluster */ u64 max_size; /* First extent starting offset */ u64 window_start; /* We did a full search and couldn't create a cluster */ bool fragmented; struct btrfs_block_group *block_group; /* * When a cluster is allocated from a block group, we put the cluster * onto a list in the block group so that it can be freed before the * block group is freed. */ struct list_head block_group_list; }; /* Discard control. */ /* * Async discard uses multiple lists to differentiate the discard filter * parameters. Index 0 is for completely free block groups where we need to * ensure the entire block group is trimmed without being lossy. Indices * afterwards represent monotonically decreasing discard filter sizes to * prioritize what should be discarded next. */ #define BTRFS_NR_DISCARD_LISTS 3 #define BTRFS_DISCARD_INDEX_UNUSED 0 #define BTRFS_DISCARD_INDEX_START 1 struct btrfs_discard_ctl { struct workqueue_struct *discard_workers; struct delayed_work work; spinlock_t lock; struct btrfs_block_group *block_group; struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; u64 prev_discard; u64 prev_discard_time; atomic_t discardable_extents; atomic64_t discardable_bytes; u64 max_discard_size; u64 delay_ms; u32 iops_limit; u32 kbps_limit; u64 discard_extent_bytes; u64 discard_bitmap_bytes; atomic64_t discard_bytes_saved; }; /* * Exclusive operations (device replace, resize, device add/remove, balance) */ enum btrfs_exclusive_operation { BTRFS_EXCLOP_NONE, BTRFS_EXCLOP_BALANCE_PAUSED, BTRFS_EXCLOP_BALANCE, BTRFS_EXCLOP_DEV_ADD, BTRFS_EXCLOP_DEV_REMOVE, BTRFS_EXCLOP_DEV_REPLACE, BTRFS_EXCLOP_RESIZE, BTRFS_EXCLOP_SWAP_ACTIVATE, }; /* Store data about transaction commits, exported via sysfs. */ struct btrfs_commit_stats { /* Total number of commits */ u64 commit_count; /* The maximum commit duration so far in ns */ u64 max_commit_dur; /* The last commit duration in ns */ u64 last_commit_dur; /* The total commit duration in ns */ u64 total_commit_dur; }; struct btrfs_fs_info { u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; unsigned long flags; struct btrfs_root *tree_root; struct btrfs_root *chunk_root; struct btrfs_root *dev_root; struct btrfs_root *fs_root; struct btrfs_root *quota_root; struct btrfs_root *uuid_root; struct btrfs_root *data_reloc_root; struct btrfs_root *block_group_root; struct btrfs_root *stripe_root; /* The log root tree is a directory of all the other log roots */ struct btrfs_root *log_root_tree; /* The tree that holds the global roots (csum, extent, etc) */ rwlock_t global_root_lock; struct rb_root global_root_tree; spinlock_t fs_roots_radix_lock; struct radix_tree_root fs_roots_radix; /* Block group cache stuff */ rwlock_t block_group_cache_lock; struct rb_root_cached block_group_cache_tree; /* Keep track of unallocated space */ atomic64_t free_chunk_space; /* Track ranges which are used by log trees blocks/logged data extents */ struct extent_io_tree excluded_extents; /* logical->physical extent mapping */ struct rb_root_cached mapping_tree; rwlock_t mapping_tree_lock; /* * Block reservation for extent, checksum, root tree and delayed dir * index item. */ struct btrfs_block_rsv global_block_rsv; /* Block reservation for metadata operations */ struct btrfs_block_rsv trans_block_rsv; /* Block reservation for chunk tree */ struct btrfs_block_rsv chunk_block_rsv; /* Block reservation for delayed operations */ struct btrfs_block_rsv delayed_block_rsv; /* Block reservation for delayed refs */ struct btrfs_block_rsv delayed_refs_rsv; struct btrfs_block_rsv empty_block_rsv; /* * Updated while holding the lock 'trans_lock'. Due to the life cycle of * a transaction, it can be directly read while holding a transaction * handle, everywhere else must be read with btrfs_get_fs_generation(). * Should always be updated using btrfs_set_fs_generation(). */ u64 generation; /* * Always use btrfs_get_last_trans_committed() and * btrfs_set_last_trans_committed() to read and update this field. */ u64 last_trans_committed; /* * Generation of the last transaction used for block group relocation * since the filesystem was last mounted (or 0 if none happened yet). * Must be written and read while holding btrfs_fs_info::commit_root_sem. */ u64 last_reloc_trans; /* * This is updated to the current trans every time a full commit is * required instead of the faster short fsync log commits */ u64 last_trans_log_full_commit; unsigned long mount_opt; unsigned long compress_type:4; unsigned int compress_level; u32 commit_interval; /* * It is a suggestive number, the read side is safe even it gets a * wrong number because we will write out the data into a regular * extent. The write side(mount/remount) is under ->s_umount lock, * so it is also safe. */ u64 max_inline; struct btrfs_transaction *running_transaction; wait_queue_head_t transaction_throttle; wait_queue_head_t transaction_wait; wait_queue_head_t transaction_blocked_wait; wait_queue_head_t async_submit_wait; /* * Used to protect the incompat_flags, compat_flags, compat_ro_flags * when they are updated. * * Because we do not clear the flags for ever, so we needn't use * the lock on the read side. * * We also needn't use the lock when we mount the fs, because * there is no other task which will update the flag. */ spinlock_t super_lock; struct btrfs_super_block *super_copy; struct btrfs_super_block *super_for_commit; struct super_block *sb; struct inode *btree_inode; struct mutex tree_log_mutex; struct mutex transaction_kthread_mutex; struct mutex cleaner_mutex; struct mutex chunk_mutex; /* * This is taken to make sure we don't set block groups ro after the * free space cache has been allocated on them. */ struct mutex ro_block_group_mutex; /* * This is used during read/modify/write to make sure no two ios are * trying to mod the same stripe at the same time. */ struct btrfs_stripe_hash_table *stripe_hash_table; /* * This protects the ordered operations list only while we are * processing all of the entries on it. This way we make sure the * commit code doesn't find the list temporarily empty because another * function happens to be doing non-waiting preflush before jumping * into the main commit. */ struct mutex ordered_operations_mutex; struct rw_semaphore commit_root_sem; struct rw_semaphore cleanup_work_sem; struct rw_semaphore subvol_sem; spinlock_t trans_lock; /* * The reloc mutex goes with the trans lock, it is taken during commit * to protect us from the relocation code. */ struct mutex reloc_mutex; struct list_head trans_list; struct list_head dead_roots; struct list_head caching_block_groups; spinlock_t delayed_iput_lock; struct list_head delayed_iputs; atomic_t nr_delayed_iputs; wait_queue_head_t delayed_iputs_wait; atomic64_t tree_mod_seq; /* This protects tree_mod_log and tree_mod_seq_list */ rwlock_t tree_mod_log_lock; struct rb_root tree_mod_log; struct list_head tree_mod_seq_list; atomic_t async_delalloc_pages; /* This is used to protect the following list -- ordered_roots. */ spinlock_t ordered_root_lock; /* * All fs/file tree roots in which there are data=ordered extents * pending writeback are added into this list. * * These can span multiple transactions and basically include every * dirty data page that isn't from nodatacow. */ struct list_head ordered_roots; struct mutex delalloc_root_mutex; spinlock_t delalloc_root_lock; /* All fs/file tree roots that have delalloc inodes. */ struct list_head delalloc_roots; /* * There is a pool of worker threads for checksumming during writes and * a pool for checksumming after reads. This is because readers can * run with FS locks held, and the writers may be waiting for those * locks. We don't want ordering in the pending list to cause * deadlocks, and so the two are serviced separately. * * A third pool does submit_bio to avoid deadlocking with the other two. */ struct btrfs_workqueue *workers; struct btrfs_workqueue *delalloc_workers; struct btrfs_workqueue *flush_workers; struct workqueue_struct *endio_workers; struct workqueue_struct *endio_meta_workers; struct workqueue_struct *rmw_workers; struct workqueue_struct *compressed_write_workers; struct btrfs_workqueue *endio_write_workers; struct btrfs_workqueue *endio_freespace_worker; struct btrfs_workqueue *caching_workers; /* * Fixup workers take dirty pages that didn't properly go through the * cow mechanism and make them safe to write. It happens for the * sys_munmap function call path. */ struct btrfs_workqueue *fixup_workers; struct btrfs_workqueue *delayed_workers; struct task_struct *transaction_kthread; struct task_struct *cleaner_kthread; u32 thread_pool_size; struct kobject *space_info_kobj; struct kobject *qgroups_kobj; struct kobject *discard_kobj; /* Used to keep from writing metadata until there is a nice batch */ struct percpu_counter dirty_metadata_bytes; struct percpu_counter delalloc_bytes; struct percpu_counter ordered_bytes; s32 dirty_metadata_batch; s32 delalloc_batch; struct percpu_counter evictable_extent_maps; u64 extent_map_shrinker_last_root; u64 extent_map_shrinker_last_ino; /* Protected by 'trans_lock'. */ struct list_head dirty_cowonly_roots; struct btrfs_fs_devices *fs_devices; /* * The space_info list is effectively read only after initial setup. * It is populated at mount time and cleaned up after all block groups * are removed. RCU is used to protect it. */ struct list_head space_info; struct btrfs_space_info *data_sinfo; struct reloc_control *reloc_ctl; /* data_alloc_cluster is only used in ssd_spread mode */ struct btrfs_free_cluster data_alloc_cluster; /* All metadata allocations go through this cluster. */ struct btrfs_free_cluster meta_alloc_cluster; /* Auto defrag inodes go here. */ spinlock_t defrag_inodes_lock; struct rb_root defrag_inodes; atomic_t defrag_running; /* Used to protect avail_{data, metadata, system}_alloc_bits */ seqlock_t profiles_lock; /* * These three are in extended format (availability of single chunks is * denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other types are denoted * by corresponding BTRFS_BLOCK_GROUP_* bits) */ u64 avail_data_alloc_bits; u64 avail_metadata_alloc_bits; u64 avail_system_alloc_bits; /* Balance state */ spinlock_t balance_lock; struct mutex balance_mutex; atomic_t balance_pause_req; atomic_t balance_cancel_req; struct btrfs_balance_control *balance_ctl; wait_queue_head_t balance_wait_q; /* Cancellation requests for chunk relocation */ atomic_t reloc_cancel_req; u32 data_chunk_allocations; u32 metadata_ratio; void *bdev_holder; /* Private scrub information */ struct mutex scrub_lock; atomic_t scrubs_running; atomic_t scrub_pause_req; atomic_t scrubs_paused; atomic_t scrub_cancel_req; wait_queue_head_t scrub_pause_wait; /* * The worker pointers are NULL iff the refcount is 0, ie. scrub is not * running. */ refcount_t scrub_workers_refcnt; struct workqueue_struct *scrub_workers; struct btrfs_subpage_info *subpage_info; struct btrfs_discard_ctl discard_ctl; /* Is qgroup tracking in a consistent state? */ u64 qgroup_flags; /* Holds configuration and tracking. Protected by qgroup_lock. */ struct rb_root qgroup_tree; spinlock_t qgroup_lock; /* * Used to avoid frequently calling ulist_alloc()/ulist_free() * when doing qgroup accounting, it must be protected by qgroup_lock. */ struct ulist *qgroup_ulist; /* * Protect user change for quota operations. If a transaction is needed, * it must be started before locking this lock. */ struct mutex qgroup_ioctl_lock; /* List of dirty qgroups to be written at next commit. */ struct list_head dirty_qgroups; /* Used by qgroup for an efficient tree traversal. */ u64 qgroup_seq; /* Qgroup rescan items. */ /* Protects the progress item */ struct mutex qgroup_rescan_lock; struct btrfs_key qgroup_rescan_progress; struct btrfs_workqueue *qgroup_rescan_workers; struct completion qgroup_rescan_completion; struct btrfs_work qgroup_rescan_work; /* Protected by qgroup_rescan_lock */ bool qgroup_rescan_running; u8 qgroup_drop_subtree_thres; u64 qgroup_enable_gen; /* * If this is not 0, then it indicates a serious filesystem error has * happened and it contains that error (negative errno value). */ int fs_error; /* Filesystem state */ unsigned long fs_state; struct btrfs_delayed_root *delayed_root; /* Extent buffer radix tree */ spinlock_t buffer_lock; /* Entries are eb->start / sectorsize */ struct radix_tree_root buffer_radix; /* Next backup root to be overwritten */ int backup_root_index; /* Device replace state */ struct btrfs_dev_replace dev_replace; struct semaphore uuid_tree_rescan_sem; /* Used to reclaim the metadata space in the background. */ struct work_struct async_reclaim_work; struct work_struct async_data_reclaim_work; struct work_struct preempt_reclaim_work; /* Reclaim partially filled block groups in the background */ struct work_struct reclaim_bgs_work; /* Protected by unused_bgs_lock. */ struct list_head reclaim_bgs; int bg_reclaim_threshold; /* Protects the lists unused_bgs and reclaim_bgs. */ spinlock_t unused_bgs_lock; /* Protected by unused_bgs_lock. */ struct list_head unused_bgs; struct mutex unused_bg_unpin_mutex; /* Protect block groups that are going to be deleted */ struct mutex reclaim_bgs_lock; /* Cached block sizes */ u32 nodesize; u32 sectorsize; /* ilog2 of sectorsize, use to avoid 64bit division */ u32 sectorsize_bits; u32 csum_size; u32 csums_per_leaf; u32 stripesize; /* * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular * filesystem, on zoned it depends on the device constraints. */ u64 max_extent_size; /* Block groups and devices containing active swapfiles. */ spinlock_t swapfile_pins_lock; struct rb_root swapfile_pins; struct crypto_shash *csum_shash; /* Type of exclusive operation running, protected by super_lock */ enum btrfs_exclusive_operation exclusive_operation; /* * Zone size > 0 when in ZONED mode, otherwise it's used for a check * if the mode is enabled */ u64 zone_size; /* Constraints for ZONE_APPEND commands: */ struct queue_limits limits; u64 max_zone_append_size; struct mutex zoned_meta_io_lock; spinlock_t treelog_bg_lock; u64 treelog_bg; /* * Start of the dedicated data relocation block group, protected by * relocation_bg_lock. */ spinlock_t relocation_bg_lock; u64 data_reloc_bg; struct mutex zoned_data_reloc_io_lock; struct btrfs_block_group *active_meta_bg; struct btrfs_block_group *active_system_bg; u64 nr_global_roots; spinlock_t zone_active_bgs_lock; struct list_head zone_active_bgs; /* Updates are not protected by any lock */ struct btrfs_commit_stats commit_stats; /* * Last generation where we dropped a non-relocation root. * Use btrfs_set_last_root_drop_gen() and btrfs_get_last_root_drop_gen() * to change it and to read it, respectively. */ u64 last_root_drop_gen; /* * Annotations for transaction events (structures are empty when * compiled without lockdep). */ struct lockdep_map btrfs_trans_num_writers_map; struct lockdep_map btrfs_trans_num_extwriters_map; struct lockdep_map btrfs_state_change_map[4]; struct lockdep_map btrfs_trans_pending_ordered_map; struct lockdep_map btrfs_ordered_extent_map; #ifdef CONFIG_BTRFS_FS_REF_VERIFY spinlock_t ref_verify_lock; struct rb_root block_tree; #endif #ifdef CONFIG_BTRFS_DEBUG struct kobject *debug_kobj; struct list_head allocated_roots; spinlock_t eb_leak_lock; struct list_head allocated_ebs; #endif }; #define page_to_inode(_page) (BTRFS_I(_Generic((_page), \ struct page *: (_page))->mapping->host)) #define folio_to_inode(_folio) (BTRFS_I(_Generic((_folio), \ struct folio *: (_folio))->mapping->host)) #define page_to_fs_info(_page) (page_to_inode(_page)->root->fs_info) #define folio_to_fs_info(_folio) (folio_to_inode(_folio)->root->fs_info) #define inode_to_fs_info(_inode) (BTRFS_I(_Generic((_inode), \ struct inode *: (_inode)))->root->fs_info) static inline u64 btrfs_get_fs_generation(const struct btrfs_fs_info *fs_info) { return READ_ONCE(fs_info->generation); } static inline void btrfs_set_fs_generation(struct btrfs_fs_info *fs_info, u64 gen) { WRITE_ONCE(fs_info->generation, gen); } static inline u64 btrfs_get_last_trans_committed(const struct btrfs_fs_info *fs_info) { return READ_ONCE(fs_info->last_trans_committed); } static inline void btrfs_set_last_trans_committed(struct btrfs_fs_info *fs_info, u64 gen) { WRITE_ONCE(fs_info->last_trans_committed, gen); } static inline void btrfs_set_last_root_drop_gen(struct btrfs_fs_info *fs_info, u64 gen) { WRITE_ONCE(fs_info->last_root_drop_gen, gen); } static inline u64 btrfs_get_last_root_drop_gen(const struct btrfs_fs_info *fs_info) { return READ_ONCE(fs_info->last_root_drop_gen); } /* * Take the number of bytes to be checksummed and figure out how many leaves * it would require to store the csums for that many bytes. */ static inline u64 btrfs_csum_bytes_to_leaves( const struct btrfs_fs_info *fs_info, u64 csum_bytes) { const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); } /* * Use this if we would be adding new items, as we could split nodes as we cow * down the tree. */ static inline u64 btrfs_calc_insert_metadata_size(const struct btrfs_fs_info *fs_info, unsigned num_items) { return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; } /* * Doing a truncate or a modification won't result in new nodes or leaves, just * what we need for COW. */ static inline u64 btrfs_calc_metadata_size(const struct btrfs_fs_info *fs_info, unsigned num_items) { return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; } #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ sizeof(struct btrfs_item)) static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) { return IS_ENABLED(CONFIG_BLK_DEV_ZONED) && fs_info->zone_size > 0; } /* * Count how many fs_info->max_extent_size cover the @size */ static inline u32 count_max_extents(const struct btrfs_fs_info *fs_info, u64 size) { #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS if (!fs_info) return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); #endif return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size); } bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation type); bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation type); void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation op); int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args); /* Compatibility and incompatibility defines */ void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag, const char *name); void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag, const char *name); void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag, const char *name); void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag, const char *name); #define __btrfs_fs_incompat(fs_info, flags) \ (!!(btrfs_super_incompat_flags((fs_info)->super_copy) & (flags))) #define __btrfs_fs_compat_ro(fs_info, flags) \ (!!(btrfs_super_compat_ro_flags((fs_info)->super_copy) & (flags))) #define btrfs_set_fs_incompat(__fs_info, opt) \ __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, #opt) #define btrfs_clear_fs_incompat(__fs_info, opt) \ __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, #opt) #define btrfs_fs_incompat(fs_info, opt) \ __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) #define btrfs_set_fs_compat_ro(__fs_info, opt) \ __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, #opt) #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, #opt) #define btrfs_fs_compat_ro(fs_info, opt) \ __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ BTRFS_MOUNT_##opt) static inline int btrfs_fs_closing(const struct btrfs_fs_info *fs_info) { /* Do it this way so we only ever do one test_bit in the normal case. */ if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) return 2; return 1; } return 0; } /* * If we remount the fs to be R/O or umount the fs, the cleaner needn't do * anything except sleeping. This function is used to check the status of * the fs. * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, * since setting and checking for SB_RDONLY in the superblock's flags is not * atomic. */ static inline int btrfs_need_cleaner_sleep(const struct btrfs_fs_info *fs_info) { return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || btrfs_fs_closing(fs_info); } static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) { clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); } #define BTRFS_FS_ERROR(fs_info) (READ_ONCE((fs_info)->fs_error)) #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ &(fs_info)->fs_state))) #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS #define EXPORT_FOR_TESTS static inline int btrfs_is_testing(const struct btrfs_fs_info *fs_info) { return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); } void btrfs_test_destroy_inode(struct inode *inode); #else #define EXPORT_FOR_TESTS static static inline int btrfs_is_testing(const struct btrfs_fs_info *fs_info) { return 0; } #endif #endif