/* * fs/f2fs/data.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" #include "trace.h" #include static struct kmem_cache *extent_tree_slab; static struct kmem_cache *extent_node_slab; static void f2fs_read_end_io(struct bio *bio, int err) { struct bio_vec *bvec; int i; bio_for_each_segment_all(bvec, bio, i) { struct page *page = bvec->bv_page; if (!err) { SetPageUptodate(page); } else { ClearPageUptodate(page); SetPageError(page); } unlock_page(page); } bio_put(bio); } static void f2fs_write_end_io(struct bio *bio, int err) { struct f2fs_sb_info *sbi = bio->bi_private; struct bio_vec *bvec; int i; bio_for_each_segment_all(bvec, bio, i) { struct page *page = bvec->bv_page; if (unlikely(err)) { set_page_dirty(page); set_bit(AS_EIO, &page->mapping->flags); f2fs_stop_checkpoint(sbi); } end_page_writeback(page); dec_page_count(sbi, F2FS_WRITEBACK); } if (!get_pages(sbi, F2FS_WRITEBACK) && !list_empty(&sbi->cp_wait.task_list)) wake_up(&sbi->cp_wait); bio_put(bio); } /* * Low-level block read/write IO operations. */ static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, int npages, bool is_read) { struct bio *bio; /* No failure on bio allocation */ bio = bio_alloc(GFP_NOIO, npages); bio->bi_bdev = sbi->sb->s_bdev; bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; bio->bi_private = sbi; return bio; } static void __submit_merged_bio(struct f2fs_bio_info *io) { struct f2fs_io_info *fio = &io->fio; if (!io->bio) return; if (is_read_io(fio->rw)) trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio); else trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio); submit_bio(fio->rw, io->bio); io->bio = NULL; } void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, int rw) { enum page_type btype = PAGE_TYPE_OF_BIO(type); struct f2fs_bio_info *io; io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; down_write(&io->io_rwsem); /* change META to META_FLUSH in the checkpoint procedure */ if (type >= META_FLUSH) { io->fio.type = META_FLUSH; if (test_opt(sbi, NOBARRIER)) io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO; else io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO; } __submit_merged_bio(io); up_write(&io->io_rwsem); } /* * Fill the locked page with data located in the block address. * Return unlocked page. */ int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page, struct f2fs_io_info *fio) { struct bio *bio; trace_f2fs_submit_page_bio(page, fio); f2fs_trace_ios(page, fio, 0); /* Allocate a new bio */ bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw)); if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) { bio_put(bio); f2fs_put_page(page, 1); return -EFAULT; } submit_bio(fio->rw, bio); return 0; } void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page, struct f2fs_io_info *fio) { enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); struct f2fs_bio_info *io; bool is_read = is_read_io(fio->rw); io = is_read ? &sbi->read_io : &sbi->write_io[btype]; verify_block_addr(sbi, fio->blk_addr); down_write(&io->io_rwsem); if (!is_read) inc_page_count(sbi, F2FS_WRITEBACK); if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 || io->fio.rw != fio->rw)) __submit_merged_bio(io); alloc_new: if (io->bio == NULL) { int bio_blocks = MAX_BIO_BLOCKS(sbi); io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read); io->fio = *fio; } if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) { __submit_merged_bio(io); goto alloc_new; } io->last_block_in_bio = fio->blk_addr; f2fs_trace_ios(page, fio, 0); up_write(&io->io_rwsem); trace_f2fs_submit_page_mbio(page, fio); } /* * Lock ordering for the change of data block address: * ->data_page * ->node_page * update block addresses in the node page */ void set_data_blkaddr(struct dnode_of_data *dn) { struct f2fs_node *rn; __le32 *addr_array; struct page *node_page = dn->node_page; unsigned int ofs_in_node = dn->ofs_in_node; f2fs_wait_on_page_writeback(node_page, NODE); rn = F2FS_NODE(node_page); /* Get physical address of data block */ addr_array = blkaddr_in_node(rn); addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr); set_page_dirty(node_page); } int reserve_new_block(struct dnode_of_data *dn) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) return -EPERM; if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1))) return -ENOSPC; trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node); dn->data_blkaddr = NEW_ADDR; set_data_blkaddr(dn); mark_inode_dirty(dn->inode); sync_inode_page(dn); return 0; } int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) { bool need_put = dn->inode_page ? false : true; int err; err = get_dnode_of_data(dn, index, ALLOC_NODE); if (err) return err; if (dn->data_blkaddr == NULL_ADDR) err = reserve_new_block(dn); if (err || need_put) f2fs_put_dnode(dn); return err; } static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs, struct extent_info *ei, struct buffer_head *bh_result) { unsigned int blkbits = sb->s_blocksize_bits; size_t max_size = bh_result->b_size; size_t mapped_size; clear_buffer_new(bh_result); map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs); mapped_size = (ei->fofs + ei->len - pgofs) << blkbits; bh_result->b_size = min(max_size, mapped_size); } static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs, struct extent_info *ei) { struct f2fs_inode_info *fi = F2FS_I(inode); pgoff_t start_fofs, end_fofs; block_t start_blkaddr; read_lock(&fi->ext_lock); if (fi->ext.len == 0) { read_unlock(&fi->ext_lock); return false; } stat_inc_total_hit(inode->i_sb); start_fofs = fi->ext.fofs; end_fofs = fi->ext.fofs + fi->ext.len - 1; start_blkaddr = fi->ext.blk; if (pgofs >= start_fofs && pgofs <= end_fofs) { *ei = fi->ext; stat_inc_read_hit(inode->i_sb); read_unlock(&fi->ext_lock); return true; } read_unlock(&fi->ext_lock); return false; } static bool update_extent_info(struct inode *inode, pgoff_t fofs, block_t blkaddr) { struct f2fs_inode_info *fi = F2FS_I(inode); pgoff_t start_fofs, end_fofs; block_t start_blkaddr, end_blkaddr; int need_update = true; write_lock(&fi->ext_lock); start_fofs = fi->ext.fofs; end_fofs = fi->ext.fofs + fi->ext.len - 1; start_blkaddr = fi->ext.blk; end_blkaddr = fi->ext.blk + fi->ext.len - 1; /* Drop and initialize the matched extent */ if (fi->ext.len == 1 && fofs == start_fofs) fi->ext.len = 0; /* Initial extent */ if (fi->ext.len == 0) { if (blkaddr != NULL_ADDR) { fi->ext.fofs = fofs; fi->ext.blk = blkaddr; fi->ext.len = 1; } goto end_update; } /* Front merge */ if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) { fi->ext.fofs--; fi->ext.blk--; fi->ext.len++; goto end_update; } /* Back merge */ if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) { fi->ext.len++; goto end_update; } /* Split the existing extent */ if (fi->ext.len > 1 && fofs >= start_fofs && fofs <= end_fofs) { if ((end_fofs - fofs) < (fi->ext.len >> 1)) { fi->ext.len = fofs - start_fofs; } else { fi->ext.fofs = fofs + 1; fi->ext.blk = start_blkaddr + fofs - start_fofs + 1; fi->ext.len -= fofs - start_fofs + 1; } } else { need_update = false; } /* Finally, if the extent is very fragmented, let's drop the cache. */ if (fi->ext.len < F2FS_MIN_EXTENT_LEN) { fi->ext.len = 0; set_inode_flag(fi, FI_NO_EXTENT); need_update = true; } end_update: write_unlock(&fi->ext_lock); return need_update; } static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_info *ei, struct rb_node *parent, struct rb_node **p) { struct extent_node *en; en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); if (!en) return NULL; en->ei = *ei; INIT_LIST_HEAD(&en->list); rb_link_node(&en->rb_node, parent, p); rb_insert_color(&en->rb_node, &et->root); et->count++; atomic_inc(&sbi->total_ext_node); return en; } static void __detach_extent_node(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_node *en) { rb_erase(&en->rb_node, &et->root); et->count--; atomic_dec(&sbi->total_ext_node); if (et->cached_en == en) et->cached_en = NULL; } static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi, nid_t ino) { struct extent_tree *et; down_read(&sbi->extent_tree_lock); et = radix_tree_lookup(&sbi->extent_tree_root, ino); if (!et) { up_read(&sbi->extent_tree_lock); return NULL; } atomic_inc(&et->refcount); up_read(&sbi->extent_tree_lock); return et; } static struct extent_tree *__grab_extent_tree(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et; nid_t ino = inode->i_ino; down_write(&sbi->extent_tree_lock); et = radix_tree_lookup(&sbi->extent_tree_root, ino); if (!et) { et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); memset(et, 0, sizeof(struct extent_tree)); et->ino = ino; et->root = RB_ROOT; et->cached_en = NULL; rwlock_init(&et->lock); atomic_set(&et->refcount, 0); et->count = 0; sbi->total_ext_tree++; } atomic_inc(&et->refcount); up_write(&sbi->extent_tree_lock); return et; } static struct extent_node *__lookup_extent_tree(struct extent_tree *et, unsigned int fofs) { struct rb_node *node = et->root.rb_node; struct extent_node *en; if (et->cached_en) { struct extent_info *cei = &et->cached_en->ei; if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) return et->cached_en; } while (node) { en = rb_entry(node, struct extent_node, rb_node); if (fofs < en->ei.fofs) { node = node->rb_left; } else if (fofs >= en->ei.fofs + en->ei.len) { node = node->rb_right; } else { et->cached_en = en; return en; } } return NULL; } static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_node *en) { struct extent_node *prev; struct rb_node *node; node = rb_prev(&en->rb_node); if (!node) return NULL; prev = rb_entry(node, struct extent_node, rb_node); if (__is_back_mergeable(&en->ei, &prev->ei)) { en->ei.fofs = prev->ei.fofs; en->ei.blk = prev->ei.blk; en->ei.len += prev->ei.len; __detach_extent_node(sbi, et, prev); return prev; } return NULL; } static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_node *en) { struct extent_node *next; struct rb_node *node; node = rb_next(&en->rb_node); if (!node) return NULL; next = rb_entry(node, struct extent_node, rb_node); if (__is_front_mergeable(&en->ei, &next->ei)) { en->ei.len += next->ei.len; __detach_extent_node(sbi, et, next); return next; } return NULL; } static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi, struct extent_tree *et, struct extent_info *ei, struct extent_node **den) { struct rb_node **p = &et->root.rb_node; struct rb_node *parent = NULL; struct extent_node *en; while (*p) { parent = *p; en = rb_entry(parent, struct extent_node, rb_node); if (ei->fofs < en->ei.fofs) { if (__is_front_mergeable(ei, &en->ei)) { f2fs_bug_on(sbi, !den); en->ei.fofs = ei->fofs; en->ei.blk = ei->blk; en->ei.len += ei->len; *den = __try_back_merge(sbi, et, en); return en; } p = &(*p)->rb_left; } else if (ei->fofs >= en->ei.fofs + en->ei.len) { if (__is_back_mergeable(ei, &en->ei)) { f2fs_bug_on(sbi, !den); en->ei.len += ei->len; *den = __try_front_merge(sbi, et, en); return en; } p = &(*p)->rb_right; } else { f2fs_bug_on(sbi, 1); } } return __attach_extent_node(sbi, et, ei, parent, p); } static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, struct extent_tree *et, bool free_all) { struct rb_node *node, *next; struct extent_node *en; unsigned int count = et->count; node = rb_first(&et->root); while (node) { next = rb_next(node); en = rb_entry(node, struct extent_node, rb_node); if (free_all) { spin_lock(&sbi->extent_lock); if (!list_empty(&en->list)) list_del_init(&en->list); spin_unlock(&sbi->extent_lock); } if (free_all || list_empty(&en->list)) { __detach_extent_node(sbi, et, en); kmem_cache_free(extent_node_slab, en); } node = next; } return count - et->count; } static void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et; struct extent_node *en; struct extent_info ei; if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN) return; et = __grab_extent_tree(inode); write_lock(&et->lock); if (et->count) goto out; set_extent_info(&ei, le32_to_cpu(i_ext->fofs), le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len)); en = __insert_extent_tree(sbi, et, &ei, NULL); if (en) { et->cached_en = en; spin_lock(&sbi->extent_lock); list_add_tail(&en->list, &sbi->extent_list); spin_unlock(&sbi->extent_lock); } out: write_unlock(&et->lock); atomic_dec(&et->refcount); } static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, struct extent_info *ei) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et; struct extent_node *en; trace_f2fs_lookup_extent_tree_start(inode, pgofs); et = __find_extent_tree(sbi, inode->i_ino); if (!et) return false; read_lock(&et->lock); en = __lookup_extent_tree(et, pgofs); if (en) { *ei = en->ei; spin_lock(&sbi->extent_lock); if (!list_empty(&en->list)) list_move_tail(&en->list, &sbi->extent_list); spin_unlock(&sbi->extent_lock); stat_inc_read_hit(sbi->sb); } stat_inc_total_hit(sbi->sb); read_unlock(&et->lock); trace_f2fs_lookup_extent_tree_end(inode, pgofs, en); atomic_dec(&et->refcount); return en ? true : false; } static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs, block_t blkaddr) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et; struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL; struct extent_node *den = NULL; struct extent_info ei, dei; unsigned int endofs; trace_f2fs_update_extent_tree(inode, fofs, blkaddr); et = __grab_extent_tree(inode); write_lock(&et->lock); /* 1. lookup and remove existing extent info in cache */ en = __lookup_extent_tree(et, fofs); if (!en) goto update_extent; dei = en->ei; __detach_extent_node(sbi, et, en); /* 2. if extent can be split more, split and insert the left part */ if (dei.len > 1) { /* insert left part of split extent into cache */ if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) { set_extent_info(&ei, dei.fofs, dei.blk, fofs - dei.fofs); en1 = __insert_extent_tree(sbi, et, &ei, NULL); } /* insert right part of split extent into cache */ endofs = dei.fofs + dei.len - 1; if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) { set_extent_info(&ei, fofs + 1, fofs - dei.fofs + dei.blk, endofs - fofs); en2 = __insert_extent_tree(sbi, et, &ei, NULL); } } update_extent: /* 3. update extent in extent cache */ if (blkaddr) { set_extent_info(&ei, fofs, blkaddr, 1); en3 = __insert_extent_tree(sbi, et, &ei, &den); } /* 4. update in global extent list */ spin_lock(&sbi->extent_lock); if (en && !list_empty(&en->list)) list_del(&en->list); /* * en1 and en2 split from en, they will become more and more smaller * fragments after splitting several times. So if the length is smaller * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree. */ if (en1) list_add_tail(&en1->list, &sbi->extent_list); if (en2) list_add_tail(&en2->list, &sbi->extent_list); if (en3) { if (list_empty(&en3->list)) list_add_tail(&en3->list, &sbi->extent_list); else list_move_tail(&en3->list, &sbi->extent_list); } if (den && !list_empty(&den->list)) list_del(&den->list); spin_unlock(&sbi->extent_lock); /* 5. release extent node */ if (en) kmem_cache_free(extent_node_slab, en); if (den) kmem_cache_free(extent_node_slab, den); write_unlock(&et->lock); atomic_dec(&et->refcount); } void f2fs_preserve_extent_tree(struct inode *inode) { struct extent_tree *et; struct extent_info *ext = &F2FS_I(inode)->ext; bool sync = false; if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE)) return; et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino); if (!et) { if (ext->len) { ext->len = 0; update_inode_page(inode); } return; } read_lock(&et->lock); if (et->count) { struct extent_node *en; if (et->cached_en) { en = et->cached_en; } else { struct rb_node *node = rb_first(&et->root); if (!node) node = rb_last(&et->root); en = rb_entry(node, struct extent_node, rb_node); } if (__is_extent_same(ext, &en->ei)) goto out; *ext = en->ei; sync = true; } else if (ext->len) { ext->len = 0; sync = true; } out: read_unlock(&et->lock); atomic_dec(&et->refcount); if (sync) update_inode_page(inode); } void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) { struct extent_tree *treevec[EXT_TREE_VEC_SIZE]; struct extent_node *en, *tmp; unsigned long ino = F2FS_ROOT_INO(sbi); struct radix_tree_iter iter; void **slot; unsigned int found; unsigned int node_cnt = 0, tree_cnt = 0; if (!test_opt(sbi, EXTENT_CACHE)) return; if (available_free_memory(sbi, EXTENT_CACHE)) return; spin_lock(&sbi->extent_lock); list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) { if (!nr_shrink--) break; list_del_init(&en->list); } spin_unlock(&sbi->extent_lock); down_read(&sbi->extent_tree_lock); while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root, (void **)treevec, ino, EXT_TREE_VEC_SIZE))) { unsigned i; ino = treevec[found - 1]->ino + 1; for (i = 0; i < found; i++) { struct extent_tree *et = treevec[i]; atomic_inc(&et->refcount); write_lock(&et->lock); node_cnt += __free_extent_tree(sbi, et, false); write_unlock(&et->lock); atomic_dec(&et->refcount); } } up_read(&sbi->extent_tree_lock); down_write(&sbi->extent_tree_lock); radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter, F2FS_ROOT_INO(sbi)) { struct extent_tree *et = (struct extent_tree *)*slot; if (!atomic_read(&et->refcount) && !et->count) { radix_tree_delete(&sbi->extent_tree_root, et->ino); kmem_cache_free(extent_tree_slab, et); sbi->total_ext_tree--; tree_cnt++; } } up_write(&sbi->extent_tree_lock); trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); } void f2fs_destroy_extent_tree(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et; unsigned int node_cnt = 0; if (!test_opt(sbi, EXTENT_CACHE)) return; et = __find_extent_tree(sbi, inode->i_ino); if (!et) goto out; /* free all extent info belong to this extent tree */ write_lock(&et->lock); node_cnt = __free_extent_tree(sbi, et, true); write_unlock(&et->lock); atomic_dec(&et->refcount); /* try to find and delete extent tree entry in radix tree */ down_write(&sbi->extent_tree_lock); et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino); if (!et) { up_write(&sbi->extent_tree_lock); goto out; } f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count); radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); kmem_cache_free(extent_tree_slab, et); sbi->total_ext_tree--; up_write(&sbi->extent_tree_lock); out: trace_f2fs_destroy_extent_tree(inode, node_cnt); return; } void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext) { if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE)) f2fs_init_extent_tree(inode, i_ext); write_lock(&F2FS_I(inode)->ext_lock); get_extent_info(&F2FS_I(inode)->ext, *i_ext); write_unlock(&F2FS_I(inode)->ext_lock); } static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, struct extent_info *ei) { if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) return false; if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE)) return f2fs_lookup_extent_tree(inode, pgofs, ei); return lookup_extent_info(inode, pgofs, ei); } void f2fs_update_extent_cache(struct dnode_of_data *dn) { struct f2fs_inode_info *fi = F2FS_I(dn->inode); pgoff_t fofs; f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR); if (is_inode_flag_set(fi, FI_NO_EXTENT)) return; fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + dn->ofs_in_node; if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE)) return f2fs_update_extent_tree(dn->inode, fofs, dn->data_blkaddr); if (update_extent_info(dn->inode, fofs, dn->data_blkaddr)) sync_inode_page(dn); } struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync) { struct address_space *mapping = inode->i_mapping; struct dnode_of_data dn; struct page *page; struct extent_info ei; int err; struct f2fs_io_info fio = { .type = DATA, .rw = sync ? READ_SYNC : READA, }; /* * If sync is false, it needs to check its block allocation. * This is need and triggered by two flows: * gc and truncate_partial_data_page. */ if (!sync) goto search; page = find_get_page(mapping, index); if (page && PageUptodate(page)) return page; f2fs_put_page(page, 0); search: if (f2fs_lookup_extent_cache(inode, index, &ei)) { dn.data_blkaddr = ei.blk + index - ei.fofs; goto got_it; } set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, index, LOOKUP_NODE); if (err) return ERR_PTR(err); f2fs_put_dnode(&dn); if (dn.data_blkaddr == NULL_ADDR) return ERR_PTR(-ENOENT); /* By fallocate(), there is no cached page, but with NEW_ADDR */ if (unlikely(dn.data_blkaddr == NEW_ADDR)) return ERR_PTR(-EINVAL); got_it: page = grab_cache_page(mapping, index); if (!page) return ERR_PTR(-ENOMEM); if (PageUptodate(page)) { unlock_page(page); return page; } fio.blk_addr = dn.data_blkaddr; err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio); if (err) return ERR_PTR(err); if (sync) { wait_on_page_locked(page); if (unlikely(!PageUptodate(page))) { f2fs_put_page(page, 0); return ERR_PTR(-EIO); } } return page; } /* * If it tries to access a hole, return an error. * Because, the callers, functions in dir.c and GC, should be able to know * whether this page exists or not. */ struct page *get_lock_data_page(struct inode *inode, pgoff_t index) { struct address_space *mapping = inode->i_mapping; struct dnode_of_data dn; struct page *page; struct extent_info ei; int err; struct f2fs_io_info fio = { .type = DATA, .rw = READ_SYNC, }; repeat: page = grab_cache_page(mapping, index); if (!page) return ERR_PTR(-ENOMEM); if (f2fs_lookup_extent_cache(inode, index, &ei)) { dn.data_blkaddr = ei.blk + index - ei.fofs; goto got_it; } set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, index, LOOKUP_NODE); if (err) { f2fs_put_page(page, 1); return ERR_PTR(err); } f2fs_put_dnode(&dn); if (unlikely(dn.data_blkaddr == NULL_ADDR)) { f2fs_put_page(page, 1); return ERR_PTR(-ENOENT); } got_it: if (PageUptodate(page)) return page; /* * A new dentry page is allocated but not able to be written, since its * new inode page couldn't be allocated due to -ENOSPC. * In such the case, its blkaddr can be remained as NEW_ADDR. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. */ if (dn.data_blkaddr == NEW_ADDR) { zero_user_segment(page, 0, PAGE_CACHE_SIZE); SetPageUptodate(page); return page; } fio.blk_addr = dn.data_blkaddr; err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio); if (err) return ERR_PTR(err); lock_page(page); if (unlikely(!PageUptodate(page))) { f2fs_put_page(page, 1); return ERR_PTR(-EIO); } if (unlikely(page->mapping != mapping)) { f2fs_put_page(page, 1); goto repeat; } return page; } /* * Caller ensures that this data page is never allocated. * A new zero-filled data page is allocated in the page cache. * * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and * f2fs_unlock_op(). * Note that, ipage is set only by make_empty_dir. */ struct page *get_new_data_page(struct inode *inode, struct page *ipage, pgoff_t index, bool new_i_size) { struct address_space *mapping = inode->i_mapping; struct page *page; struct dnode_of_data dn; int err; set_new_dnode(&dn, inode, ipage, NULL, 0); err = f2fs_reserve_block(&dn, index); if (err) return ERR_PTR(err); repeat: page = grab_cache_page(mapping, index); if (!page) { err = -ENOMEM; goto put_err; } if (PageUptodate(page)) return page; if (dn.data_blkaddr == NEW_ADDR) { zero_user_segment(page, 0, PAGE_CACHE_SIZE); SetPageUptodate(page); } else { struct f2fs_io_info fio = { .type = DATA, .rw = READ_SYNC, .blk_addr = dn.data_blkaddr, }; err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio); if (err) goto put_err; lock_page(page); if (unlikely(!PageUptodate(page))) { f2fs_put_page(page, 1); err = -EIO; goto put_err; } if (unlikely(page->mapping != mapping)) { f2fs_put_page(page, 1); goto repeat; } } if (new_i_size && i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) { i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT)); /* Only the directory inode sets new_i_size */ set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR); } return page; put_err: f2fs_put_dnode(&dn); return ERR_PTR(err); } static int __allocate_data_block(struct dnode_of_data *dn) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); struct f2fs_inode_info *fi = F2FS_I(dn->inode); struct f2fs_summary sum; struct node_info ni; int seg = CURSEG_WARM_DATA; pgoff_t fofs; if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) return -EPERM; dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); if (dn->data_blkaddr == NEW_ADDR) goto alloc; if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1))) return -ENOSPC; alloc: get_node_info(sbi, dn->nid, &ni); set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page) seg = CURSEG_DIRECT_IO; allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, &sum, seg); /* direct IO doesn't use extent cache to maximize the performance */ set_data_blkaddr(dn); /* update i_size */ fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) + dn->ofs_in_node; if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT)) i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT)); return 0; } static void __allocate_data_blocks(struct inode *inode, loff_t offset, size_t count) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; u64 start = F2FS_BYTES_TO_BLK(offset); u64 len = F2FS_BYTES_TO_BLK(count); bool allocated; u64 end_offset; while (len) { f2fs_balance_fs(sbi); f2fs_lock_op(sbi); /* When reading holes, we need its node page */ set_new_dnode(&dn, inode, NULL, NULL, 0); if (get_dnode_of_data(&dn, start, ALLOC_NODE)) goto out; allocated = false; end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); while (dn.ofs_in_node < end_offset && len) { block_t blkaddr; blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) { if (__allocate_data_block(&dn)) goto sync_out; allocated = true; } len--; start++; dn.ofs_in_node++; } if (allocated) sync_inode_page(&dn); f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); } return; sync_out: if (allocated) sync_inode_page(&dn); f2fs_put_dnode(&dn); out: f2fs_unlock_op(sbi); return; } /* * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh. * If original data blocks are allocated, then give them to blockdev. * Otherwise, * a. preallocate requested block addresses * b. do not use extent cache for better performance * c. give the block addresses to blockdev */ static int __get_data_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create, bool fiemap) { unsigned int blkbits = inode->i_sb->s_blocksize_bits; unsigned maxblocks = bh_result->b_size >> blkbits; struct dnode_of_data dn; int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA; pgoff_t pgofs, end_offset; int err = 0, ofs = 1; struct extent_info ei; bool allocated = false; /* Get the page offset from the block offset(iblock) */ pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits)); if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) { f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result); goto out; } if (create) f2fs_lock_op(F2FS_I_SB(inode)); /* When reading holes, we need its node page */ set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, pgofs, mode); if (err) { if (err == -ENOENT) err = 0; goto unlock_out; } if (dn.data_blkaddr == NEW_ADDR && !fiemap) goto put_out; if (dn.data_blkaddr != NULL_ADDR) { clear_buffer_new(bh_result); map_bh(bh_result, inode->i_sb, dn.data_blkaddr); } else if (create) { err = __allocate_data_block(&dn); if (err) goto put_out; allocated = true; set_buffer_new(bh_result); map_bh(bh_result, inode->i_sb, dn.data_blkaddr); } else { goto put_out; } end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); bh_result->b_size = (((size_t)1) << blkbits); dn.ofs_in_node++; pgofs++; get_next: if (dn.ofs_in_node >= end_offset) { if (allocated) sync_inode_page(&dn); allocated = false; f2fs_put_dnode(&dn); set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, pgofs, mode); if (err) { if (err == -ENOENT) err = 0; goto unlock_out; } if (dn.data_blkaddr == NEW_ADDR && !fiemap) goto put_out; end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); } if (maxblocks > (bh_result->b_size >> blkbits)) { block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); if (blkaddr == NULL_ADDR && create) { err = __allocate_data_block(&dn); if (err) goto sync_out; allocated = true; set_buffer_new(bh_result); blkaddr = dn.data_blkaddr; } /* Give more consecutive addresses for the readahead */ if (blkaddr == (bh_result->b_blocknr + ofs)) { ofs++; dn.ofs_in_node++; pgofs++; bh_result->b_size += (((size_t)1) << blkbits); goto get_next; } } sync_out: if (allocated) sync_inode_page(&dn); put_out: f2fs_put_dnode(&dn); unlock_out: if (create) f2fs_unlock_op(F2FS_I_SB(inode)); out: trace_f2fs_get_data_block(inode, iblock, bh_result, err); return err; } static int get_data_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { return __get_data_block(inode, iblock, bh_result, create, false); } static int get_data_block_fiemap(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { return __get_data_block(inode, iblock, bh_result, create, true); } int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 len) { return generic_block_fiemap(inode, fieinfo, start, len, get_data_block_fiemap); } static int f2fs_read_data_page(struct file *file, struct page *page) { struct inode *inode = page->mapping->host; int ret = -EAGAIN; trace_f2fs_readpage(page, DATA); /* If the file has inline data, try to read it directly */ if (f2fs_has_inline_data(inode)) ret = f2fs_read_inline_data(inode, page); if (ret == -EAGAIN) ret = mpage_readpage(page, get_data_block); return ret; } static int f2fs_read_data_pages(struct file *file, struct address_space *mapping, struct list_head *pages, unsigned nr_pages) { struct inode *inode = file->f_mapping->host; /* If the file has inline data, skip readpages */ if (f2fs_has_inline_data(inode)) return 0; return mpage_readpages(mapping, pages, nr_pages, get_data_block); } int do_write_data_page(struct page *page, struct f2fs_io_info *fio) { struct inode *inode = page->mapping->host; struct dnode_of_data dn; int err = 0; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); if (err) return err; fio->blk_addr = dn.data_blkaddr; /* This page is already truncated */ if (fio->blk_addr == NULL_ADDR) { ClearPageUptodate(page); goto out_writepage; } set_page_writeback(page); /* * If current allocation needs SSR, * it had better in-place writes for updated data. */ if (unlikely(fio->blk_addr != NEW_ADDR && !is_cold_data(page) && need_inplace_update(inode))) { rewrite_data_page(page, fio); set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE); trace_f2fs_do_write_data_page(page, IPU); } else { write_data_page(page, &dn, fio); set_data_blkaddr(&dn); f2fs_update_extent_cache(&dn); trace_f2fs_do_write_data_page(page, OPU); set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE); if (page->index == 0) set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); } out_writepage: f2fs_put_dnode(&dn); return err; } static int f2fs_write_data_page(struct page *page, struct writeback_control *wbc) { struct inode *inode = page->mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); loff_t i_size = i_size_read(inode); const pgoff_t end_index = ((unsigned long long) i_size) >> PAGE_CACHE_SHIFT; unsigned offset = 0; bool need_balance_fs = false; int err = 0; struct f2fs_io_info fio = { .type = DATA, .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, }; trace_f2fs_writepage(page, DATA); if (page->index < end_index) goto write; /* * If the offset is out-of-range of file size, * this page does not have to be written to disk. */ offset = i_size & (PAGE_CACHE_SIZE - 1); if ((page->index >= end_index + 1) || !offset) goto out; zero_user_segment(page, offset, PAGE_CACHE_SIZE); write: if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) goto redirty_out; if (f2fs_is_drop_cache(inode)) goto out; if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim && available_free_memory(sbi, BASE_CHECK)) goto redirty_out; /* Dentry blocks are controlled by checkpoint */ if (S_ISDIR(inode->i_mode)) { if (unlikely(f2fs_cp_error(sbi))) goto redirty_out; err = do_write_data_page(page, &fio); goto done; } /* we should bypass data pages to proceed the kworkder jobs */ if (unlikely(f2fs_cp_error(sbi))) { SetPageError(page); goto out; } if (!wbc->for_reclaim) need_balance_fs = true; else if (has_not_enough_free_secs(sbi, 0)) goto redirty_out; err = -EAGAIN; f2fs_lock_op(sbi); if (f2fs_has_inline_data(inode)) err = f2fs_write_inline_data(inode, page); if (err == -EAGAIN) err = do_write_data_page(page, &fio); f2fs_unlock_op(sbi); done: if (err && err != -ENOENT) goto redirty_out; clear_cold_data(page); out: inode_dec_dirty_pages(inode); if (err) ClearPageUptodate(page); unlock_page(page); if (need_balance_fs) f2fs_balance_fs(sbi); if (wbc->for_reclaim) f2fs_submit_merged_bio(sbi, DATA, WRITE); return 0; redirty_out: redirty_page_for_writepage(wbc, page); return AOP_WRITEPAGE_ACTIVATE; } static int __f2fs_writepage(struct page *page, struct writeback_control *wbc, void *data) { struct address_space *mapping = data; int ret = mapping->a_ops->writepage(page, wbc); mapping_set_error(mapping, ret); return ret; } static int f2fs_write_data_pages(struct address_space *mapping, struct writeback_control *wbc) { struct inode *inode = mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int ret; long diff; trace_f2fs_writepages(mapping->host, wbc, DATA); /* deal with chardevs and other special file */ if (!mapping->a_ops->writepage) return 0; if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && available_free_memory(sbi, DIRTY_DENTS)) goto skip_write; /* during POR, we don't need to trigger writepage at all. */ if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) goto skip_write; diff = nr_pages_to_write(sbi, DATA, wbc); ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping); f2fs_submit_merged_bio(sbi, DATA, WRITE); remove_dirty_dir_inode(inode); wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); return ret; skip_write: wbc->pages_skipped += get_dirty_pages(inode); return 0; } static void f2fs_write_failed(struct address_space *mapping, loff_t to) { struct inode *inode = mapping->host; if (to > inode->i_size) { truncate_pagecache(inode, inode->i_size); truncate_blocks(inode, inode->i_size, true); } } static int f2fs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { struct inode *inode = mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *page, *ipage; pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT; struct dnode_of_data dn; int err = 0; trace_f2fs_write_begin(inode, pos, len, flags); f2fs_balance_fs(sbi); /* * We should check this at this moment to avoid deadlock on inode page * and #0 page. The locking rule for inline_data conversion should be: * lock_page(page #0) -> lock_page(inode_page) */ if (index != 0) { err = f2fs_convert_inline_inode(inode); if (err) goto fail; } repeat: page = grab_cache_page_write_begin(mapping, index, flags); if (!page) { err = -ENOMEM; goto fail; } *pagep = page; f2fs_lock_op(sbi); /* check inline_data */ ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto unlock_fail; } set_new_dnode(&dn, inode, ipage, ipage, 0); if (f2fs_has_inline_data(inode)) { if (pos + len <= MAX_INLINE_DATA) { read_inline_data(page, ipage); set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); sync_inode_page(&dn); goto put_next; } err = f2fs_convert_inline_page(&dn, page); if (err) goto put_fail; } err = f2fs_reserve_block(&dn, index); if (err) goto put_fail; put_next: f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); if ((len == PAGE_CACHE_SIZE) || PageUptodate(page)) return 0; f2fs_wait_on_page_writeback(page, DATA); if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) { unsigned start = pos & (PAGE_CACHE_SIZE - 1); unsigned end = start + len; /* Reading beyond i_size is simple: memset to zero */ zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE); goto out; } if (dn.data_blkaddr == NEW_ADDR) { zero_user_segment(page, 0, PAGE_CACHE_SIZE); } else { struct f2fs_io_info fio = { .type = DATA, .rw = READ_SYNC, .blk_addr = dn.data_blkaddr, }; err = f2fs_submit_page_bio(sbi, page, &fio); if (err) goto fail; lock_page(page); if (unlikely(!PageUptodate(page))) { f2fs_put_page(page, 1); err = -EIO; goto fail; } if (unlikely(page->mapping != mapping)) { f2fs_put_page(page, 1); goto repeat; } } out: SetPageUptodate(page); clear_cold_data(page); return 0; put_fail: f2fs_put_dnode(&dn); unlock_fail: f2fs_unlock_op(sbi); f2fs_put_page(page, 1); fail: f2fs_write_failed(mapping, pos + len); return err; } static int f2fs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = page->mapping->host; trace_f2fs_write_end(inode, pos, len, copied); set_page_dirty(page); if (pos + copied > i_size_read(inode)) { i_size_write(inode, pos + copied); mark_inode_dirty(inode); update_inode_page(inode); } f2fs_put_page(page, 1); return copied; } static int check_direct_IO(struct inode *inode, int rw, struct iov_iter *iter, loff_t offset) { unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; if (rw == READ) return 0; if (offset & blocksize_mask) return -EINVAL; if (iov_iter_alignment(iter) & blocksize_mask) return -EINVAL; return 0; } static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t offset) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; size_t count = iov_iter_count(iter); int err; /* we don't need to use inline_data strictly */ if (f2fs_has_inline_data(inode)) { err = f2fs_convert_inline_inode(inode); if (err) return err; } if (check_direct_IO(inode, rw, iter, offset)) return 0; trace_f2fs_direct_IO_enter(inode, offset, count, rw); if (rw & WRITE) __allocate_data_blocks(inode, offset, count); err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block); if (err < 0 && (rw & WRITE)) f2fs_write_failed(mapping, offset + count); trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); return err; } void f2fs_invalidate_page(struct page *page, unsigned int offset, unsigned int length) { struct inode *inode = page->mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (inode->i_ino >= F2FS_ROOT_INO(sbi) && (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE)) return; if (PageDirty(page)) { if (inode->i_ino == F2FS_META_INO(sbi)) dec_page_count(sbi, F2FS_DIRTY_META); else if (inode->i_ino == F2FS_NODE_INO(sbi)) dec_page_count(sbi, F2FS_DIRTY_NODES); else inode_dec_dirty_pages(inode); } ClearPagePrivate(page); } int f2fs_release_page(struct page *page, gfp_t wait) { /* If this is dirty page, keep PagePrivate */ if (PageDirty(page)) return 0; ClearPagePrivate(page); return 1; } static int f2fs_set_data_page_dirty(struct page *page) { struct address_space *mapping = page->mapping; struct inode *inode = mapping->host; trace_f2fs_set_page_dirty(page, DATA); SetPageUptodate(page); if (f2fs_is_atomic_file(inode)) { register_inmem_page(inode, page); return 1; } mark_inode_dirty(inode); if (!PageDirty(page)) { __set_page_dirty_nobuffers(page); update_dirty_page(inode, page); return 1; } return 0; } static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) { struct inode *inode = mapping->host; /* we don't need to use inline_data strictly */ if (f2fs_has_inline_data(inode)) { int err = f2fs_convert_inline_inode(inode); if (err) return err; } return generic_block_bmap(mapping, block, get_data_block); } void init_extent_cache_info(struct f2fs_sb_info *sbi) { INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); init_rwsem(&sbi->extent_tree_lock); INIT_LIST_HEAD(&sbi->extent_list); spin_lock_init(&sbi->extent_lock); sbi->total_ext_tree = 0; atomic_set(&sbi->total_ext_node, 0); } int __init create_extent_cache(void) { extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", sizeof(struct extent_tree)); if (!extent_tree_slab) return -ENOMEM; extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", sizeof(struct extent_node)); if (!extent_node_slab) { kmem_cache_destroy(extent_tree_slab); return -ENOMEM; } return 0; } void destroy_extent_cache(void) { kmem_cache_destroy(extent_node_slab); kmem_cache_destroy(extent_tree_slab); } const struct address_space_operations f2fs_dblock_aops = { .readpage = f2fs_read_data_page, .readpages = f2fs_read_data_pages, .writepage = f2fs_write_data_page, .writepages = f2fs_write_data_pages, .write_begin = f2fs_write_begin, .write_end = f2fs_write_end, .set_page_dirty = f2fs_set_data_page_dirty, .invalidatepage = f2fs_invalidate_page, .releasepage = f2fs_release_page, .direct_IO = f2fs_direct_IO, .bmap = f2fs_bmap, };