/* -*- mode: c; c-basic-offset: 8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * file.c * * File open, close, extend, truncate * * Copyright (C) 2002, 2004 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MLOG_MASK_PREFIX ML_INODE #include #include "ocfs2.h" #include "alloc.h" #include "aops.h" #include "dir.h" #include "dlmglue.h" #include "extent_map.h" #include "file.h" #include "sysfile.h" #include "inode.h" #include "ioctl.h" #include "journal.h" #include "locks.h" #include "mmap.h" #include "suballoc.h" #include "super.h" #include "xattr.h" #include "acl.h" #include "quota.h" #include "refcounttree.h" #include "buffer_head_io.h" static int ocfs2_init_file_private(struct inode *inode, struct file *file) { struct ocfs2_file_private *fp; fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); if (!fp) return -ENOMEM; fp->fp_file = file; mutex_init(&fp->fp_mutex); ocfs2_file_lock_res_init(&fp->fp_flock, fp); file->private_data = fp; return 0; } static void ocfs2_free_file_private(struct inode *inode, struct file *file) { struct ocfs2_file_private *fp = file->private_data; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (fp) { ocfs2_simple_drop_lockres(osb, &fp->fp_flock); ocfs2_lock_res_free(&fp->fp_flock); kfree(fp); file->private_data = NULL; } } static int ocfs2_file_open(struct inode *inode, struct file *file) { int status; int mode = file->f_flags; struct ocfs2_inode_info *oi = OCFS2_I(inode); mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name); if (file->f_mode & FMODE_WRITE) dquot_initialize(inode); spin_lock(&oi->ip_lock); /* Check that the inode hasn't been wiped from disk by another * node. If it hasn't then we're safe as long as we hold the * spin lock until our increment of open count. */ if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) { spin_unlock(&oi->ip_lock); status = -ENOENT; goto leave; } if (mode & O_DIRECT) oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; oi->ip_open_count++; spin_unlock(&oi->ip_lock); status = ocfs2_init_file_private(inode, file); if (status) { /* * We want to set open count back if we're failing the * open. */ spin_lock(&oi->ip_lock); oi->ip_open_count--; spin_unlock(&oi->ip_lock); } leave: mlog_exit(status); return status; } static int ocfs2_file_release(struct inode *inode, struct file *file) { struct ocfs2_inode_info *oi = OCFS2_I(inode); mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name); spin_lock(&oi->ip_lock); if (!--oi->ip_open_count) oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; spin_unlock(&oi->ip_lock); ocfs2_free_file_private(inode, file); mlog_exit(0); return 0; } static int ocfs2_dir_open(struct inode *inode, struct file *file) { return ocfs2_init_file_private(inode, file); } static int ocfs2_dir_release(struct inode *inode, struct file *file) { ocfs2_free_file_private(inode, file); return 0; } static int ocfs2_sync_file(struct file *file, int datasync) { int err = 0; journal_t *journal; struct inode *inode = file->f_mapping->host; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog_entry("(0x%p, %d, 0x%p, '%.*s')\n", file, datasync, file->f_path.dentry, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name); if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) { /* * We still have to flush drive's caches to get data to the * platter */ if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL, BLKDEV_IFL_WAIT); goto bail; } journal = osb->journal->j_journal; err = jbd2_journal_force_commit(journal); bail: mlog_exit(err); return (err < 0) ? -EIO : 0; } int ocfs2_should_update_atime(struct inode *inode, struct vfsmount *vfsmnt) { struct timespec now; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return 0; if ((inode->i_flags & S_NOATIME) || ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))) return 0; /* * We can be called with no vfsmnt structure - NFSD will * sometimes do this. * * Note that our action here is different than touch_atime() - * if we can't tell whether this is a noatime mount, then we * don't know whether to trust the value of s_atime_quantum. */ if (vfsmnt == NULL) return 0; if ((vfsmnt->mnt_flags & MNT_NOATIME) || ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) return 0; if (vfsmnt->mnt_flags & MNT_RELATIME) { if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) || (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0)) return 1; return 0; } now = CURRENT_TIME; if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) return 0; else return 1; } int ocfs2_update_inode_atime(struct inode *inode, struct buffer_head *bh) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle; struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; mlog_entry_void(); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } /* * Don't use ocfs2_mark_inode_dirty() here as we don't always * have i_mutex to guard against concurrent changes to other * inode fields. */ inode->i_atime = CURRENT_TIME; di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); ocfs2_journal_dirty(handle, bh); out_commit: ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); out: mlog_exit(ret); return ret; } static int ocfs2_set_inode_size(handle_t *handle, struct inode *inode, struct buffer_head *fe_bh, u64 new_i_size) { int status; mlog_entry_void(); i_size_write(inode, new_i_size); inode->i_blocks = ocfs2_inode_sector_count(inode); inode->i_ctime = inode->i_mtime = CURRENT_TIME; status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); if (status < 0) { mlog_errno(status); goto bail; } bail: mlog_exit(status); return status; } int ocfs2_simple_size_update(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle = NULL; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_set_inode_size(handle, inode, di_bh, new_i_size); if (ret < 0) mlog_errno(ret); ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_cow_file_pos(struct inode *inode, struct buffer_head *fe_bh, u64 offset) { int status; u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; unsigned int num_clusters = 0; unsigned int ext_flags = 0; /* * If the new offset is aligned to the range of the cluster, there is * no space for ocfs2_zero_range_for_truncate to fill, so no need to * CoW either. */ if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) return 0; status = ocfs2_get_clusters(inode, cpos, &phys, &num_clusters, &ext_flags); if (status) { mlog_errno(status); goto out; } if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) goto out; return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1); out: return status; } static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, struct inode *inode, struct buffer_head *fe_bh, u64 new_i_size) { int status; handle_t *handle; struct ocfs2_dinode *di; u64 cluster_bytes; mlog_entry_void(); /* * We need to CoW the cluster contains the offset if it is reflinked * since we will call ocfs2_zero_range_for_truncate later which will * write "0" from offset to the end of the cluster. */ status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); if (status) { mlog_errno(status); return status; } /* TODO: This needs to actually orphan the inode in this * transaction. */ handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto out; } status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto out_commit; } /* * Do this before setting i_size. */ cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, cluster_bytes); if (status) { mlog_errno(status); goto out_commit; } i_size_write(inode, new_i_size); inode->i_ctime = inode->i_mtime = CURRENT_TIME; di = (struct ocfs2_dinode *) fe_bh->b_data; di->i_size = cpu_to_le64(new_i_size); di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); ocfs2_journal_dirty(handle, fe_bh); out_commit: ocfs2_commit_trans(osb, handle); out: mlog_exit(status); return status; } static int ocfs2_truncate_file(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int status = 0; struct ocfs2_dinode *fe = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog_entry("(inode = %llu, new_i_size = %llu\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)new_i_size); /* We trust di_bh because it comes from ocfs2_inode_lock(), which * already validated it */ fe = (struct ocfs2_dinode *) di_bh->b_data; mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), "Inode %llu, inode i_size = %lld != di " "i_size = %llu, i_flags = 0x%x\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, i_size_read(inode), (unsigned long long)le64_to_cpu(fe->i_size), le32_to_cpu(fe->i_flags)); if (new_i_size > le64_to_cpu(fe->i_size)) { mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n", (unsigned long long)le64_to_cpu(fe->i_size), (unsigned long long)new_i_size); status = -EINVAL; mlog_errno(status); goto bail; } mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n", (unsigned long long)le64_to_cpu(fe->i_blkno), (unsigned long long)le64_to_cpu(fe->i_size), (unsigned long long)new_i_size); /* lets handle the simple truncate cases before doing any more * cluster locking. */ if (new_i_size == le64_to_cpu(fe->i_size)) goto bail; down_write(&OCFS2_I(inode)->ip_alloc_sem); ocfs2_resv_discard(&osb->osb_la_resmap, &OCFS2_I(inode)->ip_la_data_resv); /* * The inode lock forced other nodes to sync and drop their * pages, which (correctly) happens even if we have a truncate * without allocation change - ocfs2 cluster sizes can be much * greater than page size, so we have to truncate them * anyway. */ unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); truncate_inode_pages(inode->i_mapping, new_i_size); if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { status = ocfs2_truncate_inline(inode, di_bh, new_i_size, i_size_read(inode), 1); if (status) mlog_errno(status); goto bail_unlock_sem; } /* alright, we're going to need to do a full blown alloc size * change. Orphan the inode so that recovery can complete the * truncate if necessary. This does the task of marking * i_size. */ status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); if (status < 0) { mlog_errno(status); goto bail_unlock_sem; } status = ocfs2_commit_truncate(osb, inode, di_bh); if (status < 0) { mlog_errno(status); goto bail_unlock_sem; } /* TODO: orphan dir cleanup here. */ bail_unlock_sem: up_write(&OCFS2_I(inode)->ip_alloc_sem); bail: if (!status && OCFS2_I(inode)->ip_clusters == 0) status = ocfs2_try_remove_refcount_tree(inode, di_bh); mlog_exit(status); return status; } /* * extend file allocation only here. * we'll update all the disk stuff, and oip->alloc_size * * expect stuff to be locked, a transaction started and enough data / * metadata reservations in the contexts. * * Will return -EAGAIN, and a reason if a restart is needed. * If passed in, *reason will always be set, even in error. */ int ocfs2_add_inode_data(struct ocfs2_super *osb, struct inode *inode, u32 *logical_offset, u32 clusters_to_add, int mark_unwritten, struct buffer_head *fe_bh, handle_t *handle, struct ocfs2_alloc_context *data_ac, struct ocfs2_alloc_context *meta_ac, enum ocfs2_alloc_restarted *reason_ret) { int ret; struct ocfs2_extent_tree et; ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, clusters_to_add, mark_unwritten, data_ac, meta_ac, reason_ret); return ret; } static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start, u32 clusters_to_add, int mark_unwritten) { int status = 0; int restart_func = 0; int credits; u32 prev_clusters; struct buffer_head *bh = NULL; struct ocfs2_dinode *fe = NULL; handle_t *handle = NULL; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_alloc_context *meta_ac = NULL; enum ocfs2_alloc_restarted why; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_extent_tree et; int did_quota = 0; mlog_entry("(clusters_to_add = %u)\n", clusters_to_add); /* * This function only exists for file systems which don't * support holes. */ BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); status = ocfs2_read_inode_block(inode, &bh); if (status < 0) { mlog_errno(status); goto leave; } fe = (struct ocfs2_dinode *) bh->b_data; restart_all: BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, " "clusters_to_add = %u\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (long long)i_size_read(inode), le32_to_cpu(fe->i_clusters), clusters_to_add); ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, &data_ac, &meta_ac); if (status) { mlog_errno(status); goto leave; } credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list, clusters_to_add); handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { status = PTR_ERR(handle); handle = NULL; mlog_errno(status); goto leave; } restarted_transaction: status = dquot_alloc_space_nodirty(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); if (status) goto leave; did_quota = 1; /* reserve a write to the file entry early on - that we if we * run out of credits in the allocation path, we can still * update i_size. */ status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); goto leave; } prev_clusters = OCFS2_I(inode)->ip_clusters; status = ocfs2_add_inode_data(osb, inode, &logical_start, clusters_to_add, mark_unwritten, bh, handle, data_ac, meta_ac, &why); if ((status < 0) && (status != -EAGAIN)) { if (status != -ENOSPC) mlog_errno(status); goto leave; } ocfs2_journal_dirty(handle, bh); spin_lock(&OCFS2_I(inode)->ip_lock); clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); spin_unlock(&OCFS2_I(inode)->ip_lock); /* Release unused quota reservation */ dquot_free_space(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); did_quota = 0; if (why != RESTART_NONE && clusters_to_add) { if (why == RESTART_META) { mlog(0, "restarting function.\n"); restart_func = 1; status = 0; } else { BUG_ON(why != RESTART_TRANS); mlog(0, "restarting transaction.\n"); /* TODO: This can be more intelligent. */ credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list, clusters_to_add); status = ocfs2_extend_trans(handle, credits); if (status < 0) { /* handle still has to be committed at * this point. */ status = -ENOMEM; mlog_errno(status); goto leave; } goto restarted_transaction; } } mlog(0, "fe: i_clusters = %u, i_size=%llu\n", le32_to_cpu(fe->i_clusters), (unsigned long long)le64_to_cpu(fe->i_size)); mlog(0, "inode: ip_clusters=%u, i_size=%lld\n", OCFS2_I(inode)->ip_clusters, (long long)i_size_read(inode)); leave: if (status < 0 && did_quota) dquot_free_space(inode, ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); if (handle) { ocfs2_commit_trans(osb, handle); handle = NULL; } if (data_ac) { ocfs2_free_alloc_context(data_ac); data_ac = NULL; } if (meta_ac) { ocfs2_free_alloc_context(meta_ac); meta_ac = NULL; } if ((!status) && restart_func) { restart_func = 0; goto restart_all; } brelse(bh); bh = NULL; mlog_exit(status); return status; } /* * While a write will already be ordering the data, a truncate will not. * Thus, we need to explicitly order the zeroed pages. */ static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle = NULL; int ret = 0; if (!ocfs2_should_order_data(inode)) goto out; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_jbd2_file_inode(handle, inode); if (ret < 0) mlog_errno(ret); out: if (ret) { if (!IS_ERR(handle)) ocfs2_commit_trans(osb, handle); handle = ERR_PTR(ret); } return handle; } /* Some parts of this taken from generic_cont_expand, which turned out * to be too fragile to do exactly what we need without us having to * worry about recursive locking in ->write_begin() and ->write_end(). */ static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, u64 abs_to) { struct address_space *mapping = inode->i_mapping; struct page *page; unsigned long index = abs_from >> PAGE_CACHE_SHIFT; handle_t *handle = NULL; int ret = 0; unsigned zero_from, zero_to, block_start, block_end; BUG_ON(abs_from >= abs_to); BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT)); BUG_ON(abs_from & (inode->i_blkbits - 1)); page = find_or_create_page(mapping, index, GFP_NOFS); if (!page) { ret = -ENOMEM; mlog_errno(ret); goto out; } /* Get the offsets within the page that we want to zero */ zero_from = abs_from & (PAGE_CACHE_SIZE - 1); zero_to = abs_to & (PAGE_CACHE_SIZE - 1); if (!zero_to) zero_to = PAGE_CACHE_SIZE; mlog(0, "abs_from = %llu, abs_to = %llu, index = %lu, zero_from = %u, zero_to = %u\n", (unsigned long long)abs_from, (unsigned long long)abs_to, index, zero_from, zero_to); /* We know that zero_from is block aligned */ for (block_start = zero_from; block_start < zero_to; block_start = block_end) { block_end = block_start + (1 << inode->i_blkbits); /* * block_start is block-aligned. Bump it by one to * force ocfs2_{prepare,commit}_write() to zero the * whole block. */ ret = ocfs2_prepare_write_nolock(inode, page, block_start + 1, block_start + 1); if (ret < 0) { mlog_errno(ret); goto out_unlock; } if (!handle) { handle = ocfs2_zero_start_ordered_transaction(inode); if (IS_ERR(handle)) { ret = PTR_ERR(handle); handle = NULL; break; } } /* must not update i_size! */ ret = block_commit_write(page, block_start + 1, block_start + 1); if (ret < 0) mlog_errno(ret); else ret = 0; } if (handle) ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); out_unlock: unlock_page(page); page_cache_release(page); out: return ret; } /* * Find the next range to zero. We do this in terms of bytes because * that's what ocfs2_zero_extend() wants, and it is dealing with the * pagecache. We may return multiple extents. * * zero_start and zero_end are ocfs2_zero_extend()s current idea of what * needs to be zeroed. range_start and range_end return the next zeroing * range. A subsequent call should pass the previous range_end as its * zero_start. If range_end is 0, there's nothing to do. * * Unwritten extents are skipped over. Refcounted extents are CoWd. */ static int ocfs2_zero_extend_get_range(struct inode *inode, struct buffer_head *di_bh, u64 zero_start, u64 zero_end, u64 *range_start, u64 *range_end) { int rc = 0, needs_cow = 0; u32 p_cpos, zero_clusters = 0; u32 zero_cpos = zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); unsigned int num_clusters = 0; unsigned int ext_flags = 0; while (zero_cpos < last_cpos) { rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, &num_clusters, &ext_flags); if (rc) { mlog_errno(rc); goto out; } if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { zero_clusters = num_clusters; if (ext_flags & OCFS2_EXT_REFCOUNTED) needs_cow = 1; break; } zero_cpos += num_clusters; } if (!zero_clusters) { *range_end = 0; goto out; } while ((zero_cpos + zero_clusters) < last_cpos) { rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, &p_cpos, &num_clusters, &ext_flags); if (rc) { mlog_errno(rc); goto out; } if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) break; if (ext_flags & OCFS2_EXT_REFCOUNTED) needs_cow = 1; zero_clusters += num_clusters; } if ((zero_cpos + zero_clusters) > last_cpos) zero_clusters = last_cpos - zero_cpos; if (needs_cow) { rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos, zero_clusters, UINT_MAX); if (rc) { mlog_errno(rc); goto out; } } *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); *range_end = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos + zero_clusters); out: return rc; } /* * Zero one range returned from ocfs2_zero_extend_get_range(). The caller * has made sure that the entire range needs zeroing. */ static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, u64 range_end) { int rc = 0; u64 next_pos; u64 zero_pos = range_start; mlog(0, "range_start = %llu, range_end = %llu\n", (unsigned long long)range_start, (unsigned long long)range_end); BUG_ON(range_start >= range_end); while (zero_pos < range_end) { next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE; if (next_pos > range_end) next_pos = range_end; rc = ocfs2_write_zero_page(inode, zero_pos, next_pos); if (rc < 0) { mlog_errno(rc); break; } zero_pos = next_pos; /* * Very large extends have the potential to lock up * the cpu for extended periods of time. */ cond_resched(); } return rc; } int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, loff_t zero_to_size) { int ret = 0; u64 zero_start, range_start = 0, range_end = 0; struct super_block *sb = inode->i_sb; zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); mlog(0, "zero_start %llu for i_size %llu\n", (unsigned long long)zero_start, (unsigned long long)i_size_read(inode)); while (zero_start < zero_to_size) { ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, zero_to_size, &range_start, &range_end); if (ret) { mlog_errno(ret); break; } if (!range_end) break; /* Trim the ends */ if (range_start < zero_start) range_start = zero_start; if (range_end > zero_to_size) range_end = zero_to_size; ret = ocfs2_zero_extend_range(inode, range_start, range_end); if (ret) { mlog_errno(ret); break; } zero_start = range_end; } return ret; } int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size, u64 zero_to) { int ret; u32 clusters_to_add; struct ocfs2_inode_info *oi = OCFS2_I(inode); /* * Only quota files call this without a bh, and they can't be * refcounted. */ BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL)); BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); if (clusters_to_add < oi->ip_clusters) clusters_to_add = 0; else clusters_to_add -= oi->ip_clusters; if (clusters_to_add) { ret = __ocfs2_extend_allocation(inode, oi->ip_clusters, clusters_to_add, 0); if (ret) { mlog_errno(ret); goto out; } } /* * Call this even if we don't add any clusters to the tree. We * still need to zero the area between the old i_size and the * new i_size. */ ret = ocfs2_zero_extend(inode, di_bh, zero_to); if (ret < 0) mlog_errno(ret); out: return ret; } static int ocfs2_extend_file(struct inode *inode, struct buffer_head *di_bh, u64 new_i_size) { int ret = 0; struct ocfs2_inode_info *oi = OCFS2_I(inode); BUG_ON(!di_bh); /* setattr sometimes calls us like this. */ if (new_i_size == 0) goto out; if (i_size_read(inode) == new_i_size) goto out; BUG_ON(new_i_size < i_size_read(inode)); /* * The alloc sem blocks people in read/write from reading our * allocation until we're done changing it. We depend on * i_mutex to block other extend/truncate calls while we're * here. We even have to hold it for sparse files because there * might be some tail zeroing. */ down_write(&oi->ip_alloc_sem); if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { /* * We can optimize small extends by keeping the inodes * inline data. */ if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { up_write(&oi->ip_alloc_sem); goto out_update_size; } ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); if (ret) { up_write(&oi->ip_alloc_sem); mlog_errno(ret); goto out; } } if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) ret = ocfs2_zero_extend(inode, di_bh, new_i_size); else ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, new_i_size); up_write(&oi->ip_alloc_sem); if (ret < 0) { mlog_errno(ret); goto out; } out_update_size: ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); if (ret < 0) mlog_errno(ret); out: return ret; } int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) { int status = 0, size_change; struct inode *inode = dentry->d_inode; struct super_block *sb = inode->i_sb; struct ocfs2_super *osb = OCFS2_SB(sb); struct buffer_head *bh = NULL; handle_t *handle = NULL; struct dquot *transfer_to[MAXQUOTAS] = { }; int qtype; mlog_entry("(0x%p, '%.*s')\n", dentry, dentry->d_name.len, dentry->d_name.name); /* ensuring we don't even attempt to truncate a symlink */ if (S_ISLNK(inode->i_mode)) attr->ia_valid &= ~ATTR_SIZE; if (attr->ia_valid & ATTR_MODE) mlog(0, "mode change: %d\n", attr->ia_mode); if (attr->ia_valid & ATTR_UID) mlog(0, "uid change: %d\n", attr->ia_uid); if (attr->ia_valid & ATTR_GID) mlog(0, "gid change: %d\n", attr->ia_gid); if (attr->ia_valid & ATTR_SIZE) mlog(0, "size change...\n"); if (attr->ia_valid & (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME)) mlog(0, "time change...\n"); #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ | ATTR_GID | ATTR_UID | ATTR_MODE) if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) { mlog(0, "can't handle attrs: 0x%x\n", attr->ia_valid); return 0; } status = inode_change_ok(inode, attr); if (status) return status; if (is_quota_modification(inode, attr)) dquot_initialize(inode); size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; if (size_change) { status = ocfs2_rw_lock(inode, 1); if (status < 0) { mlog_errno(status); goto bail; } } status = ocfs2_inode_lock(inode, &bh, 1); if (status < 0) { if (status != -ENOENT) mlog_errno(status); goto bail_unlock_rw; } if (size_change && attr->ia_size != i_size_read(inode)) { status = inode_newsize_ok(inode, attr->ia_size); if (status) goto bail_unlock; if (i_size_read(inode) > attr->ia_size) { if (ocfs2_should_order_data(inode)) { status = ocfs2_begin_ordered_truncate(inode, attr->ia_size); if (status) goto bail_unlock; } status = ocfs2_truncate_file(inode, bh, attr->ia_size); } else status = ocfs2_extend_file(inode, bh, attr->ia_size); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); status = -ENOSPC; goto bail_unlock; } } if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { /* * Gather pointers to quota structures so that allocation / * freeing of quota structures happens here and not inside * dquot_transfer() where we have problems with lock ordering */ if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid && OCFS2_HAS_RO_COMPAT_FEATURE(sb, OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid, USRQUOTA); if (!transfer_to[USRQUOTA]) { status = -ESRCH; goto bail_unlock; } } if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid && OCFS2_HAS_RO_COMPAT_FEATURE(sb, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid, GRPQUOTA); if (!transfer_to[GRPQUOTA]) { status = -ESRCH; goto bail_unlock; } } handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 2 * ocfs2_quota_trans_credits(sb)); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock; } status = __dquot_transfer(inode, transfer_to); if (status < 0) goto bail_commit; } else { handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock; } } /* * This will intentionally not wind up calling truncate_setsize(), * since all the work for a size change has been done above. * Otherwise, we could get into problems with truncate as * ip_alloc_sem is used there to protect against i_size * changes. * * XXX: this means the conditional below can probably be removed. */ if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size != i_size_read(inode)) { status = vmtruncate(inode, attr->ia_size); if (status) { mlog_errno(status); goto bail_commit; } } setattr_copy(inode, attr); mark_inode_dirty(inode); status = ocfs2_mark_inode_dirty(handle, inode, bh); if (status < 0) mlog_errno(status); bail_commit: ocfs2_commit_trans(osb, handle); bail_unlock: ocfs2_inode_unlock(inode, 1); bail_unlock_rw: if (size_change) ocfs2_rw_unlock(inode, 1); bail: brelse(bh); /* Release quota pointers in case we acquired them */ for (qtype = 0; qtype < MAXQUOTAS; qtype++) dqput(transfer_to[qtype]); if (!status && attr->ia_valid & ATTR_MODE) { status = ocfs2_acl_chmod(inode); if (status < 0) mlog_errno(status); } mlog_exit(status); return status; } int ocfs2_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; struct super_block *sb = dentry->d_inode->i_sb; struct ocfs2_super *osb = sb->s_fs_info; int err; mlog_entry_void(); err = ocfs2_inode_revalidate(dentry); if (err) { if (err != -ENOENT) mlog_errno(err); goto bail; } generic_fillattr(inode, stat); /* We set the blksize from the cluster size for performance */ stat->blksize = osb->s_clustersize; bail: mlog_exit(err); return err; } int ocfs2_permission(struct inode *inode, int mask) { int ret; mlog_entry_void(); ret = ocfs2_inode_lock(inode, NULL, 0); if (ret) { if (ret != -ENOENT) mlog_errno(ret); goto out; } ret = generic_permission(inode, mask, ocfs2_check_acl); ocfs2_inode_unlock(inode, 0); out: mlog_exit(ret); return ret; } static int __ocfs2_write_remove_suid(struct inode *inode, struct buffer_head *bh) { int ret; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_dinode *di; mlog_entry("(Inode %llu, mode 0%o)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, inode->i_mode); handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out_trans; } inode->i_mode &= ~S_ISUID; if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) inode->i_mode &= ~S_ISGID; di = (struct ocfs2_dinode *) bh->b_data; di->i_mode = cpu_to_le16(inode->i_mode); ocfs2_journal_dirty(handle, bh); out_trans: ocfs2_commit_trans(osb, handle); out: mlog_exit(ret); return ret; } /* * Will look for holes and unwritten extents in the range starting at * pos for count bytes (inclusive). */ static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos, size_t count) { int ret = 0; unsigned int extent_flags; u32 cpos, clusters, extent_len, phys_cpos; struct super_block *sb = inode->i_sb; cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; while (clusters) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, &extent_flags); if (ret < 0) { mlog_errno(ret); goto out; } if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) { ret = 1; break; } if (extent_len > clusters) extent_len = clusters; clusters -= extent_len; cpos += extent_len; } out: return ret; } static int ocfs2_write_remove_suid(struct inode *inode) { int ret; struct buffer_head *bh = NULL; ret = ocfs2_read_inode_block(inode, &bh); if (ret < 0) { mlog_errno(ret); goto out; } ret = __ocfs2_write_remove_suid(inode, bh); out: brelse(bh); return ret; } /* * Allocate enough extents to cover the region starting at byte offset * start for len bytes. Existing extents are skipped, any extents * added are marked as "unwritten". */ static int ocfs2_allocate_unwritten_extents(struct inode *inode, u64 start, u64 len) { int ret; u32 cpos, phys_cpos, clusters, alloc_size; u64 end = start + len; struct buffer_head *di_bh = NULL; if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ret = ocfs2_read_inode_block(inode, &di_bh); if (ret) { mlog_errno(ret); goto out; } /* * Nothing to do if the requested reservation range * fits within the inode. */ if (ocfs2_size_fits_inline_data(di_bh, end)) goto out; ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); if (ret) { mlog_errno(ret); goto out; } } /* * We consider both start and len to be inclusive. */ cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); clusters -= cpos; while (clusters) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &alloc_size, NULL); if (ret) { mlog_errno(ret); goto out; } /* * Hole or existing extent len can be arbitrary, so * cap it to our own allocation request. */ if (alloc_size > clusters) alloc_size = clusters; if (phys_cpos) { /* * We already have an allocation at this * region so we can safely skip it. */ goto next; } ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } next: cpos += alloc_size; clusters -= alloc_size; } ret = 0; out: brelse(di_bh); return ret; } /* * Truncate a byte range, avoiding pages within partial clusters. This * preserves those pages for the zeroing code to write to. */ static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, u64 byte_len) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); loff_t start, end; struct address_space *mapping = inode->i_mapping; start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); end = byte_start + byte_len; end = end & ~(osb->s_clustersize - 1); if (start < end) { unmap_mapping_range(mapping, start, end - start, 0); truncate_inode_pages_range(mapping, start, end - 1); } } static int ocfs2_zero_partial_clusters(struct inode *inode, u64 start, u64 len) { int ret = 0; u64 tmpend, end = start + len; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); unsigned int csize = osb->s_clustersize; handle_t *handle; /* * The "start" and "end" values are NOT necessarily part of * the range whose allocation is being deleted. Rather, this * is what the user passed in with the request. We must zero * partial clusters here. There's no need to worry about * physical allocation - the zeroing code knows to skip holes. */ mlog(0, "byte start: %llu, end: %llu\n", (unsigned long long)start, (unsigned long long)end); /* * If both edges are on a cluster boundary then there's no * zeroing required as the region is part of the allocation to * be truncated. */ if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) goto out; handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } /* * We want to get the byte offset of the end of the 1st cluster. */ tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1)); if (tmpend > end) tmpend = end; mlog(0, "1st range: start: %llu, tmpend: %llu\n", (unsigned long long)start, (unsigned long long)tmpend); ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend); if (ret) mlog_errno(ret); if (tmpend < end) { /* * This may make start and end equal, but the zeroing * code will skip any work in that case so there's no * need to catch it up here. */ start = end & ~(osb->s_clustersize - 1); mlog(0, "2nd range: start: %llu, end: %llu\n", (unsigned long long)start, (unsigned long long)end); ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); if (ret) mlog_errno(ret); } ocfs2_commit_trans(osb, handle); out: return ret; } static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) { int i; struct ocfs2_extent_rec *rec = NULL; for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { rec = &el->l_recs[i]; if (le32_to_cpu(rec->e_cpos) < pos) break; } return i; } /* * Helper to calculate the punching pos and length in one run, we handle the * following three cases in order: * * - remove the entire record * - remove a partial record * - no record needs to be removed (hole-punching completed) */ static void ocfs2_calc_trunc_pos(struct inode *inode, struct ocfs2_extent_list *el, struct ocfs2_extent_rec *rec, u32 trunc_start, u32 *trunc_cpos, u32 *trunc_len, u32 *trunc_end, u64 *blkno, int *done) { int ret = 0; u32 coff, range; range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); if (le32_to_cpu(rec->e_cpos) >= trunc_start) { *trunc_cpos = le32_to_cpu(rec->e_cpos); /* * Skip holes if any. */ if (range < *trunc_end) *trunc_end = range; *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); *blkno = le64_to_cpu(rec->e_blkno); *trunc_end = le32_to_cpu(rec->e_cpos); } else if (range > trunc_start) { *trunc_cpos = trunc_start; *trunc_len = *trunc_end - trunc_start; coff = trunc_start - le32_to_cpu(rec->e_cpos); *blkno = le64_to_cpu(rec->e_blkno) + ocfs2_clusters_to_blocks(inode->i_sb, coff); *trunc_end = trunc_start; } else { /* * It may have two following possibilities: * * - last record has been removed * - trunc_start was within a hole * * both two cases mean the completion of hole punching. */ ret = 1; } *done = ret; } static int ocfs2_remove_inode_range(struct inode *inode, struct buffer_head *di_bh, u64 byte_start, u64 byte_len) { int ret = 0, flags = 0, done = 0, i; u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; u32 cluster_in_el; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_cached_dealloc_ctxt dealloc; struct address_space *mapping = inode->i_mapping; struct ocfs2_extent_tree et; struct ocfs2_path *path = NULL; struct ocfs2_extent_list *el = NULL; struct ocfs2_extent_rec *rec = NULL; struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); ocfs2_init_dealloc_ctxt(&dealloc); if (byte_len == 0) return 0; if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { ret = ocfs2_truncate_inline(inode, di_bh, byte_start, byte_start + byte_len, 0); if (ret) { mlog_errno(ret); goto out; } /* * There's no need to get fancy with the page cache * truncate of an inline-data inode. We're talking * about less than a page here, which will be cached * in the dinode buffer anyway. */ unmap_mapping_range(mapping, 0, 0, 0); truncate_inode_pages(mapping, 0); goto out; } /* * For reflinks, we may need to CoW 2 clusters which might be * partially zero'd later, if hole's start and end offset were * within one cluster(means is not exactly aligned to clustersize). */ if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); if (ret) { mlog_errno(ret); goto out; } } trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; cluster_in_el = trunc_end; mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, cend: %u\n", (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)byte_start, (unsigned long long)byte_len, trunc_start, trunc_end); ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); if (ret) { mlog_errno(ret); goto out; } path = ocfs2_new_path_from_et(&et); if (!path) { ret = -ENOMEM; mlog_errno(ret); goto out; } while (trunc_end > trunc_start) { ret = ocfs2_find_path(INODE_CACHE(inode), path, cluster_in_el); if (ret) { mlog_errno(ret); goto out; } el = path_leaf_el(path); i = ocfs2_find_rec(el, trunc_end); /* * Need to go to previous extent block. */ if (i < 0) { if (path->p_tree_depth == 0) break; ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cluster_in_el); if (ret) { mlog_errno(ret); goto out; } /* * We've reached the leftmost extent block, * it's safe to leave. */ if (cluster_in_el == 0) break; /* * The 'pos' searched for previous extent block is * always one cluster less than actual trunc_end. */ trunc_end = cluster_in_el + 1; ocfs2_reinit_path(path, 1); continue; } else rec = &el->l_recs[i]; ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, &trunc_len, &trunc_end, &blkno, &done); if (done) break; flags = rec->e_flags; phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, phys_cpos, trunc_len, flags, &dealloc, refcount_loc); if (ret < 0) { mlog_errno(ret); goto out; } cluster_in_el = trunc_end; ocfs2_reinit_path(path, 1); } ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); out: ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &dealloc); return ret; } /* * Parts of this function taken from xfs_change_file_space() */ static int __ocfs2_change_file_space(struct file *file, struct inode *inode, loff_t f_pos, unsigned int cmd, struct ocfs2_space_resv *sr, int change_size) { int ret; s64 llen; loff_t size; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct buffer_head *di_bh = NULL; handle_t *handle; unsigned long long max_off = inode->i_sb->s_maxbytes; if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) return -EROFS; mutex_lock(&inode->i_mutex); /* * This prevents concurrent writes on other nodes */ ret = ocfs2_rw_lock(inode, 1); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret) { mlog_errno(ret); goto out_rw_unlock; } if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { ret = -EPERM; goto out_inode_unlock; } switch (sr->l_whence) { case 0: /*SEEK_SET*/ break; case 1: /*SEEK_CUR*/ sr->l_start += f_pos; break; case 2: /*SEEK_END*/ sr->l_start += i_size_read(inode); break; default: ret = -EINVAL; goto out_inode_unlock; } sr->l_whence = 0; llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; if (sr->l_start < 0 || sr->l_start > max_off || (sr->l_start + llen) < 0 || (sr->l_start + llen) > max_off) { ret = -EINVAL; goto out_inode_unlock; } size = sr->l_start + sr->l_len; if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) { if (sr->l_len <= 0) { ret = -EINVAL; goto out_inode_unlock; } } if (file && should_remove_suid(file->f_path.dentry)) { ret = __ocfs2_write_remove_suid(inode, di_bh); if (ret) { mlog_errno(ret); goto out_inode_unlock; } } down_write(&OCFS2_I(inode)->ip_alloc_sem); switch (cmd) { case OCFS2_IOC_RESVSP: case OCFS2_IOC_RESVSP64: /* * This takes unsigned offsets, but the signed ones we * pass have been checked against overflow above. */ ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, sr->l_len); break; case OCFS2_IOC_UNRESVSP: case OCFS2_IOC_UNRESVSP64: ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, sr->l_len); break; default: ret = -EINVAL; } up_write(&OCFS2_I(inode)->ip_alloc_sem); if (ret) { mlog_errno(ret); goto out_inode_unlock; } /* * We update c/mtime for these changes */ handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_inode_unlock; } if (change_size && i_size_read(inode) < size) i_size_write(inode, size); inode->i_ctime = inode->i_mtime = CURRENT_TIME; ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); if (ret < 0) mlog_errno(ret); ocfs2_commit_trans(osb, handle); out_inode_unlock: brelse(di_bh); ocfs2_inode_unlock(inode, 1); out_rw_unlock: ocfs2_rw_unlock(inode, 1); out: mutex_unlock(&inode->i_mutex); return ret; } int ocfs2_change_file_space(struct file *file, unsigned int cmd, struct ocfs2_space_resv *sr) { struct inode *inode = file->f_path.dentry->d_inode; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && !ocfs2_writes_unwritten_extents(osb)) return -ENOTTY; else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && !ocfs2_sparse_alloc(osb)) return -ENOTTY; if (!S_ISREG(inode->i_mode)) return -EINVAL; if (!(file->f_mode & FMODE_WRITE)) return -EBADF; return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); } static long ocfs2_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len) { struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_space_resv sr; int change_size = 1; if (!ocfs2_writes_unwritten_extents(osb)) return -EOPNOTSUPP; if (S_ISDIR(inode->i_mode)) return -ENODEV; if (mode & FALLOC_FL_KEEP_SIZE) change_size = 0; sr.l_whence = 0; sr.l_start = (s64)offset; sr.l_len = (s64)len; return __ocfs2_change_file_space(NULL, inode, offset, OCFS2_IOC_RESVSP64, &sr, change_size); } int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, size_t count) { int ret = 0; unsigned int extent_flags; u32 cpos, clusters, extent_len, phys_cpos; struct super_block *sb = inode->i_sb; if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) || OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) return 0; cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; while (clusters) { ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, &extent_flags); if (ret < 0) { mlog_errno(ret); goto out; } if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { ret = 1; break; } if (extent_len > clusters) extent_len = clusters; clusters -= extent_len; cpos += extent_len; } out: return ret; } static int ocfs2_prepare_inode_for_refcount(struct inode *inode, struct file *file, loff_t pos, size_t count, int *meta_level) { int ret; struct buffer_head *di_bh = NULL; u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; u32 clusters = ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret) { mlog_errno(ret); goto out; } *meta_level = 1; ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX); if (ret) mlog_errno(ret); out: brelse(di_bh); return ret; } static int ocfs2_prepare_inode_for_write(struct file *file, loff_t *ppos, size_t count, int appending, int *direct_io, int *has_refcount) { int ret = 0, meta_level = 0; struct dentry *dentry = file->f_path.dentry; struct inode *inode = dentry->d_inode; loff_t saved_pos, end; /* * We start with a read level meta lock and only jump to an ex * if we need to make modifications here. */ for(;;) { ret = ocfs2_inode_lock(inode, NULL, meta_level); if (ret < 0) { meta_level = -1; mlog_errno(ret); goto out; } /* Clear suid / sgid if necessary. We do this here * instead of later in the write path because * remove_suid() calls ->setattr without any hint that * we may have already done our cluster locking. Since * ocfs2_setattr() *must* take cluster locks to * proceeed, this will lead us to recursively lock the * inode. There's also the dinode i_size state which * can be lost via setattr during extending writes (we * set inode->i_size at the end of a write. */ if (should_remove_suid(dentry)) { if (meta_level == 0) { ocfs2_inode_unlock(inode, meta_level); meta_level = 1; continue; } ret = ocfs2_write_remove_suid(inode); if (ret < 0) { mlog_errno(ret); goto out_unlock; } } /* work on a copy of ppos until we're sure that we won't have * to recalculate it due to relocking. */ if (appending) { saved_pos = i_size_read(inode); mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos); } else { saved_pos = *ppos; } end = saved_pos + count; ret = ocfs2_check_range_for_refcount(inode, saved_pos, count); if (ret == 1) { ocfs2_inode_unlock(inode, meta_level); meta_level = -1; ret = ocfs2_prepare_inode_for_refcount(inode, file, saved_pos, count, &meta_level); if (has_refcount) *has_refcount = 1; if (direct_io) *direct_io = 0; } if (ret < 0) { mlog_errno(ret); goto out_unlock; } /* * Skip the O_DIRECT checks if we don't need * them. */ if (!direct_io || !(*direct_io)) break; /* * There's no sane way to do direct writes to an inode * with inline data. */ if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { *direct_io = 0; break; } /* * Allowing concurrent direct writes means * i_size changes wouldn't be synchronized, so * one node could wind up truncating another * nodes writes. */ if (end > i_size_read(inode)) { *direct_io = 0; break; } /* * We don't fill holes during direct io, so * check for them here. If any are found, the * caller will have to retake some cluster * locks and initiate the io as buffered. */ ret = ocfs2_check_range_for_holes(inode, saved_pos, count); if (ret == 1) { *direct_io = 0; ret = 0; } else if (ret < 0) mlog_errno(ret); break; } if (appending) *ppos = saved_pos; out_unlock: if (meta_level >= 0) ocfs2_inode_unlock(inode, meta_level); out: return ret; } static ssize_t ocfs2_file_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { int ret, direct_io, appending, rw_level, have_alloc_sem = 0; int can_do_direct, has_refcount = 0; ssize_t written = 0; size_t ocount; /* original count */ size_t count; /* after file limit checks */ loff_t old_size, *ppos = &iocb->ki_pos; u32 old_clusters; struct file *file = iocb->ki_filp; struct inode *inode = file->f_path.dentry->d_inode; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); mlog_entry("(0x%p, %u, '%.*s')\n", file, (unsigned int)nr_segs, file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name); if (iocb->ki_left == 0) return 0; vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); appending = file->f_flags & O_APPEND ? 1 : 0; direct_io = file->f_flags & O_DIRECT ? 1 : 0; mutex_lock(&inode->i_mutex); relock: /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */ if (direct_io) { down_read(&inode->i_alloc_sem); have_alloc_sem = 1; } /* concurrent O_DIRECT writes are allowed */ rw_level = !direct_io; ret = ocfs2_rw_lock(inode, rw_level); if (ret < 0) { mlog_errno(ret); goto out_sems; } can_do_direct = direct_io; ret = ocfs2_prepare_inode_for_write(file, ppos, iocb->ki_left, appending, &can_do_direct, &has_refcount); if (ret < 0) { mlog_errno(ret); goto out; } /* * We can't complete the direct I/O as requested, fall back to * buffered I/O. */ if (direct_io && !can_do_direct) { ocfs2_rw_unlock(inode, rw_level); up_read(&inode->i_alloc_sem); have_alloc_sem = 0; rw_level = -1; direct_io = 0; goto relock; } /* * To later detect whether a journal commit for sync writes is * necessary, we sample i_size, and cluster count here. */ old_size = i_size_read(inode); old_clusters = OCFS2_I(inode)->ip_clusters; /* communicate with ocfs2_dio_end_io */ ocfs2_iocb_set_rw_locked(iocb, rw_level); ret = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); if (ret) goto out_dio; count = ocount; ret = generic_write_checks(file, ppos, &count, S_ISBLK(inode->i_mode)); if (ret) goto out_dio; if (direct_io) { written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos, ppos, count, ocount); if (written < 0) { ret = written; goto out_dio; } } else { current->backing_dev_info = file->f_mapping->backing_dev_info; written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos, ppos, count, 0); current->backing_dev_info = NULL; } out_dio: /* buffered aio wouldn't have proper lock coverage today */ BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT)); if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) || ((file->f_flags & O_DIRECT) && !direct_io)) { ret = filemap_fdatawrite_range(file->f_mapping, pos, pos + count - 1); if (ret < 0) written = ret; if (!ret && ((old_size != i_size_read(inode)) || (old_clusters != OCFS2_I(inode)->ip_clusters) || has_refcount)) { ret = jbd2_journal_force_commit(osb->journal->j_journal); if (ret < 0) written = ret; } if (!ret) ret = filemap_fdatawait_range(file->f_mapping, pos, pos + count - 1); } /* * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io * function pointer which is called when o_direct io completes so that * it can unlock our rw lock. (it's the clustered equivalent of * i_alloc_sem; protects truncate from racing with pending ios). * Unfortunately there are error cases which call end_io and others * that don't. so we don't have to unlock the rw_lock if either an * async dio is going to do it in the future or an end_io after an * error has already done it. */ if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { rw_level = -1; have_alloc_sem = 0; } out: if (rw_level != -1) ocfs2_rw_unlock(inode, rw_level); out_sems: if (have_alloc_sem) up_read(&inode->i_alloc_sem); mutex_unlock(&inode->i_mutex); if (written) ret = written; mlog_exit(ret); return ret; } static int ocfs2_splice_to_file(struct pipe_inode_info *pipe, struct file *out, struct splice_desc *sd) { int ret; ret = ocfs2_prepare_inode_for_write(out, &sd->pos, sd->total_len, 0, NULL, NULL); if (ret < 0) { mlog_errno(ret); return ret; } return splice_from_pipe_feed(pipe, sd, pipe_to_file); } static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe, struct file *out, loff_t *ppos, size_t len, unsigned int flags) { int ret; struct address_space *mapping = out->f_mapping; struct inode *inode = mapping->host; struct splice_desc sd = { .total_len = len, .flags = flags, .pos = *ppos, .u.file = out, }; mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out, pipe, (unsigned int)len, out->f_path.dentry->d_name.len, out->f_path.dentry->d_name.name); if (pipe->inode) mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT); splice_from_pipe_begin(&sd); do { ret = splice_from_pipe_next(pipe, &sd); if (ret <= 0) break; mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); ret = ocfs2_rw_lock(inode, 1); if (ret < 0) mlog_errno(ret); else { ret = ocfs2_splice_to_file(pipe, out, &sd); ocfs2_rw_unlock(inode, 1); } mutex_unlock(&inode->i_mutex); } while (ret > 0); splice_from_pipe_end(pipe, &sd); if (pipe->inode) mutex_unlock(&pipe->inode->i_mutex); if (sd.num_spliced) ret = sd.num_spliced; if (ret > 0) { unsigned long nr_pages; int err; nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; err = generic_write_sync(out, *ppos, ret); if (err) ret = err; else *ppos += ret; balance_dirty_pages_ratelimited_nr(mapping, nr_pages); } mlog_exit(ret); return ret; } static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { int ret = 0, lock_level = 0; struct inode *inode = in->f_path.dentry->d_inode; mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in, pipe, (unsigned int)len, in->f_path.dentry->d_name.len, in->f_path.dentry->d_name.name); /* * See the comment in ocfs2_file_aio_read() */ ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level); if (ret < 0) { mlog_errno(ret); goto bail; } ocfs2_inode_unlock(inode, lock_level); ret = generic_file_splice_read(in, ppos, pipe, len, flags); bail: mlog_exit(ret); return ret; } static ssize_t ocfs2_file_aio_read(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos) { int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0; struct file *filp = iocb->ki_filp; struct inode *inode = filp->f_path.dentry->d_inode; mlog_entry("(0x%p, %u, '%.*s')\n", filp, (unsigned int)nr_segs, filp->f_path.dentry->d_name.len, filp->f_path.dentry->d_name.name); if (!inode) { ret = -EINVAL; mlog_errno(ret); goto bail; } /* * buffered reads protect themselves in ->readpage(). O_DIRECT reads * need locks to protect pending reads from racing with truncate. */ if (filp->f_flags & O_DIRECT) { down_read(&inode->i_alloc_sem); have_alloc_sem = 1; ret = ocfs2_rw_lock(inode, 0); if (ret < 0) { mlog_errno(ret); goto bail; } rw_level = 0; /* communicate with ocfs2_dio_end_io */ ocfs2_iocb_set_rw_locked(iocb, rw_level); } /* * We're fine letting folks race truncates and extending * writes with read across the cluster, just like they can * locally. Hence no rw_lock during read. * * Take and drop the meta data lock to update inode fields * like i_size. This allows the checks down below * generic_file_aio_read() a chance of actually working. */ ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level); if (ret < 0) { mlog_errno(ret); goto bail; } ocfs2_inode_unlock(inode, lock_level); ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos); if (ret == -EINVAL) mlog(0, "generic_file_aio_read returned -EINVAL\n"); /* buffered aio wouldn't have proper lock coverage today */ BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT)); /* see ocfs2_file_aio_write */ if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { rw_level = -1; have_alloc_sem = 0; } bail: if (have_alloc_sem) up_read(&inode->i_alloc_sem); if (rw_level != -1) ocfs2_rw_unlock(inode, rw_level); mlog_exit(ret); return ret; } const struct inode_operations ocfs2_file_iops = { .setattr = ocfs2_setattr, .getattr = ocfs2_getattr, .permission = ocfs2_permission, .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = ocfs2_listxattr, .removexattr = generic_removexattr, .fallocate = ocfs2_fallocate, .fiemap = ocfs2_fiemap, }; const struct inode_operations ocfs2_special_file_iops = { .setattr = ocfs2_setattr, .getattr = ocfs2_getattr, .permission = ocfs2_permission, }; /* * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! */ const struct file_operations ocfs2_fops = { .llseek = generic_file_llseek, .read = do_sync_read, .write = do_sync_write, .mmap = ocfs2_mmap, .fsync = ocfs2_sync_file, .release = ocfs2_file_release, .open = ocfs2_file_open, .aio_read = ocfs2_file_aio_read, .aio_write = ocfs2_file_aio_write, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .lock = ocfs2_lock, .flock = ocfs2_flock, .splice_read = ocfs2_file_splice_read, .splice_write = ocfs2_file_splice_write, }; const struct file_operations ocfs2_dops = { .llseek = generic_file_llseek, .read = generic_read_dir, .readdir = ocfs2_readdir, .fsync = ocfs2_sync_file, .release = ocfs2_dir_release, .open = ocfs2_dir_open, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .lock = ocfs2_lock, .flock = ocfs2_flock, }; /* * POSIX-lockless variants of our file_operations. * * These will be used if the underlying cluster stack does not support * posix file locking, if the user passes the "localflocks" mount * option, or if we have a local-only fs. * * ocfs2_flock is in here because all stacks handle UNIX file locks, * so we still want it in the case of no stack support for * plocks. Internally, it will do the right thing when asked to ignore * the cluster. */ const struct file_operations ocfs2_fops_no_plocks = { .llseek = generic_file_llseek, .read = do_sync_read, .write = do_sync_write, .mmap = ocfs2_mmap, .fsync = ocfs2_sync_file, .release = ocfs2_file_release, .open = ocfs2_file_open, .aio_read = ocfs2_file_aio_read, .aio_write = ocfs2_file_aio_write, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .flock = ocfs2_flock, .splice_read = ocfs2_file_splice_read, .splice_write = ocfs2_file_splice_write, }; const struct file_operations ocfs2_dops_no_plocks = { .llseek = generic_file_llseek, .read = generic_read_dir, .readdir = ocfs2_readdir, .fsync = ocfs2_sync_file, .release = ocfs2_dir_release, .open = ocfs2_dir_open, .unlocked_ioctl = ocfs2_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ocfs2_compat_ioctl, #endif .flock = ocfs2_flock, };