/* * linux/include/linux/console.h * * Copyright (C) 1993 Hamish Macdonald * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. * * Changed: * 10-Mar-94: Arno Griffioen: Conversion for vt100 emulator port from PC LINUX */ #ifndef _LINUX_CONSOLE_H_ #define _LINUX_CONSOLE_H_ 1 #include #include #include #include #include #include #include struct vc_data; struct console_font_op; struct console_font; struct module; struct tty_struct; struct notifier_block; enum con_scroll { SM_UP, SM_DOWN, }; enum vc_intensity; /** * struct consw - callbacks for consoles * * @owner: the module to get references of when this console is used * @con_startup: set up the console and return its name (like VGA, EGA, ...) * @con_init: initialize the console on @vc. @init is true for the very first * call on this @vc. * @con_deinit: deinitialize the console from @vc. * @con_clear: erase @count characters at [@x, @y] on @vc. @count >= 1. * @con_putc: emit one character with attributes @ca to [@x, @y] on @vc. * (optional -- @con_putcs would be called instead) * @con_putcs: emit @count characters with attributes @s to [@x, @y] on @vc. * @con_cursor: enable/disable cursor depending on @enable * @con_scroll: move lines from @top to @bottom in direction @dir by @lines. * Return true if no generic handling should be done. * Invoked by csi_M and printing to the console. * @con_switch: notifier about the console switch; it is supposed to return * true if a redraw is needed. * @con_blank: blank/unblank the console. The target mode is passed in @blank. * @mode_switch is set if changing from/to text/graphics. The hook * is supposed to return true if a redraw is needed. * @con_font_set: set console @vc font to @font with height @vpitch. @flags can * be %KD_FONT_FLAG_DONT_RECALC. (optional) * @con_font_get: fetch the current font on @vc of height @vpitch into @font. * (optional) * @con_font_default: set default font on @vc. @name can be %NULL or font name * to search for. @font can be filled back. (optional) * @con_resize: resize the @vc console to @width x @height. @from_user is true * when this change comes from the user space. * @con_set_palette: sets the palette of the console @vc to @table (optional) * @con_scrolldelta: the contents of the console should be scrolled by @lines. * Invoked by user. (optional) * @con_set_origin: set origin (see &vc_data::vc_origin) of the @vc. If not * provided or returns false, the origin is set to * @vc->vc_screenbuf. (optional) * @con_save_screen: save screen content into @vc->vc_screenbuf. Called e.g. * upon entering graphics. (optional) * @con_build_attr: build attributes based on @color, @intensity and other * parameters. The result is used for both normal and erase * characters. (optional) * @con_invert_region: invert a region of length @count on @vc starting at @p. * (optional) * @con_debug_enter: prepare the console for the debugger. This includes, but * is not limited to, unblanking the console, loading an * appropriate palette, and allowing debugger generated output. * (optional) * @con_debug_leave: restore the console to its pre-debug state as closely as * possible. (optional) */ struct consw { struct module *owner; const char *(*con_startup)(void); void (*con_init)(struct vc_data *vc, bool init); void (*con_deinit)(struct vc_data *vc); void (*con_clear)(struct vc_data *vc, unsigned int y, unsigned int x, unsigned int count); void (*con_putc)(struct vc_data *vc, u16 ca, unsigned int y, unsigned int x); void (*con_putcs)(struct vc_data *vc, const u16 *s, unsigned int count, unsigned int ypos, unsigned int xpos); void (*con_cursor)(struct vc_data *vc, bool enable); bool (*con_scroll)(struct vc_data *vc, unsigned int top, unsigned int bottom, enum con_scroll dir, unsigned int lines); bool (*con_switch)(struct vc_data *vc); bool (*con_blank)(struct vc_data *vc, enum vesa_blank_mode blank, bool mode_switch); int (*con_font_set)(struct vc_data *vc, const struct console_font *font, unsigned int vpitch, unsigned int flags); int (*con_font_get)(struct vc_data *vc, struct console_font *font, unsigned int vpitch); int (*con_font_default)(struct vc_data *vc, struct console_font *font, const char *name); int (*con_resize)(struct vc_data *vc, unsigned int width, unsigned int height, bool from_user); void (*con_set_palette)(struct vc_data *vc, const unsigned char *table); void (*con_scrolldelta)(struct vc_data *vc, int lines); bool (*con_set_origin)(struct vc_data *vc); void (*con_save_screen)(struct vc_data *vc); u8 (*con_build_attr)(struct vc_data *vc, u8 color, enum vc_intensity intensity, bool blink, bool underline, bool reverse, bool italic); void (*con_invert_region)(struct vc_data *vc, u16 *p, int count); void (*con_debug_enter)(struct vc_data *vc); void (*con_debug_leave)(struct vc_data *vc); }; extern const struct consw *conswitchp; extern const struct consw dummy_con; /* dummy console buffer */ extern const struct consw vga_con; /* VGA text console */ extern const struct consw newport_con; /* SGI Newport console */ struct screen_info; #ifdef CONFIG_VGA_CONSOLE void vgacon_register_screen(struct screen_info *si); #else static inline void vgacon_register_screen(struct screen_info *si) { } #endif int con_is_bound(const struct consw *csw); int do_unregister_con_driver(const struct consw *csw); int do_take_over_console(const struct consw *sw, int first, int last, int deflt); void give_up_console(const struct consw *sw); #ifdef CONFIG_VT void con_debug_enter(struct vc_data *vc); void con_debug_leave(void); #else static inline void con_debug_enter(struct vc_data *vc) { } static inline void con_debug_leave(void) { } #endif /* * The interface for a console, or any other device that wants to capture * console messages (printer driver?) */ /** * enum cons_flags - General console flags * @CON_PRINTBUFFER: Used by newly registered consoles to avoid duplicate * output of messages that were already shown by boot * consoles or read by userspace via syslog() syscall. * @CON_CONSDEV: Indicates that the console driver is backing * /dev/console. * @CON_ENABLED: Indicates if a console is allowed to print records. If * false, the console also will not advance to later * records. * @CON_BOOT: Marks the console driver as early console driver which * is used during boot before the real driver becomes * available. It will be automatically unregistered * when the real console driver is registered unless * "keep_bootcon" parameter is used. * @CON_ANYTIME: A misnomed historical flag which tells the core code * that the legacy @console::write callback can be invoked * on a CPU which is marked OFFLINE. That is misleading as * it suggests that there is no contextual limit for * invoking the callback. The original motivation was * readiness of the per-CPU areas. * @CON_BRL: Indicates a braille device which is exempt from * receiving the printk spam for obvious reasons. * @CON_EXTENDED: The console supports the extended output format of * /dev/kmesg which requires a larger output buffer. * @CON_SUSPENDED: Indicates if a console is suspended. If true, the * printing callbacks must not be called. * @CON_NBCON: Console can operate outside of the legacy style console_lock * constraints. */ enum cons_flags { CON_PRINTBUFFER = BIT(0), CON_CONSDEV = BIT(1), CON_ENABLED = BIT(2), CON_BOOT = BIT(3), CON_ANYTIME = BIT(4), CON_BRL = BIT(5), CON_EXTENDED = BIT(6), CON_SUSPENDED = BIT(7), CON_NBCON = BIT(8), }; /** * struct nbcon_state - console state for nbcon consoles * @atom: Compound of the state fields for atomic operations * * @req_prio: The priority of a handover request * @prio: The priority of the current owner * @unsafe: Console is busy in a non takeover region * @unsafe_takeover: A hostile takeover in an unsafe state happened in the * past. The console cannot be safe until re-initialized. * @cpu: The CPU on which the owner runs * * To be used for reading and preparing of the value stored in the nbcon * state variable @console::nbcon_state. * * The @prio and @req_prio fields are particularly important to allow * spin-waiting to timeout and give up without the risk of a waiter being * assigned the lock after giving up. */ struct nbcon_state { union { unsigned int atom; struct { unsigned int prio : 2; unsigned int req_prio : 2; unsigned int unsafe : 1; unsigned int unsafe_takeover : 1; unsigned int cpu : 24; }; }; }; /* * The nbcon_state struct is used to easily create and interpret values that * are stored in the @console::nbcon_state variable. Ensure this struct stays * within the size boundaries of the atomic variable's underlying type in * order to avoid any accidental truncation. */ static_assert(sizeof(struct nbcon_state) <= sizeof(int)); /** * enum nbcon_prio - console owner priority for nbcon consoles * @NBCON_PRIO_NONE: Unused * @NBCON_PRIO_NORMAL: Normal (non-emergency) usage * @NBCON_PRIO_EMERGENCY: Emergency output (WARN/OOPS...) * @NBCON_PRIO_PANIC: Panic output * @NBCON_PRIO_MAX: The number of priority levels * * A higher priority context can takeover the console when it is * in the safe state. The final attempt to flush consoles in panic() * can be allowed to do so even in an unsafe state (Hope and pray). */ enum nbcon_prio { NBCON_PRIO_NONE = 0, NBCON_PRIO_NORMAL, NBCON_PRIO_EMERGENCY, NBCON_PRIO_PANIC, NBCON_PRIO_MAX, }; struct console; struct printk_buffers; /** * struct nbcon_context - Context for console acquire/release * @console: The associated console * @spinwait_max_us: Limit for spin-wait acquire * @prio: Priority of the context * @allow_unsafe_takeover: Allow performing takeover even if unsafe. Can * be used only with NBCON_PRIO_PANIC @prio. It * might cause a system freeze when the console * is used later. * @backlog: Ringbuffer has pending records * @pbufs: Pointer to the text buffer for this context * @seq: The sequence number to print for this context */ struct nbcon_context { /* members set by caller */ struct console *console; unsigned int spinwait_max_us; enum nbcon_prio prio; unsigned int allow_unsafe_takeover : 1; /* members set by emit */ unsigned int backlog : 1; /* members set by acquire */ struct printk_buffers *pbufs; u64 seq; }; /** * struct nbcon_write_context - Context handed to the nbcon write callbacks * @ctxt: The core console context * @outbuf: Pointer to the text buffer for output * @len: Length to write * @unsafe_takeover: If a hostile takeover in an unsafe state has occurred */ struct nbcon_write_context { struct nbcon_context __private ctxt; char *outbuf; unsigned int len; bool unsafe_takeover; }; /** * struct console - The console descriptor structure * @name: The name of the console driver * @write: Legacy write callback to output messages (Optional) * @read: Read callback for console input (Optional) * @device: The underlying TTY device driver (Optional) * @unblank: Callback to unblank the console (Optional) * @setup: Callback for initializing the console (Optional) * @exit: Callback for teardown of the console (Optional) * @match: Callback for matching a console (Optional) * @flags: Console flags. See enum cons_flags * @index: Console index, e.g. port number * @cflag: TTY control mode flags * @ispeed: TTY input speed * @ospeed: TTY output speed * @seq: Sequence number of the next ringbuffer record to print * @dropped: Number of unreported dropped ringbuffer records * @data: Driver private data * @node: hlist node for the console list * * @nbcon_state: State for nbcon consoles * @nbcon_seq: Sequence number of the next record for nbcon to print * @nbcon_device_ctxt: Context available for non-printing operations * @nbcon_prev_seq: Seq num the previous nbcon owner was assigned to print * @pbufs: Pointer to nbcon private buffer * @kthread: Printer kthread for this console * @rcuwait: RCU-safe wait object for @kthread waking * @irq_work: Defer @kthread waking to IRQ work context */ struct console { char name[16]; void (*write)(struct console *co, const char *s, unsigned int count); int (*read)(struct console *co, char *s, unsigned int count); struct tty_driver *(*device)(struct console *co, int *index); void (*unblank)(void); int (*setup)(struct console *co, char *options); int (*exit)(struct console *co); int (*match)(struct console *co, char *name, int idx, char *options); short flags; short index; int cflag; uint ispeed; uint ospeed; u64 seq; unsigned long dropped; void *data; struct hlist_node node; /* nbcon console specific members */ /** * @write_atomic: * * NBCON callback to write out text in any context. (Optional) * * This callback is called with the console already acquired. However, * a higher priority context is allowed to take it over by default. * * The callback must call nbcon_enter_unsafe() and nbcon_exit_unsafe() * around any code where the takeover is not safe, for example, when * manipulating the serial port registers. * * nbcon_enter_unsafe() will fail if the context has lost the console * ownership in the meantime. In this case, the callback is no longer * allowed to go forward. It must back out immediately and carefully. * The buffer content is also no longer trusted since it no longer * belongs to the context. * * The callback should allow the takeover whenever it is safe. It * increases the chance to see messages when the system is in trouble. * If the driver must reacquire ownership in order to finalize or * revert hardware changes, nbcon_reacquire_nobuf() can be used. * However, on reacquire the buffer content is no longer available. A * reacquire cannot be used to resume printing. * * The callback can be called from any context (including NMI). * Therefore it must avoid usage of any locking and instead rely * on the console ownership for synchronization. */ void (*write_atomic)(struct console *con, struct nbcon_write_context *wctxt); /** * @write_thread: * * NBCON callback to write out text in task context. * * This callback must be called only in task context with both * device_lock() and the nbcon console acquired with * NBCON_PRIO_NORMAL. * * The same rules for console ownership verification and unsafe * sections handling applies as with write_atomic(). * * The console ownership handling is necessary for synchronization * against write_atomic() which is synchronized only via the context. * * The device_lock() provides the primary serialization for operations * on the device. It might be as relaxed (mutex)[*] or as tight * (disabled preemption and interrupts) as needed. It allows * the kthread to operate in the least restrictive mode[**]. * * [*] Standalone nbcon_context_try_acquire() is not safe with * the preemption enabled, see nbcon_owner_matches(). But it * can be safe when always called in the preemptive context * under the device_lock(). * * [**] The device_lock() makes sure that nbcon_context_try_acquire() * would never need to spin which is important especially with * PREEMPT_RT. */ void (*write_thread)(struct console *con, struct nbcon_write_context *wctxt); /** * @device_lock: * * NBCON callback to begin synchronization with driver code. * * Console drivers typically must deal with access to the hardware * via user input/output (such as an interactive login shell) and * output of kernel messages via printk() calls. This callback is * called by the printk-subsystem whenever it needs to synchronize * with hardware access by the driver. It should be implemented to * use whatever synchronization mechanism the driver is using for * itself (for example, the port lock for uart serial consoles). * * The callback is always called from task context. It may use any * synchronization method required by the driver. * * IMPORTANT: The callback MUST disable migration. The console driver * may be using a synchronization mechanism that already takes * care of this (such as spinlocks). Otherwise this function must * explicitly call migrate_disable(). * * The flags argument is provided as a convenience to the driver. It * will be passed again to device_unlock(). It can be ignored if the * driver does not need it. */ void (*device_lock)(struct console *con, unsigned long *flags); /** * @device_unlock: * * NBCON callback to finish synchronization with driver code. * * It is the counterpart to device_lock(). * * This callback is always called from task context. It must * appropriately re-enable migration (depending on how device_lock() * disabled migration). * * The flags argument is the value of the same variable that was * passed to device_lock(). */ void (*device_unlock)(struct console *con, unsigned long flags); atomic_t __private nbcon_state; atomic_long_t __private nbcon_seq; struct nbcon_context __private nbcon_device_ctxt; atomic_long_t __private nbcon_prev_seq; struct printk_buffers *pbufs; struct task_struct *kthread; struct rcuwait rcuwait; struct irq_work irq_work; }; #ifdef CONFIG_LOCKDEP extern void lockdep_assert_console_list_lock_held(void); #else static inline void lockdep_assert_console_list_lock_held(void) { } #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC extern bool console_srcu_read_lock_is_held(void); #else static inline bool console_srcu_read_lock_is_held(void) { return 1; } #endif extern int console_srcu_read_lock(void); extern void console_srcu_read_unlock(int cookie); extern void console_list_lock(void) __acquires(console_mutex); extern void console_list_unlock(void) __releases(console_mutex); extern struct hlist_head console_list; /** * console_srcu_read_flags - Locklessly read flags of a possibly registered * console * @con: struct console pointer of console to read flags from * * Locklessly reading @con->flags provides a consistent read value because * there is at most one CPU modifying @con->flags and that CPU is using only * read-modify-write operations to do so. * * Requires console_srcu_read_lock to be held, which implies that @con might * be a registered console. The purpose of holding console_srcu_read_lock is * to guarantee that the console state is valid (CON_SUSPENDED/CON_ENABLED) * and that no exit/cleanup routines will run if the console is currently * undergoing unregistration. * * If the caller is holding the console_list_lock or it is _certain_ that * @con is not and will not become registered, the caller may read * @con->flags directly instead. * * Context: Any context. * Return: The current value of the @con->flags field. */ static inline short console_srcu_read_flags(const struct console *con) { WARN_ON_ONCE(!console_srcu_read_lock_is_held()); /* * The READ_ONCE() matches the WRITE_ONCE() when @flags are modified * for registered consoles with console_srcu_write_flags(). */ return data_race(READ_ONCE(con->flags)); } /** * console_srcu_write_flags - Write flags for a registered console * @con: struct console pointer of console to write flags to * @flags: new flags value to write * * Only use this function to write flags for registered consoles. It * requires holding the console_list_lock. * * Context: Any context. */ static inline void console_srcu_write_flags(struct console *con, short flags) { lockdep_assert_console_list_lock_held(); /* This matches the READ_ONCE() in console_srcu_read_flags(). */ WRITE_ONCE(con->flags, flags); } /* Variant of console_is_registered() when the console_list_lock is held. */ static inline bool console_is_registered_locked(const struct console *con) { lockdep_assert_console_list_lock_held(); return !hlist_unhashed(&con->node); } /* * console_is_registered - Check if the console is registered * @con: struct console pointer of console to check * * Context: Process context. May sleep while acquiring console list lock. * Return: true if the console is in the console list, otherwise false. * * If false is returned for a console that was previously registered, it * can be assumed that the console's unregistration is fully completed, * including the exit() callback after console list removal. */ static inline bool console_is_registered(const struct console *con) { bool ret; console_list_lock(); ret = console_is_registered_locked(con); console_list_unlock(); return ret; } /** * for_each_console_srcu() - Iterator over registered consoles * @con: struct console pointer used as loop cursor * * Although SRCU guarantees the console list will be consistent, the * struct console fields may be updated by other CPUs while iterating. * * Requires console_srcu_read_lock to be held. Can be invoked from * any context. */ #define for_each_console_srcu(con) \ hlist_for_each_entry_srcu(con, &console_list, node, \ console_srcu_read_lock_is_held()) /** * for_each_console() - Iterator over registered consoles * @con: struct console pointer used as loop cursor * * The console list and the &console.flags are immutable while iterating. * * Requires console_list_lock to be held. */ #define for_each_console(con) \ lockdep_assert_console_list_lock_held(); \ hlist_for_each_entry(con, &console_list, node) #ifdef CONFIG_PRINTK extern void nbcon_cpu_emergency_enter(void); extern void nbcon_cpu_emergency_exit(void); extern bool nbcon_can_proceed(struct nbcon_write_context *wctxt); extern bool nbcon_enter_unsafe(struct nbcon_write_context *wctxt); extern bool nbcon_exit_unsafe(struct nbcon_write_context *wctxt); extern void nbcon_reacquire_nobuf(struct nbcon_write_context *wctxt); #else static inline void nbcon_cpu_emergency_enter(void) { } static inline void nbcon_cpu_emergency_exit(void) { } static inline bool nbcon_can_proceed(struct nbcon_write_context *wctxt) { return false; } static inline bool nbcon_enter_unsafe(struct nbcon_write_context *wctxt) { return false; } static inline bool nbcon_exit_unsafe(struct nbcon_write_context *wctxt) { return false; } static inline void nbcon_reacquire_nobuf(struct nbcon_write_context *wctxt) { } #endif extern int console_set_on_cmdline; extern struct console *early_console; enum con_flush_mode { CONSOLE_FLUSH_PENDING, CONSOLE_REPLAY_ALL, }; extern int add_preferred_console(const char *name, const short idx, char *options); extern void console_force_preferred_locked(struct console *con); extern void register_console(struct console *); extern int unregister_console(struct console *); extern void console_lock(void); extern int console_trylock(void); extern void console_unlock(void); extern void console_conditional_schedule(void); extern void console_unblank(void); extern void console_flush_on_panic(enum con_flush_mode mode); extern struct tty_driver *console_device(int *); extern void console_stop(struct console *); extern void console_start(struct console *); extern int is_console_locked(void); extern int braille_register_console(struct console *, int index, char *console_options, char *braille_options); extern int braille_unregister_console(struct console *); #ifdef CONFIG_TTY extern void console_sysfs_notify(void); #else static inline void console_sysfs_notify(void) { } #endif extern bool console_suspend_enabled; /* Suspend and resume console messages over PM events */ extern void suspend_console(void); extern void resume_console(void); int mda_console_init(void); void vcs_make_sysfs(int index); void vcs_remove_sysfs(int index); /* Some debug stub to catch some of the obvious races in the VT code */ #define WARN_CONSOLE_UNLOCKED() \ WARN_ON(!atomic_read(&ignore_console_lock_warning) && \ !is_console_locked() && !oops_in_progress) /* * Increment ignore_console_lock_warning if you need to quiet * WARN_CONSOLE_UNLOCKED() for debugging purposes. */ extern atomic_t ignore_console_lock_warning; extern void console_init(void); /* For deferred console takeover */ void dummycon_register_output_notifier(struct notifier_block *nb); void dummycon_unregister_output_notifier(struct notifier_block *nb); #endif /* _LINUX_CONSOLE_H */