/* * Dynamic DMA mapping support. * * This implementation is a fallback for platforms that do not support * I/O TLBs (aka DMA address translation hardware). * Copyright (C) 2000 Asit Mallick * Copyright (C) 2000 Goutham Rao * Copyright (C) 2000, 2003 Hewlett-Packard Co * David Mosberger-Tang * * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid * unnecessary i-cache flushing. * 04/07/.. ak Better overflow handling. Assorted fixes. * 05/09/10 linville Add support for syncing ranges, support syncing for * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. * 08/12/11 beckyb Add highmem support */ #define pr_fmt(fmt) "software IO TLB: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #define OFFSET(val,align) ((unsigned long) \ ( (val) & ( (align) - 1))) #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) /* * Minimum IO TLB size to bother booting with. Systems with mainly * 64bit capable cards will only lightly use the swiotlb. If we can't * allocate a contiguous 1MB, we're probably in trouble anyway. */ #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) enum swiotlb_force swiotlb_force; /* * Used to do a quick range check in swiotlb_tbl_unmap_single and * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this * API. */ static phys_addr_t io_tlb_start, io_tlb_end; /* * The number of IO TLB blocks (in groups of 64) between io_tlb_start and * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. */ static unsigned long io_tlb_nslabs; /* * This is a free list describing the number of free entries available from * each index */ static unsigned int *io_tlb_list; static unsigned int io_tlb_index; /* * Max segment that we can provide which (if pages are contingous) will * not be bounced (unless SWIOTLB_FORCE is set). */ unsigned int max_segment; /* * We need to save away the original address corresponding to a mapped entry * for the sync operations. */ #define INVALID_PHYS_ADDR (~(phys_addr_t)0) static phys_addr_t *io_tlb_orig_addr; /* * Protect the above data structures in the map and unmap calls */ static DEFINE_SPINLOCK(io_tlb_lock); static int late_alloc; static int __init setup_io_tlb_npages(char *str) { if (isdigit(*str)) { io_tlb_nslabs = simple_strtoul(str, &str, 0); /* avoid tail segment of size < IO_TLB_SEGSIZE */ io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); } if (*str == ',') ++str; if (!strcmp(str, "force")) { swiotlb_force = SWIOTLB_FORCE; } else if (!strcmp(str, "noforce")) { swiotlb_force = SWIOTLB_NO_FORCE; io_tlb_nslabs = 1; } return 0; } early_param("swiotlb", setup_io_tlb_npages); unsigned long swiotlb_nr_tbl(void) { return io_tlb_nslabs; } EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); unsigned int swiotlb_max_segment(void) { return max_segment; } EXPORT_SYMBOL_GPL(swiotlb_max_segment); void swiotlb_set_max_segment(unsigned int val) { if (swiotlb_force == SWIOTLB_FORCE) max_segment = 1; else max_segment = rounddown(val, PAGE_SIZE); } /* default to 64MB */ #define IO_TLB_DEFAULT_SIZE (64UL<<20) unsigned long swiotlb_size_or_default(void) { unsigned long size; size = io_tlb_nslabs << IO_TLB_SHIFT; return size ? size : (IO_TLB_DEFAULT_SIZE); } static bool no_iotlb_memory; void swiotlb_print_info(void) { unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; if (no_iotlb_memory) { pr_warn("No low mem\n"); return; } pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", (unsigned long long)io_tlb_start, (unsigned long long)io_tlb_end, bytes >> 20); } /* * Early SWIOTLB allocation may be too early to allow an architecture to * perform the desired operations. This function allows the architecture to * call SWIOTLB when the operations are possible. It needs to be called * before the SWIOTLB memory is used. */ void __init swiotlb_update_mem_attributes(void) { void *vaddr; unsigned long bytes; if (no_iotlb_memory || late_alloc) return; vaddr = phys_to_virt(io_tlb_start); bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); memset(vaddr, 0, bytes); } int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) { unsigned long i, bytes; bytes = nslabs << IO_TLB_SHIFT; io_tlb_nslabs = nslabs; io_tlb_start = __pa(tlb); io_tlb_end = io_tlb_start + bytes; /* * Allocate and initialize the free list array. This array is used * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE * between io_tlb_start and io_tlb_end. */ io_tlb_list = memblock_alloc( PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), PAGE_SIZE); io_tlb_orig_addr = memblock_alloc( PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), PAGE_SIZE); for (i = 0; i < io_tlb_nslabs; i++) { io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; } io_tlb_index = 0; if (verbose) swiotlb_print_info(); swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); return 0; } /* * Statically reserve bounce buffer space and initialize bounce buffer data * structures for the software IO TLB used to implement the DMA API. */ void __init swiotlb_init(int verbose) { size_t default_size = IO_TLB_DEFAULT_SIZE; unsigned char *vstart; unsigned long bytes; if (!io_tlb_nslabs) { io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); } bytes = io_tlb_nslabs << IO_TLB_SHIFT; /* Get IO TLB memory from the low pages */ vstart = memblock_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) return; if (io_tlb_start) memblock_free_early(io_tlb_start, PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); pr_warn("Cannot allocate buffer"); no_iotlb_memory = true; } /* * Systems with larger DMA zones (those that don't support ISA) can * initialize the swiotlb later using the slab allocator if needed. * This should be just like above, but with some error catching. */ int swiotlb_late_init_with_default_size(size_t default_size) { unsigned long bytes, req_nslabs = io_tlb_nslabs; unsigned char *vstart = NULL; unsigned int order; int rc = 0; if (!io_tlb_nslabs) { io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); } /* * Get IO TLB memory from the low pages */ order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); io_tlb_nslabs = SLABS_PER_PAGE << order; bytes = io_tlb_nslabs << IO_TLB_SHIFT; while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order); if (vstart) break; order--; } if (!vstart) { io_tlb_nslabs = req_nslabs; return -ENOMEM; } if (order != get_order(bytes)) { pr_warn("only able to allocate %ld MB\n", (PAGE_SIZE << order) >> 20); io_tlb_nslabs = SLABS_PER_PAGE << order; } rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); if (rc) free_pages((unsigned long)vstart, order); return rc; } int swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) { unsigned long i, bytes; bytes = nslabs << IO_TLB_SHIFT; io_tlb_nslabs = nslabs; io_tlb_start = virt_to_phys(tlb); io_tlb_end = io_tlb_start + bytes; set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); memset(tlb, 0, bytes); /* * Allocate and initialize the free list array. This array is used * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE * between io_tlb_start and io_tlb_end. */ io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, get_order(io_tlb_nslabs * sizeof(int))); if (!io_tlb_list) goto cleanup3; io_tlb_orig_addr = (phys_addr_t *) __get_free_pages(GFP_KERNEL, get_order(io_tlb_nslabs * sizeof(phys_addr_t))); if (!io_tlb_orig_addr) goto cleanup4; for (i = 0; i < io_tlb_nslabs; i++) { io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; } io_tlb_index = 0; swiotlb_print_info(); late_alloc = 1; swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); return 0; cleanup4: free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * sizeof(int))); io_tlb_list = NULL; cleanup3: io_tlb_end = 0; io_tlb_start = 0; io_tlb_nslabs = 0; max_segment = 0; return -ENOMEM; } void __init swiotlb_exit(void) { if (!io_tlb_orig_addr) return; if (late_alloc) { free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs * sizeof(phys_addr_t))); free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * sizeof(int))); free_pages((unsigned long)phys_to_virt(io_tlb_start), get_order(io_tlb_nslabs << IO_TLB_SHIFT)); } else { memblock_free_late(__pa(io_tlb_orig_addr), PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); memblock_free_late(__pa(io_tlb_list), PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); memblock_free_late(io_tlb_start, PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); } io_tlb_nslabs = 0; max_segment = 0; } static int is_swiotlb_buffer(phys_addr_t paddr) { return paddr >= io_tlb_start && paddr < io_tlb_end; } /* * Bounce: copy the swiotlb buffer back to the original dma location */ static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, size_t size, enum dma_data_direction dir) { unsigned long pfn = PFN_DOWN(orig_addr); unsigned char *vaddr = phys_to_virt(tlb_addr); if (PageHighMem(pfn_to_page(pfn))) { /* The buffer does not have a mapping. Map it in and copy */ unsigned int offset = orig_addr & ~PAGE_MASK; char *buffer; unsigned int sz = 0; unsigned long flags; while (size) { sz = min_t(size_t, PAGE_SIZE - offset, size); local_irq_save(flags); buffer = kmap_atomic(pfn_to_page(pfn)); if (dir == DMA_TO_DEVICE) memcpy(vaddr, buffer + offset, sz); else memcpy(buffer + offset, vaddr, sz); kunmap_atomic(buffer); local_irq_restore(flags); size -= sz; pfn++; vaddr += sz; offset = 0; } } else if (dir == DMA_TO_DEVICE) { memcpy(vaddr, phys_to_virt(orig_addr), size); } else { memcpy(phys_to_virt(orig_addr), vaddr, size); } } phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr, phys_addr_t orig_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { unsigned long flags; phys_addr_t tlb_addr; unsigned int nslots, stride, index, wrap; int i; unsigned long mask; unsigned long offset_slots; unsigned long max_slots; if (no_iotlb_memory) panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); if (mem_encrypt_active()) pr_warn_once("%s is active and system is using DMA bounce buffers\n", sme_active() ? "SME" : "SEV"); mask = dma_get_seg_boundary(hwdev); tbl_dma_addr &= mask; offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; /* * Carefully handle integer overflow which can occur when mask == ~0UL. */ max_slots = mask + 1 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); /* * For mappings greater than or equal to a page, we limit the stride * (and hence alignment) to a page size. */ nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; if (size >= PAGE_SIZE) stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); else stride = 1; BUG_ON(!nslots); /* * Find suitable number of IO TLB entries size that will fit this * request and allocate a buffer from that IO TLB pool. */ spin_lock_irqsave(&io_tlb_lock, flags); index = ALIGN(io_tlb_index, stride); if (index >= io_tlb_nslabs) index = 0; wrap = index; do { while (iommu_is_span_boundary(index, nslots, offset_slots, max_slots)) { index += stride; if (index >= io_tlb_nslabs) index = 0; if (index == wrap) goto not_found; } /* * If we find a slot that indicates we have 'nslots' number of * contiguous buffers, we allocate the buffers from that slot * and mark the entries as '0' indicating unavailable. */ if (io_tlb_list[index] >= nslots) { int count = 0; for (i = index; i < (int) (index + nslots); i++) io_tlb_list[i] = 0; for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) io_tlb_list[i] = ++count; tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); /* * Update the indices to avoid searching in the next * round. */ io_tlb_index = ((index + nslots) < io_tlb_nslabs ? (index + nslots) : 0); goto found; } index += stride; if (index >= io_tlb_nslabs) index = 0; } while (index != wrap); not_found: spin_unlock_irqrestore(&io_tlb_lock, flags); if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); return DMA_MAPPING_ERROR; found: spin_unlock_irqrestore(&io_tlb_lock, flags); /* * Save away the mapping from the original address to the DMA address. * This is needed when we sync the memory. Then we sync the buffer if * needed. */ for (i = 0; i < nslots; i++) io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); return tlb_addr; } /* * tlb_addr is the physical address of the bounce buffer to unmap. */ void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { unsigned long flags; int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; phys_addr_t orig_addr = io_tlb_orig_addr[index]; /* * First, sync the memory before unmapping the entry */ if (orig_addr != INVALID_PHYS_ADDR && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); /* * Return the buffer to the free list by setting the corresponding * entries to indicate the number of contiguous entries available. * While returning the entries to the free list, we merge the entries * with slots below and above the pool being returned. */ spin_lock_irqsave(&io_tlb_lock, flags); { count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? io_tlb_list[index + nslots] : 0); /* * Step 1: return the slots to the free list, merging the * slots with superceeding slots */ for (i = index + nslots - 1; i >= index; i--) { io_tlb_list[i] = ++count; io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; } /* * Step 2: merge the returned slots with the preceding slots, * if available (non zero) */ for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) io_tlb_list[i] = ++count; } spin_unlock_irqrestore(&io_tlb_lock, flags); } void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, size_t size, enum dma_data_direction dir, enum dma_sync_target target) { int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; phys_addr_t orig_addr = io_tlb_orig_addr[index]; if (orig_addr == INVALID_PHYS_ADDR) return; orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); switch (target) { case SYNC_FOR_CPU: if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); else BUG_ON(dir != DMA_TO_DEVICE); break; case SYNC_FOR_DEVICE: if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); else BUG_ON(dir != DMA_FROM_DEVICE); break; default: BUG(); } } static dma_addr_t swiotlb_bounce_page(struct device *dev, phys_addr_t *phys, size_t size, enum dma_data_direction dir, unsigned long attrs) { dma_addr_t dma_addr; if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) { dev_warn_ratelimited(dev, "Cannot do DMA to address %pa\n", phys); return DMA_MAPPING_ERROR; } /* Oh well, have to allocate and map a bounce buffer. */ *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start), *phys, size, dir, attrs); if (*phys == DMA_MAPPING_ERROR) return DMA_MAPPING_ERROR; /* Ensure that the address returned is DMA'ble */ dma_addr = __phys_to_dma(dev, *phys); if (unlikely(!dma_capable(dev, dma_addr, size))) { swiotlb_tbl_unmap_single(dev, *phys, size, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); return DMA_MAPPING_ERROR; } return dma_addr; } /* * Map a single buffer of the indicated size for DMA in streaming mode. The * physical address to use is returned. * * Once the device is given the dma address, the device owns this memory until * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. */ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = page_to_phys(page) + offset; dma_addr_t dev_addr = phys_to_dma(dev, phys); BUG_ON(dir == DMA_NONE); /* * If the address happens to be in the device's DMA window, * we can safely return the device addr and not worry about bounce * buffering it. */ if (!dma_capable(dev, dev_addr, size) || swiotlb_force == SWIOTLB_FORCE) { trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); dev_addr = swiotlb_bounce_page(dev, &phys, size, dir, attrs); } if (!dev_is_dma_coherent(dev) && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0 && dev_addr != DMA_MAPPING_ERROR) arch_sync_dma_for_device(dev, phys, size, dir); return dev_addr; } /* * Unmap a single streaming mode DMA translation. The dma_addr and size must * match what was provided for in a previous swiotlb_map_page call. All * other usages are undefined. * * After this call, reads by the cpu to the buffer are guaranteed to see * whatever the device wrote there. */ void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); BUG_ON(dir == DMA_NONE); if (!dev_is_dma_coherent(hwdev) && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) arch_sync_dma_for_cpu(hwdev, paddr, size, dir); if (is_swiotlb_buffer(paddr)) swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); } /* * Make physical memory consistent for a single streaming mode DMA translation * after a transfer. * * If you perform a swiotlb_map_page() but wish to interrogate the buffer * using the cpu, yet do not wish to teardown the dma mapping, you must * call this function before doing so. At the next point you give the dma * address back to the card, you must first perform a * swiotlb_dma_sync_for_device, and then the device again owns the buffer */ static void swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir, enum dma_sync_target target) { phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); BUG_ON(dir == DMA_NONE); if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_CPU) arch_sync_dma_for_cpu(hwdev, paddr, size, dir); if (is_swiotlb_buffer(paddr)) swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_DEVICE) arch_sync_dma_for_device(hwdev, paddr, size, dir); } void swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); } void swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, size_t size, enum dma_data_direction dir) { swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); } /* * Map a set of buffers described by scatterlist in streaming mode for DMA. * This is the scatter-gather version of the above swiotlb_map_page * interface. Here the scatter gather list elements are each tagged with the * appropriate dma address and length. They are obtained via * sg_dma_{address,length}(SG). * * Device ownership issues as mentioned above for swiotlb_map_page are the * same here. */ int swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nelems, i) { sg->dma_address = swiotlb_map_page(dev, sg_page(sg), sg->offset, sg->length, dir, attrs); if (sg->dma_address == DMA_MAPPING_ERROR) goto out_error; sg_dma_len(sg) = sg->length; } return nelems; out_error: swiotlb_unmap_sg_attrs(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); sg_dma_len(sgl) = 0; return 0; } /* * Unmap a set of streaming mode DMA translations. Again, cpu read rules * concerning calls here are the same as for swiotlb_unmap_page() above. */ void swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i; BUG_ON(dir == DMA_NONE); for_each_sg(sgl, sg, nelems, i) swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); } /* * Make physical memory consistent for a set of streaming mode DMA translations * after a transfer. * * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules * and usage. */ static void swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, enum dma_data_direction dir, enum dma_sync_target target) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nelems, i) swiotlb_sync_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, target); } void swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); } void swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); } /* * Return whether the given device DMA address mask can be supported * properly. For example, if your device can only drive the low 24-bits * during bus mastering, then you would pass 0x00ffffff as the mask to * this function. */ int swiotlb_dma_supported(struct device *hwdev, u64 mask) { return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; } const struct dma_map_ops swiotlb_dma_ops = { .alloc = dma_direct_alloc, .free = dma_direct_free, .sync_single_for_cpu = swiotlb_sync_single_for_cpu, .sync_single_for_device = swiotlb_sync_single_for_device, .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, .sync_sg_for_device = swiotlb_sync_sg_for_device, .map_sg = swiotlb_map_sg_attrs, .unmap_sg = swiotlb_unmap_sg_attrs, .map_page = swiotlb_map_page, .unmap_page = swiotlb_unmap_page, .dma_supported = dma_direct_supported, }; EXPORT_SYMBOL(swiotlb_dma_ops);