// SPDX-License-Identifier: GPL-2.0+ // // Scalability test comparing RCU vs other mechanisms // for acquiring references on objects. // // Copyright (C) Google, 2020. // // Author: Joel Fernandes #define pr_fmt(fmt) fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rcu.h" #define SCALE_FLAG "-ref-scale: " #define SCALEOUT(s, x...) \ pr_alert("%s" SCALE_FLAG s, scale_type, ## x) #define VERBOSE_SCALEOUT(s, x...) \ do { \ if (verbose) \ pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \ } while (0) static atomic_t verbose_batch_ctr; #define VERBOSE_SCALEOUT_BATCH(s, x...) \ do { \ if (verbose && \ (verbose_batched <= 0 || \ !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) { \ schedule_timeout_uninterruptible(1); \ pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \ } \ } while (0) #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x) MODULE_DESCRIPTION("Scalability test for object reference mechanisms"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Joel Fernandes (Google) "); static char *scale_type = "rcu"; module_param(scale_type, charp, 0444); MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock."); torture_param(int, verbose, 0, "Enable verbose debugging printk()s"); torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s"); // Wait until there are multiple CPUs before starting test. torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0, "Holdoff time before test start (s)"); // Number of typesafe_lookup structures, that is, the degree of concurrency. torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures."); // Number of loops per experiment, all readers execute operations concurrently. torture_param(long, loops, 10000, "Number of loops per experiment."); // Number of readers, with -1 defaulting to about 75% of the CPUs. torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs."); // Number of runs. torture_param(int, nruns, 30, "Number of experiments to run."); // Reader delay in nanoseconds, 0 for no delay. torture_param(int, readdelay, 0, "Read-side delay in nanoseconds."); #ifdef MODULE # define REFSCALE_SHUTDOWN 0 #else # define REFSCALE_SHUTDOWN 1 #endif torture_param(bool, shutdown, REFSCALE_SHUTDOWN, "Shutdown at end of scalability tests."); struct reader_task { struct task_struct *task; int start_reader; wait_queue_head_t wq; u64 last_duration_ns; }; static struct task_struct *shutdown_task; static wait_queue_head_t shutdown_wq; static struct task_struct *main_task; static wait_queue_head_t main_wq; static int shutdown_start; static struct reader_task *reader_tasks; // Number of readers that are part of the current experiment. static atomic_t nreaders_exp; // Use to wait for all threads to start. static atomic_t n_init; static atomic_t n_started; static atomic_t n_warmedup; static atomic_t n_cooleddown; // Track which experiment is currently running. static int exp_idx; // Operations vector for selecting different types of tests. struct ref_scale_ops { bool (*init)(void); void (*cleanup)(void); void (*readsection)(const int nloops); void (*delaysection)(const int nloops, const int udl, const int ndl); const char *name; }; static const struct ref_scale_ops *cur_ops; static void un_delay(const int udl, const int ndl) { if (udl) udelay(udl); if (ndl) ndelay(ndl); } static void ref_rcu_read_section(const int nloops) { int i; for (i = nloops; i >= 0; i--) { rcu_read_lock(); rcu_read_unlock(); } } static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl) { int i; for (i = nloops; i >= 0; i--) { rcu_read_lock(); un_delay(udl, ndl); rcu_read_unlock(); } } static bool rcu_sync_scale_init(void) { return true; } static const struct ref_scale_ops rcu_ops = { .init = rcu_sync_scale_init, .readsection = ref_rcu_read_section, .delaysection = ref_rcu_delay_section, .name = "rcu" }; // Definitions for SRCU ref scale testing. DEFINE_STATIC_SRCU(srcu_refctl_scale); static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale; static void srcu_ref_scale_read_section(const int nloops) { int i; int idx; for (i = nloops; i >= 0; i--) { idx = srcu_read_lock(srcu_ctlp); srcu_read_unlock(srcu_ctlp, idx); } } static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl) { int i; int idx; for (i = nloops; i >= 0; i--) { idx = srcu_read_lock(srcu_ctlp); un_delay(udl, ndl); srcu_read_unlock(srcu_ctlp, idx); } } static const struct ref_scale_ops srcu_ops = { .init = rcu_sync_scale_init, .readsection = srcu_ref_scale_read_section, .delaysection = srcu_ref_scale_delay_section, .name = "srcu" }; #ifdef CONFIG_TASKS_RCU // Definitions for RCU Tasks ref scale testing: Empty read markers. // These definitions also work for RCU Rude readers. static void rcu_tasks_ref_scale_read_section(const int nloops) { int i; for (i = nloops; i >= 0; i--) continue; } static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl) { int i; for (i = nloops; i >= 0; i--) un_delay(udl, ndl); } static const struct ref_scale_ops rcu_tasks_ops = { .init = rcu_sync_scale_init, .readsection = rcu_tasks_ref_scale_read_section, .delaysection = rcu_tasks_ref_scale_delay_section, .name = "rcu-tasks" }; #define RCU_TASKS_OPS &rcu_tasks_ops, #else // #ifdef CONFIG_TASKS_RCU #define RCU_TASKS_OPS #endif // #else // #ifdef CONFIG_TASKS_RCU #ifdef CONFIG_TASKS_TRACE_RCU // Definitions for RCU Tasks Trace ref scale testing. static void rcu_trace_ref_scale_read_section(const int nloops) { int i; for (i = nloops; i >= 0; i--) { rcu_read_lock_trace(); rcu_read_unlock_trace(); } } static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl) { int i; for (i = nloops; i >= 0; i--) { rcu_read_lock_trace(); un_delay(udl, ndl); rcu_read_unlock_trace(); } } static const struct ref_scale_ops rcu_trace_ops = { .init = rcu_sync_scale_init, .readsection = rcu_trace_ref_scale_read_section, .delaysection = rcu_trace_ref_scale_delay_section, .name = "rcu-trace" }; #define RCU_TRACE_OPS &rcu_trace_ops, #else // #ifdef CONFIG_TASKS_TRACE_RCU #define RCU_TRACE_OPS #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU // Definitions for reference count static atomic_t refcnt; static void ref_refcnt_section(const int nloops) { int i; for (i = nloops; i >= 0; i--) { atomic_inc(&refcnt); atomic_dec(&refcnt); } } static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl) { int i; for (i = nloops; i >= 0; i--) { atomic_inc(&refcnt); un_delay(udl, ndl); atomic_dec(&refcnt); } } static const struct ref_scale_ops refcnt_ops = { .init = rcu_sync_scale_init, .readsection = ref_refcnt_section, .delaysection = ref_refcnt_delay_section, .name = "refcnt" }; // Definitions for rwlock static rwlock_t test_rwlock; static bool ref_rwlock_init(void) { rwlock_init(&test_rwlock); return true; } static void ref_rwlock_section(const int nloops) { int i; for (i = nloops; i >= 0; i--) { read_lock(&test_rwlock); read_unlock(&test_rwlock); } } static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl) { int i; for (i = nloops; i >= 0; i--) { read_lock(&test_rwlock); un_delay(udl, ndl); read_unlock(&test_rwlock); } } static const struct ref_scale_ops rwlock_ops = { .init = ref_rwlock_init, .readsection = ref_rwlock_section, .delaysection = ref_rwlock_delay_section, .name = "rwlock" }; // Definitions for rwsem static struct rw_semaphore test_rwsem; static bool ref_rwsem_init(void) { init_rwsem(&test_rwsem); return true; } static void ref_rwsem_section(const int nloops) { int i; for (i = nloops; i >= 0; i--) { down_read(&test_rwsem); up_read(&test_rwsem); } } static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl) { int i; for (i = nloops; i >= 0; i--) { down_read(&test_rwsem); un_delay(udl, ndl); up_read(&test_rwsem); } } static const struct ref_scale_ops rwsem_ops = { .init = ref_rwsem_init, .readsection = ref_rwsem_section, .delaysection = ref_rwsem_delay_section, .name = "rwsem" }; // Definitions for global spinlock static DEFINE_RAW_SPINLOCK(test_lock); static void ref_lock_section(const int nloops) { int i; preempt_disable(); for (i = nloops; i >= 0; i--) { raw_spin_lock(&test_lock); raw_spin_unlock(&test_lock); } preempt_enable(); } static void ref_lock_delay_section(const int nloops, const int udl, const int ndl) { int i; preempt_disable(); for (i = nloops; i >= 0; i--) { raw_spin_lock(&test_lock); un_delay(udl, ndl); raw_spin_unlock(&test_lock); } preempt_enable(); } static const struct ref_scale_ops lock_ops = { .readsection = ref_lock_section, .delaysection = ref_lock_delay_section, .name = "lock" }; // Definitions for global irq-save spinlock static void ref_lock_irq_section(const int nloops) { unsigned long flags; int i; preempt_disable(); for (i = nloops; i >= 0; i--) { raw_spin_lock_irqsave(&test_lock, flags); raw_spin_unlock_irqrestore(&test_lock, flags); } preempt_enable(); } static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl) { unsigned long flags; int i; preempt_disable(); for (i = nloops; i >= 0; i--) { raw_spin_lock_irqsave(&test_lock, flags); un_delay(udl, ndl); raw_spin_unlock_irqrestore(&test_lock, flags); } preempt_enable(); } static const struct ref_scale_ops lock_irq_ops = { .readsection = ref_lock_irq_section, .delaysection = ref_lock_irq_delay_section, .name = "lock-irq" }; // Definitions acquire-release. static DEFINE_PER_CPU(unsigned long, test_acqrel); static void ref_acqrel_section(const int nloops) { unsigned long x; int i; preempt_disable(); for (i = nloops; i >= 0; i--) { x = smp_load_acquire(this_cpu_ptr(&test_acqrel)); smp_store_release(this_cpu_ptr(&test_acqrel), x + 1); } preempt_enable(); } static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl) { unsigned long x; int i; preempt_disable(); for (i = nloops; i >= 0; i--) { x = smp_load_acquire(this_cpu_ptr(&test_acqrel)); un_delay(udl, ndl); smp_store_release(this_cpu_ptr(&test_acqrel), x + 1); } preempt_enable(); } static const struct ref_scale_ops acqrel_ops = { .readsection = ref_acqrel_section, .delaysection = ref_acqrel_delay_section, .name = "acqrel" }; static volatile u64 stopopts; static void ref_clock_section(const int nloops) { u64 x = 0; int i; preempt_disable(); for (i = nloops; i >= 0; i--) x += ktime_get_real_fast_ns(); preempt_enable(); stopopts = x; } static void ref_clock_delay_section(const int nloops, const int udl, const int ndl) { u64 x = 0; int i; preempt_disable(); for (i = nloops; i >= 0; i--) { x += ktime_get_real_fast_ns(); un_delay(udl, ndl); } preempt_enable(); stopopts = x; } static const struct ref_scale_ops clock_ops = { .readsection = ref_clock_section, .delaysection = ref_clock_delay_section, .name = "clock" }; static void ref_jiffies_section(const int nloops) { u64 x = 0; int i; preempt_disable(); for (i = nloops; i >= 0; i--) x += jiffies; preempt_enable(); stopopts = x; } static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl) { u64 x = 0; int i; preempt_disable(); for (i = nloops; i >= 0; i--) { x += jiffies; un_delay(udl, ndl); } preempt_enable(); stopopts = x; } static const struct ref_scale_ops jiffies_ops = { .readsection = ref_jiffies_section, .delaysection = ref_jiffies_delay_section, .name = "jiffies" }; //////////////////////////////////////////////////////////////////////// // // Methods leveraging SLAB_TYPESAFE_BY_RCU. // // Item to look up in a typesafe manner. Array of pointers to these. struct refscale_typesafe { atomic_t rts_refctr; // Used by all flavors spinlock_t rts_lock; seqlock_t rts_seqlock; unsigned int a; unsigned int b; }; static struct kmem_cache *typesafe_kmem_cachep; static struct refscale_typesafe **rtsarray; static long rtsarray_size; static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand); static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start); static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start); // Conditionally acquire an explicit in-structure reference count. static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start) { return atomic_inc_not_zero(&rtsp->rts_refctr); } // Unconditionally release an explicit in-structure reference count. static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start) { if (!atomic_dec_return(&rtsp->rts_refctr)) { WRITE_ONCE(rtsp->a, rtsp->a + 1); kmem_cache_free(typesafe_kmem_cachep, rtsp); } return true; } // Unconditionally acquire an explicit in-structure spinlock. static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start) { spin_lock(&rtsp->rts_lock); return true; } // Unconditionally release an explicit in-structure spinlock. static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start) { spin_unlock(&rtsp->rts_lock); return true; } // Unconditionally acquire an explicit in-structure sequence lock. static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start) { *start = read_seqbegin(&rtsp->rts_seqlock); return true; } // Conditionally release an explicit in-structure sequence lock. Return // true if this release was successful, that is, if no retry is required. static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start) { return !read_seqretry(&rtsp->rts_seqlock, start); } // Do a read-side critical section with the specified delay in // microseconds and nanoseconds inserted so as to increase probability // of failure. static void typesafe_delay_section(const int nloops, const int udl, const int ndl) { unsigned int a; unsigned int b; int i; long idx; struct refscale_typesafe *rtsp; unsigned int start; for (i = nloops; i >= 0; i--) { preempt_disable(); idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size; preempt_enable(); retry: rcu_read_lock(); rtsp = rcu_dereference(rtsarray[idx]); a = READ_ONCE(rtsp->a); if (!rts_acquire(rtsp, &start)) { rcu_read_unlock(); goto retry; } if (a != READ_ONCE(rtsp->a)) { (void)rts_release(rtsp, start); rcu_read_unlock(); goto retry; } un_delay(udl, ndl); b = READ_ONCE(rtsp->a); // Remember, seqlock read-side release can fail. if (!rts_release(rtsp, start)) { rcu_read_unlock(); goto retry; } WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b); b = rtsp->b; rcu_read_unlock(); WARN_ON_ONCE(a * a != b); } } // Because the acquisition and release methods are expensive, there // is no point in optimizing away the un_delay() function's two checks. // Thus simply define typesafe_read_section() as a simple wrapper around // typesafe_delay_section(). static void typesafe_read_section(const int nloops) { typesafe_delay_section(nloops, 0, 0); } // Allocate and initialize one refscale_typesafe structure. static struct refscale_typesafe *typesafe_alloc_one(void) { struct refscale_typesafe *rtsp; rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL); if (!rtsp) return NULL; atomic_set(&rtsp->rts_refctr, 1); WRITE_ONCE(rtsp->a, rtsp->a + 1); WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a); return rtsp; } // Slab-allocator constructor for refscale_typesafe structures created // out of a new slab of system memory. static void refscale_typesafe_ctor(void *rtsp_in) { struct refscale_typesafe *rtsp = rtsp_in; spin_lock_init(&rtsp->rts_lock); seqlock_init(&rtsp->rts_seqlock); preempt_disable(); rtsp->a = torture_random(this_cpu_ptr(&refscale_rand)); preempt_enable(); } static const struct ref_scale_ops typesafe_ref_ops; static const struct ref_scale_ops typesafe_lock_ops; static const struct ref_scale_ops typesafe_seqlock_ops; // Initialize for a typesafe test. static bool typesafe_init(void) { long idx; long si = lookup_instances; typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe", sizeof(struct refscale_typesafe), sizeof(void *), SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor); if (!typesafe_kmem_cachep) return false; if (si < 0) si = -si * nr_cpu_ids; else if (si == 0) si = nr_cpu_ids; rtsarray_size = si; rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL); if (!rtsarray) return false; for (idx = 0; idx < rtsarray_size; idx++) { rtsarray[idx] = typesafe_alloc_one(); if (!rtsarray[idx]) return false; } if (cur_ops == &typesafe_ref_ops) { rts_acquire = typesafe_ref_acquire; rts_release = typesafe_ref_release; } else if (cur_ops == &typesafe_lock_ops) { rts_acquire = typesafe_lock_acquire; rts_release = typesafe_lock_release; } else if (cur_ops == &typesafe_seqlock_ops) { rts_acquire = typesafe_seqlock_acquire; rts_release = typesafe_seqlock_release; } else { WARN_ON_ONCE(1); return false; } return true; } // Clean up after a typesafe test. static void typesafe_cleanup(void) { long idx; if (rtsarray) { for (idx = 0; idx < rtsarray_size; idx++) kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]); kfree(rtsarray); rtsarray = NULL; rtsarray_size = 0; } kmem_cache_destroy(typesafe_kmem_cachep); typesafe_kmem_cachep = NULL; rts_acquire = NULL; rts_release = NULL; } // The typesafe_init() function distinguishes these structures by address. static const struct ref_scale_ops typesafe_ref_ops = { .init = typesafe_init, .cleanup = typesafe_cleanup, .readsection = typesafe_read_section, .delaysection = typesafe_delay_section, .name = "typesafe_ref" }; static const struct ref_scale_ops typesafe_lock_ops = { .init = typesafe_init, .cleanup = typesafe_cleanup, .readsection = typesafe_read_section, .delaysection = typesafe_delay_section, .name = "typesafe_lock" }; static const struct ref_scale_ops typesafe_seqlock_ops = { .init = typesafe_init, .cleanup = typesafe_cleanup, .readsection = typesafe_read_section, .delaysection = typesafe_delay_section, .name = "typesafe_seqlock" }; static void rcu_scale_one_reader(void) { if (readdelay <= 0) cur_ops->readsection(loops); else cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000); } // Reader kthread. Repeatedly does empty RCU read-side // critical section, minimizing update-side interference. static int ref_scale_reader(void *arg) { unsigned long flags; long me = (long)arg; struct reader_task *rt = &(reader_tasks[me]); u64 start; s64 duration; VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me); WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids))); set_user_nice(current, MAX_NICE); atomic_inc(&n_init); if (holdoff) schedule_timeout_interruptible(holdoff * HZ); repeat: VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id()); // Wait for signal that this reader can start. wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) || torture_must_stop()); if (torture_must_stop()) goto end; // Make sure that the CPU is affinitized appropriately during testing. WARN_ON_ONCE(raw_smp_processor_id() != me); WRITE_ONCE(rt->start_reader, 0); if (!atomic_dec_return(&n_started)) while (atomic_read_acquire(&n_started)) cpu_relax(); VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx); // To reduce noise, do an initial cache-warming invocation, check // in, and then keep warming until everyone has checked in. rcu_scale_one_reader(); if (!atomic_dec_return(&n_warmedup)) while (atomic_read_acquire(&n_warmedup)) rcu_scale_one_reader(); // Also keep interrupts disabled. This also has the effect // of preventing entries into slow path for rcu_read_unlock(). local_irq_save(flags); start = ktime_get_mono_fast_ns(); rcu_scale_one_reader(); duration = ktime_get_mono_fast_ns() - start; local_irq_restore(flags); rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration; // To reduce runtime-skew noise, do maintain-load invocations until // everyone is done. if (!atomic_dec_return(&n_cooleddown)) while (atomic_read_acquire(&n_cooleddown)) rcu_scale_one_reader(); if (atomic_dec_and_test(&nreaders_exp)) wake_up(&main_wq); VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)", me, exp_idx, atomic_read(&nreaders_exp)); if (!torture_must_stop()) goto repeat; end: torture_kthread_stopping("ref_scale_reader"); return 0; } static void reset_readers(void) { int i; struct reader_task *rt; for (i = 0; i < nreaders; i++) { rt = &(reader_tasks[i]); rt->last_duration_ns = 0; } } // Print the results of each reader and return the sum of all their durations. static u64 process_durations(int n) { int i; struct reader_task *rt; struct seq_buf s; char *buf; u64 sum = 0; buf = kmalloc(800 + 64, GFP_KERNEL); if (!buf) return 0; seq_buf_init(&s, buf, 800 + 64); seq_buf_printf(&s, "Experiment #%d (Format: :)", exp_idx); for (i = 0; i < n && !torture_must_stop(); i++) { rt = &(reader_tasks[i]); if (i % 5 == 0) seq_buf_putc(&s, '\n'); if (seq_buf_used(&s) >= 800) { pr_alert("%s", seq_buf_str(&s)); seq_buf_clear(&s); } seq_buf_printf(&s, "%d: %llu\t", i, rt->last_duration_ns); sum += rt->last_duration_ns; } pr_alert("%s\n", seq_buf_str(&s)); kfree(buf); return sum; } // The main_func is the main orchestrator, it performs a bunch of // experiments. For every experiment, it orders all the readers // involved to start and waits for them to finish the experiment. It // then reads their timestamps and starts the next experiment. Each // experiment progresses from 1 concurrent reader to N of them at which // point all the timestamps are printed. static int main_func(void *arg) { int exp, r; char buf1[64]; char *buf; u64 *result_avg; set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids)); set_user_nice(current, MAX_NICE); VERBOSE_SCALEOUT("main_func task started"); result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL); buf = kzalloc(800 + 64, GFP_KERNEL); if (!result_avg || !buf) { SCALEOUT_ERRSTRING("out of memory"); goto oom_exit; } if (holdoff) schedule_timeout_interruptible(holdoff * HZ); // Wait for all threads to start. atomic_inc(&n_init); while (atomic_read(&n_init) < nreaders + 1) schedule_timeout_uninterruptible(1); // Start exp readers up per experiment for (exp = 0; exp < nruns && !torture_must_stop(); exp++) { if (torture_must_stop()) goto end; reset_readers(); atomic_set(&nreaders_exp, nreaders); atomic_set(&n_started, nreaders); atomic_set(&n_warmedup, nreaders); atomic_set(&n_cooleddown, nreaders); exp_idx = exp; for (r = 0; r < nreaders; r++) { smp_store_release(&reader_tasks[r].start_reader, 1); wake_up(&reader_tasks[r].wq); } VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers", nreaders); wait_event(main_wq, !atomic_read(&nreaders_exp) || torture_must_stop()); VERBOSE_SCALEOUT("main_func: experiment ended"); if (torture_must_stop()) goto end; result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops); } // Print the average of all experiments SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n"); pr_alert("Runs\tTime(ns)\n"); for (exp = 0; exp < nruns; exp++) { u64 avg; u32 rem; avg = div_u64_rem(result_avg[exp], 1000, &rem); sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem); strcat(buf, buf1); if (strlen(buf) >= 800) { pr_alert("%s", buf); buf[0] = 0; } } pr_alert("%s", buf); oom_exit: // This will shutdown everything including us. if (shutdown) { shutdown_start = 1; wake_up(&shutdown_wq); } // Wait for torture to stop us while (!torture_must_stop()) schedule_timeout_uninterruptible(1); end: torture_kthread_stopping("main_func"); kfree(result_avg); kfree(buf); return 0; } static void ref_scale_print_module_parms(const struct ref_scale_ops *cur_ops, const char *tag) { pr_alert("%s" SCALE_FLAG "--- %s: verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag, verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay); } static void ref_scale_cleanup(void) { int i; if (torture_cleanup_begin()) return; if (!cur_ops) { torture_cleanup_end(); return; } if (reader_tasks) { for (i = 0; i < nreaders; i++) torture_stop_kthread("ref_scale_reader", reader_tasks[i].task); } kfree(reader_tasks); torture_stop_kthread("main_task", main_task); kfree(main_task); // Do scale-type-specific cleanup operations. if (cur_ops->cleanup != NULL) cur_ops->cleanup(); torture_cleanup_end(); } // Shutdown kthread. Just waits to be awakened, then shuts down system. static int ref_scale_shutdown(void *arg) { wait_event_idle(shutdown_wq, shutdown_start); smp_mb(); // Wake before output. ref_scale_cleanup(); kernel_power_off(); return -EINVAL; } static int __init ref_scale_init(void) { long i; int firsterr = 0; static const struct ref_scale_ops *scale_ops[] = { &rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops, &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops, &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops, }; if (!torture_init_begin(scale_type, verbose)) return -EBUSY; for (i = 0; i < ARRAY_SIZE(scale_ops); i++) { cur_ops = scale_ops[i]; if (strcmp(scale_type, cur_ops->name) == 0) break; } if (i == ARRAY_SIZE(scale_ops)) { pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type); pr_alert("rcu-scale types:"); for (i = 0; i < ARRAY_SIZE(scale_ops); i++) pr_cont(" %s", scale_ops[i]->name); pr_cont("\n"); firsterr = -EINVAL; cur_ops = NULL; goto unwind; } if (cur_ops->init) if (!cur_ops->init()) { firsterr = -EUCLEAN; goto unwind; } ref_scale_print_module_parms(cur_ops, "Start of test"); // Shutdown task if (shutdown) { init_waitqueue_head(&shutdown_wq); firsterr = torture_create_kthread(ref_scale_shutdown, NULL, shutdown_task); if (torture_init_error(firsterr)) goto unwind; schedule_timeout_uninterruptible(1); } // Reader tasks (default to ~75% of online CPUs). if (nreaders < 0) nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2); if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops)) loops = 1; if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders)) nreaders = 1; if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns)) nruns = 1; reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]), GFP_KERNEL); if (!reader_tasks) { SCALEOUT_ERRSTRING("out of memory"); firsterr = -ENOMEM; goto unwind; } VERBOSE_SCALEOUT("Starting %d reader threads", nreaders); for (i = 0; i < nreaders; i++) { init_waitqueue_head(&reader_tasks[i].wq); firsterr = torture_create_kthread(ref_scale_reader, (void *)i, reader_tasks[i].task); if (torture_init_error(firsterr)) goto unwind; } // Main Task init_waitqueue_head(&main_wq); firsterr = torture_create_kthread(main_func, NULL, main_task); if (torture_init_error(firsterr)) goto unwind; torture_init_end(); return 0; unwind: torture_init_end(); ref_scale_cleanup(); if (shutdown) { WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST)); kernel_power_off(); } return firsterr; } module_init(ref_scale_init); module_exit(ref_scale_cleanup);